[书生·浦语大模型实战营]——第二节:轻松玩转书生·浦语大模型趣味 Demo

news2025/1/10 20:24:49

1. 部署InternLM2-Chat-1.8B 模型进行智能对话

1.1配置环境

创建开发机
Intern Studio 官网网址:https://studio.intern-ai.org.cn/
在这里插入图片描述
进入官网后,选择创建开发机,填写 开发机名称 后,点击 选择镜像 使用 Cuda11.7-conda 镜像,然后在资源配置中,使用 10% A100 * 1 的选项,立即创建开发机器。
在这里插入图片描述
然后机器会排队创建(等待的有点久嗷,不知道为啥)。
配置环境
进入开发机在terminal后输入环境配置命令如下:

studio-conda -o internlm-base -t demo
# 与 studio-conda 等效的配置方案
# conda create -n demo python==3.10 -y
# conda activate demo
# conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.7 -c pytorch -c nvidia

激活环境

conda activate demo

安装其他依赖包:

pip install huggingface-hub==0.17.3
pip install transformers==4.34 
pip install psutil==5.9.8
pip install accelerate==0.24.1
pip install streamlit==1.32.2 
pip install matplotlib==3.8.3 
pip install modelscope==1.9.5
pip install sentencepiece==0.1.99

1.2 下载 InternLM2-Chat-1.8B 模型

创建文件夹

mkdir -p /root/demo
touch /root/demo/cli_demo.py #touch主要用于创建空文件或设置文件的时间戳
touch /root/demo/download_mini.py
cd /root/demo

在download_mini.py中复制以下代码:

import os
from modelscope.hub.snapshot_download import snapshot_download

# 创建保存模型目录
os.system("mkdir /root/models")

# save_dir是模型保存到本地的目录
save_dir="/root/models"

snapshot_download("Shanghai_AI_Laboratory/internlm2-chat-1_8b", 
                  cache_dir=save_dir, 
                  revision='v1.1.0')

然后运行该文件以下载模型参数文件。

1.3 运行cli_demo

在cli_demo.py中复制以下内容,然后运行

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM


model_name_or_path = "/root/models/Shanghai_AI_Laboratory/internlm2-chat-1_8b"

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True, device_map='cuda:0')
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='cuda:0')
model = model.eval()

system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
"""

messages = [(system_prompt, '')]

print("=============Welcome to InternLM chatbot, type 'exit' to exit.=============")

while True:
    input_text = input("\nUser  >>> ")
    input_text = input_text.replace(' ', '')
    if input_text == "exit":
        break

    length = 0
    for response, _ in model.stream_chat(tokenizer, input_text, messages):
        if response is not None:
            print(response[length:], flush=True, end="")
            length = len(response)

运行效果如下:
在这里插入图片描述
有点怪啊,最后总是有一句总结句>_<

2.部署实战营优秀作品 八戒-Chat-1.8B模型

2.1简介

八戒-Chat-1.8B 是利用《西游记》剧本中所有关于猪八戒的台词和语句以及 LLM API 生成的相关数据结果,进行全量微调得到的猪八戒聊天模型。作为 Roleplay-with-XiYou 子项目之一,八戒-Chat-1.8B 能够以较低的训练成本达到不错的角色模仿能力,同时低部署条件能够为后续工作降低算力门槛。
项目链接:https://www.modelscope.cn/models/JimmyMa99/BaJie-Chat-mini/summary

2.2环境配置

基本环境和上一节一致,只需要激活

conda activate demo

从git仓库拉取

cd /root/
git clone https://gitee.com/InternLM/Tutorial -b camp2
# git clone https://github.com/InternLM/Tutorial -b camp2
cd /root/Tutorial

2.3下载运行Demo

下载

python /root/Tutorial/helloworld/bajie_download.py

运行

streamlit run /root/Tutorial/helloworld/bajie_chat.py --server.address 127.0.0.1 --server.port 6006

端口映射
在powershell中运行下述命令

# 从本地使用 ssh 连接 studio 端口
# 将下方端口号 38374 替换成自己的端口号
ssh -CNg -L 6006:127.0.0.1:6006 root@ssh.intern-ai.org.cn -p 38374

这个38374端口号可以在SSH连接中查看,然后输入下方的密码(我似乎没有输入密码,但是仍然可以用?)
打开 http://127.0.0.1:6006 后,结果如下:
在这里插入图片描述

3.实战:使用 Lagent 运行 InternLM2-Chat-7B 模型

3.1 初步介绍 Lagent 相关知识

Lagent 是一个轻量级、开源的基于大语言模型的智能体(agent)框架,支持用户快速地将一个大语言模型转变为多种类型的智能体,并提供了一些典型工具为大语言模型赋能。它的整个框架图如下:
在这里插入图片描述
Lagent的特点:

  • 流式输出:提供 stream_chat 接口作流式输出,本地就能演示酷炫的流式 Demo。
  • 接口统一,设计全面升级,提升拓展性,包括:
    Model : 不论是 OpenAI API, Transformers 还是推理加速框架 LMDeploy 一网打尽,模型切换可以游刃有余;
    Action: 简单的继承和装饰,即可打造自己个人的工具集,不论 InternLM 还是 GPT 均可适配;
    Agent:与 Model 的输入接口保持一致,模型到智能体的蜕变只需一步,便捷各种 agent 的探索实现;
  • 文档全面升级,API 文档全覆盖。

3.2配置环境

激活环境

conda activate demo

切换目录

cd /root/demo

拉取代码库

git clone https://gitee.com/internlm/lagent.git
# git clone https://github.com/internlm/lagent.git
cd /root/demo/lagent
git checkout 581d9fb8987a5d9b72bb9ebd37a95efd47d479ac
pip install -e . # 源码安装

3.3 使用 Lagent 运行 InternLM2-Chat-7B 模型为内核的智能体

切换路径

cd /root/demo/lagent

构造软链接

ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-7b /root/models/internlm2-chat-7b

打开 lagent 路径下 examples/internlm2_agent_web_demo_hf.py 文件,并修改对应位置 (71行左右) 代码,修改运行demo中的模型路径为本地路径

# 其他代码...
value='/root/models/internlm2-chat-7b'
# 其他代码...

运行

streamlit run /root/demo/lagent/examples/internlm2_agent_web_demo_hf.py --server.address 127.0.0.1 --server.port 6006

端口映射,同上一节
结果展示如下,(未勾选数据分析)
在这里插入图片描述
勾选数据分析
在这里插入图片描述
似乎没什么区别?

4.实战:实践部署 浦语·灵笔2 模型

4.1 初步介绍 XComposer2 相关知识

浦语·灵笔2 是基于 书生·浦语2 大语言模型研发的突破性的图文多模态大模型,具有非凡的图文写作和图像理解能力,在多种应用场景表现出色,总结起来其具有:

  • 自由指令输入的图文写作能力: 浦语·灵笔2 可以理解自由形式的图文指令输入,包括大纲、文章细节要求、参考图片等,为用户打造图文并貌的专属文章。生成的文章文采斐然,图文相得益彰,提供沉浸式的阅读体验。
  • 准确的图文问题解答能力:浦语·灵笔2 具有海量图文知识,可以准确的回复各种图文问答难题,在识别、感知、细节描述、视觉推理等能力上表现惊人。
  • 杰出的综合能力: 浦语·灵笔2-7B 基于 书生·浦语2-7B 模型,在13项多模态评测中大幅领先同量级多模态模型,在其中6项评测中超过 GPT-4V 和 Gemini Pro。

在这里插入图片描述
可以看到该模型在开源模型中效果非常好,在闭源模型和开源SOTA中也表现强劲。

4.2 环境配置

启动环境

conda activate demo

补充安装依赖包

pip install timm==0.4.12 sentencepiece==0.1.99 markdown2==2.4.10 xlsxwriter==3.1.2 gradio==4.13.0 modelscope==1.9.5

拉取InternLM-XComposer 代码

cd /root/demo
git clone https://gitee.com/internlm/InternLM-XComposer.git
# git clone https://github.com/internlm/InternLM-XComposer.git
cd /root/demo/InternLM-XComposer
git checkout f31220eddca2cf6246ee2ddf8e375a40457ff626

创建软链接

ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm-xcomposer2-7b /root/models/internlm-xcomposer2-7b
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm-xcomposer2-vl-7b /root/models/internlm-xcomposer2-vl-7b

4.3图文写作实战

启动InternLM-XComposer:

cd /root/demo/InternLM-XComposer
python /root/demo/InternLM-XComposer/examples/gradio_demo_composition.py  \
--code_path /root/models/internlm-xcomposer2-7b \
--private \
--num_gpus 1 \
--port 6006

记得开端口映射
实现效果如下
在这里插入图片描述

4.4图片理解实战

运行InternLM-XComposer2-vl

conda activate demo

cd /root/demo/InternLM-XComposer
python /root/demo/InternLM-XComposer/examples/gradio_demo_chat.py  \
--code_path /root/models/internlm-xcomposer2-vl-7b \
--private \
--num_gpus 1 \
--port 6006

效果展示:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1692966.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

楼房vr安全逃生模拟体验让你在虚拟环境中亲身体验火灾的紧迫与危险

消防VR安全逃生体验系统是深圳VR公司华锐视点引入了前沿的VR虚拟现实、web3d开发和多媒体交互技术&#xff0c;为用户打造了一个逼真的火灾现场应急逃生模拟演练环境。 相比传统的消防逃生模拟演练&#xff0c;消防VR安全逃生体验系统包含知识讲解和模拟实训演练&#xff0c;体…

码蹄集部分题目(2024OJ赛16期;单调栈集训+差分集训)

&#x1f9c0;&#x1f9c0;&#x1f9c0;单调栈集训 &#x1f96a;单调栈 单调递增栈伪代码&#xff1a; stack<int> st; for(遍历数组) {while(栈不为空&&栈顶元素大于当前元素)//单调递减栈就是把后方判断条件变为小于等于即可{栈顶元素出栈;//同时进行其他…

C语言笔记22 •结构体•

C语言结构体 1.结构体类型的声明 struct Stu { char name[ 20 ]; // 名字 int age; // 年龄 char sex[ 5 ]; // 性别 char id[ 20 ]; // 学号 }; 2.结构体变量的创建和初始化 #include <stdio.h>// 定义一个结构体类型 Point struct Point {int x;int y; };i…

【三个数的最大乘积】python

三层循环必然超时&#xff0c;是的 hhh,换种思路&#xff0c;就很巧 class Solution:def maximumProduct(self, nums: List[int]) -> int:nums.sort()mxnums[-1]*nums[-2]*nums[-3]if nums[0]*nums[1]*nums[-1]>mx:mxnums[0]*nums[1]*nums[-1]return mx

装修:尽显个性品味

家&#xff0c;是心灵的港湾&#xff0c;也是生活的舞台。装修&#xff0c;不仅是对空间的改造&#xff0c;更是对生活态度的诠释。无论是温馨的北欧风&#xff0c;还是华丽的欧式古典&#xff0c;或是简约的现代感&#xff0c;我们的专业团队都能为您量身打造。每一个细节&…

分布式数据库HBase入门指南

目录 概述 HBase 的主要特点包括: HBase 的典型应用场景包括: 访问接口 1. Java API: 2. REST API: 3. Thrift API: 4. 其他访问接口: HBase 数据模型 概述 该模型具有以下特点&#xff1a; 1. 面向列: 2. 多维: 3. 稀疏: 数据存储: 数据访问: HBase 的数据模型…

01-02.Vue的常用指令(二)

01-02.Vue的常用指令&#xff08;二&#xff09; 前言v-model&#xff1a;双向数据绑定v-model举例&#xff1a;实现简易计算器Vue中通过属性绑定为元素设置class 类样式引入方式一&#xff1a;数组写法二&#xff1a;在数组中使用三元表达式写法三&#xff1a;在数组中使用 对…

YOLOv10尝鲜测试五分钟极简配置

最近清华大学团队又推出YOLOv10&#xff0c;真是好家伙了。 安装&#xff1a; pip install supervision githttps://github.com/THU-MIG/yolov10.git下载权重&#xff1a;https://github.com/THU-MIG/yolov10/releases/download/v1.0/yolov10n.pt 预测&#xff1a; from ult…

2024年最全的信息安全、数据安全、网络安全标准分享(可下载)

以上是资料简介和目录&#xff0c;如需下载&#xff0c;请前往星球获取&#xff1a;https://t.zsxq.com/Gz1a0

基于SpringBoot+Vue的人事管理系统

引言 目前,人事管理的系统大都是CS架构的大型系统,很少有面向机关,事业单位内部的基于BS架构的微型人事系统,因此.开发一个基于BS架构的人事信息管理系统是非常必要的.但是基于BS架构的人事系统对于安全是一个大的考验点.在人事信息系统中,功能需简单清晰,可操作性强,其次安全…

结构化开发方法(数据流图)

一、系统设计基本原理 二、系统总体结构设计 三、数据流图 数据流图

数据库(4)——DDL数据库操作

SQL标准没有提供修改数据库模式定义的语句&#xff0c;用户想修改次对象只能将它删除后重建。 查询 查询所有数据库&#xff1a; SHOW DATABASES; 在安装完MySQL数据库之后&#xff0c;自带了4个数据库&#xff0c;如下图&#xff1a; 创建数据库 数据库的创建语言为 CREATE…

web学习笔记(五十六)

目录 1.绑定类名和style 1.1 绑定类名 1.1.1 绑定单个类名 1.1.2 绑定多个类名 1.2 style相关知识 2. vue的响应式原理 3. v-once 4.本地搭建Vue单页应用 4.1 安装Vue脚手架 4.2 安装对应的包文件 4.3 运行项目 1.绑定类名和style 1.1 绑定类名 1.1.1 绑定单个类名…

浅析FAT32文件系统

本文通过实验测试了FAT文件系统的存储规律&#xff0c;并且探究了部分可能的文件隐藏方法。 实验背景 现有一块硬盘&#xff08;U盘&#xff09;&#xff0c;其中存在两个分区&#xff0c;分别为FAT32和NTFS文件系统分区。 在FAT分区中存在如下文件&#xff1a; 现需要阅读底…

智研未来,直击 AI DevOps,阿里云用户交流日杭州站来啦!

在这个技术日新月异的时代&#xff0c;云上智能化 DevOps 正以前所未有的速度推动企业创新边界&#xff0c;重塑软件开发的效率与品质。 为深入探索这一变革之路&#xff0c;诚邀您参与我们的专属闭门技术沙龙&#xff0c;携手开启一场关于云上智能化 DevOps 的挑战、实践与未…

【全网最全】2024电工杯数学建模B题完整版保奖思路代码模型(后续会更新)

您的点赞收藏是我继续更新的最大动力&#xff01; 一定要点击如下的卡片链接&#xff0c;那是您获取资料的入口&#xff01; 【全网最全】2024电工杯数学建模B题53页成品论文完整matlab、py代码19建模过程代码数据等&#xff08;后续会更新&#xff09;「首先来看看目前已有的…

Modular RPG Hero PBR

-掩码着色着色器提供了无限的颜色变化。(适用于标准/HDRP/URP 11.0.0) -为剑与盾/双剑/双剑姿态提供了简单的角色控制器。(不包括弓和魔杖控制器)(它是用旧的输入系统建造的) -HDRP/URP(11.0.0)SRP 100%支持常规着色器和遮罩着色着色器(基于着色器图形) -具有许多模块…

光源亮度检测应用笔记

光源亮度检测应用笔记 光电检测应用光电二极管等效模型和基本参数连接并联电阻&#xff08;RJ&#xff09;串联电阻&#xff08;RS&#xff09;结电容&#xff08;CJ&#xff09;暗电流&#xff08;ID&#xff09; 光电二极管电流-电压转换器无源光电二极管电流-电压转换器有源…

Java进阶学习笔记11——多态

什么是多态&#xff1f; 多态是在继承/实现情况下一种现象&#xff0c;表现为&#xff1a;对象多态和行为多态。 同一个对象&#xff0c;在不同时刻表现出来的不同形态。 多态的前提&#xff1a; 要有继承/实现关系 要有方法的重写 要有父类引用指向子类对象。 多态的具体代码…

Linux 内核之 mmap 内存映射的原理及源码解析

文章目录 前言一、简介1. mmap 是什么&#xff1f;2. Linux 进程虚拟内存空间 二、mmap 内存映射1. mmap 内存映射的实现过程2. mmap 内存映射流程2.1 mmap 系统调用函数2.2 ksys_mmap_pgoff 函数2.3 vm_mmap_pgoff 函数2.4 do_mmap_pgoff 函数2.5 do_mmap 函数2.6 get_unmappe…