超简单白话文机器学习 - 回归树树剪枝(含算法介绍,公式,源代码实现以及调包实现)

news2024/11/17 3:59:52

1. 回归树

1.1 算法介绍

大家看到这篇文章时想必已经对树这个概念已经有基础了,如果不是很了解的朋友可以看看笔者的这篇文章:

超简单白话文机器学习-决策树算法全解(含算法介绍,公式,源代码实现以及调包实现)_白话决策树-CSDN博客

对于回归树的建立,我们一般使用CART回归树,CART(Classification and Regression Trees)回归树是一种用于连续值预测的树模型。它通过递归地分裂数据集,以最小化预测误差为目标,最终生成一棵树结构的模型。

CART回归树的构建核心是选择最佳分裂点通过计算MSE进行衡量。

1. 选择最佳分裂点,对每个特征尝试所有的分裂点,计算分裂后各个数据集的均方误差。

2. 计算分裂前后的总MSE:

其中,n为总样本数,各分子分别是左子节点和右子节点的样本数。

3. 递归分裂,对每个子节点重复上述步骤直到满足停止条件(例如达到最大深度或叶节点中的样本数少于阈值)

获得最佳划分特征之后,需要确定分裂节点的阈值,需要最小化目标函数

1. 首先对于最佳划分特征中的数值进行迭代。

2. 对于该特征特定数值进行分裂的样本进行错误率的计算。

3. 汇总后选择错误率最小的数值作为阈值选择。

2. 树剪枝概述

2.1 预剪枝

2.1.1 算法

预剪枝的核心是在生成决策树的过程中提前停止树的增长。计算当前的划分是否能带来模型泛化能力的提升,如果不能,则不再继续生长子树。

有如下几种方法:

( 1 )当树到达一定深度的时候,停止树的生长。
( 2 )当到达当前结点的样本数量小于某个阈值的时候,停止树的生长。
( 3 )计算每次分裂对测试集的准确度提升,当小于某个阈值的时候 ,不再继续扩展。

2.2 后剪枝

2.2.1 算法

首先我们先讲后剪枝的伪代码用口水话进行呈现:

基于已有的树切分测试数据:

1. 如果存在任一子集是一棵树,则在该子集递归剪枝过程

2. 计算将当前两个叶节点合并后的误差

3. 计算不合并的误差

4. 如果合并可以降低误差,就合并

剪枝策略:

如果剪枝后的叶节点误差小于或等于未剪枝子树的误差,则进行剪枝,即将该内部节点变为叶节点。继续评估和剪枝树中的其他节点,直到不再有可以进一步剪枝的节点。

误差的衡量方式有多种,回归树的误差衡量我们一般选择MSE。

2.2.2 代价复杂度剪枝

前文我们已经讲了,防止过拟合的方法之一时,对决策树进行剪枝,即减少树的分支。 剪枝防止过拟合使得在测试集上的表现更好。

将公式呈现在这里:

让我们用白话文转化一下这个公式:

评价一棵树的得分由两部分组成,第一部分为SSR,一种预测错误率的衡量方式。第二部分代表决策树T的叶子结点个数,阿尔法是自定义指数,需要通过交叉验证的方式得到最佳参数,不同的参数影响最终所生成的树。

举个例子:

对于这四个树我们取得了他们总体的SSR值,假设我们的参数值为1000,计算树的得分。

选取得分最小的树作为我们的预测模型,即第一棵树拥有四个叶子节点。改变参数值会选择不同的预测模型,让我们计算在什么参数值下会分别指向哪一棵树。

在不同参数值的条件下,我们使用测试集迭代进行交叉验证,根据测试集最后的得分我们选择最佳参数作为判断标准,最终构造我们的预测树模型。

3. 手写代码实现

3.1 回归树

def regLeaf(dataset):
    return np.mean(dataset[:,-1]) #得到叶结点,目标变量的均值
    
def regErr(dataset):
    return np.var(dataset[:,-1]) * np.shape(dataset)[0] #返回的是总方差

def chooseBestSplit(dataset,leafType=regLeaf,errType=regErr,ops=(1,4)):
    tols = ops[0];tolN = ops[1] #tols是容许的误差下降值, yolN是切分的最少样本数
    if len(set(dataset[:,-1].T.tolist()[0])) == 1: #如果剩余特征为1
        return None,leafType(dataset) #直接返回叶子结点
    m,n = np.shape(dataset)
    S = errType(dataset) #数据集的总误差
    bestS = 100000; bestIndex=0;bestvalue = 0
    for featIndex in range(n-1):
        for splitVal in set(dataset[:,featIndex]): #对于某特征不同值的集合进行迭代
            mat0,mat1 = binSplitDataset(dataset,feat,splitVal)
            if (np.shape(mat0)[0] < tolN) or (np.shape(mat1)[0] < tolN): continue #如果不满足最少切分样本树
            newS = errType(mat0) + errorType(mat1) #返回数据集的总方差
            if newS < bestS: #选择总方差最少的数据分类方式
                bestIndex = feat
                bestvalue = splitVal
                bestS = newS
    if (S - bestS) < tols: #如果小于要求的误差下降值,则直接返回叶子结点
        return None,leafType(dataset)
    mat0,mat1 = binSplitDataset(dataset,bestIndex,bestvalue)
    if (np.shape(mat0)[0] < tolN) or (np.shape(mat1)[0] < tolN):
        return None, leafType(dataset)
    return bestIndex,bestValue

4. 调包实现

4.1 预剪枝

import numpy as np
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 加载数据集
data = load_iris()
X = data.data
y = data.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 设置预剪枝条件
max_depth = 3  # 限制树的最大深度
min_samples_split = 4  # 分裂一个内部节点所需的最小样本数
min_samples_leaf = 2  # 叶节点所需的最小样本数

# 初始化并训练决策树分类器
clf = DecisionTreeClassifier(random_state=42, 
                             max_depth=max_depth, 
                             min_samples_split=min_samples_split, 
                             min_samples_leaf=min_samples_leaf)

clf.fit(X_train, y_train)

# 预测并评估模型性能
y_pred = clf.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)

print(f'预剪枝条件下的决策树分类器准确率: {accuracy:.4f}')

# 可视化决策树(需要graphviz支持)
from sklearn.tree import export_graphviz
import graphviz

dot_data = export_graphviz(clf, out_file=None, 
                           feature_names=data.feature_names,  
                           class_names=data.target_names,  
                           filled=True, rounded=True,  
                           special_characters=True)  
graph = graphviz.Source(dot_data)  
graph.render("iris_prepruned_tree")  # 将树保存为PDF文件
graph  # 在Jupyter Notebook中显示决策树

4.2 后剪枝

import numpy as np
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split, cross_val_score
import matplotlib.pyplot as plt

# 示例数据集
X = np.array([[2.7, 2.5], [1.3, 1.5], [3.2, 2.8], [3.8, 2.5], [2.9, 2.4],
              [6.5, 3.1], [7.1, 3.4], [6.0, 2.9], [7.6, 3.2], [6.3, 3.0]])
y = np.array([0, 0, 0, 0, 0, 1, 1, 1, 1, 1])

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 生成完整的决策树
clf = DecisionTreeClassifier(random_state=42)
clf.fit(X_train, y_train)

# 获取剪枝路径
path = clf.cost_complexity_pruning_path(X_train, y_train)
ccp_alphas, impurities = path.ccp_alphas, path.impurities

# 遍历不同的剪枝参数,选择最佳剪枝
clfs = []
for ccp_alpha in ccp_alphas:
    clf = DecisionTreeClassifier(random_state=42, ccp_alpha=ccp_alpha)
    clf.fit(X_train, y_train)
    clfs.append(clf)

# 交叉验证选择最佳剪枝参数
alpha_scores = [cross_val_score(clf, X_train, y_train, cv=2).mean() for clf in clfs]
best_clf = clfs[np.argmax(alpha_scores)]

# 在测试集上评估最佳模型
test_score = best_clf.score(X_test, y_test)
print(f'Best alpha: {ccp_alphas[np.argmax(alpha_scores)]}')
print(f'Test set score: {test_score}')

# 可视化剪枝路径
plt.figure(figsize=(10, 6))
plt.plot(ccp_alphas, alpha_scores, marker='o', drawstyle='steps-post')
plt.xlabel('Alpha')
plt.ylabel('Cross-validated accuracy')
plt.title('Alpha vs Cross-validated accuracy')
plt.show()

5. 剪枝的优点与局限性

5.1 预剪枝

5.1.1 优点

提高可解释性:便于理解。

减少计算复杂度:在构建树的过程中提前停止分裂,减少模型训练时间和计算资源的消耗。

防止过拟合:限制树的复杂度,提高模型的泛化能力。

5.1.2 局限性

次优决策:在树构建过程中基于局部信息作出决策,可能忽略了更深层次的潜在有用分裂。

信息丢失:某些潜在的重要特征和信息可能未能充分利用,导致模型的表达能力有限。

难以处理复杂模式:简单树结构可能无法捕捉复杂的决策边界,从而影响分类或回归的精度。

5.2 后剪枝

5.2.1 优点

后剪枝比预剪枝保留了更多的分支, 欠拟合风险小 , 泛化性能往往优于预剪枝决策树

5.2.2 局限性

训练时间开销大 :后剪枝过程是在生成完全决策树 之后进行的,需要自底向上对所有非叶结点逐一计算

6. 应用前景

1. 医疗保健:

-疾病预测:回归树用于疾病的发生概率,基于病患的历史数据和体检报告进行精准预测

-治疗效果评测:预测不同治疗方案的效果,帮助医生制定个性化的治疗计划

2. 环境科学:

-气象预测:用于预测天气变化趋势,例如温度,降水量等

-环境监测:监测和预测空气质量,水质等环境指标

...

6. 参考资料

https://www.cnblogs.com/wuliytTaotao/p/10724118.html

机器学习-预剪枝和后剪枝-CSDN博客

回归树剪枝:代价复杂度剪枝

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1692734.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

小程序checkbox改成圆形与radio样式保持一致

修改前 修改后 html: <view class"agreement"><checkbox value"{{ isAgreed }}" bind:tap"toggleCheckbox" /><text>我同意室外智能健身房 <text class"link" bind:tap"showUserProtocol">用户协…

【C++】继承(二)深入理解继承:派生类默认成员函数与友元、静态成员的奥秘

目录 派生类的默认成员函数①派生类的构造函数②派生类的拷贝构造函数③派生类的赋值构造④派生类的析构函数 继承与友元继承与静态成员 前言 我们在上一章讲解了: 继承三部曲&#xff0c;本篇基于上次的基础继续深入了解继承的相关知识&#xff0c;欢迎大家和我一起学习继承 派…

Python小游戏——打砖块

文章目录 打砖块游戏项目介绍及实现项目介绍环境配置代码设计思路代码设计详细过程 难点分析源代码代码效果 打砖块游戏项目介绍及实现 项目介绍 打砖块游戏是一款经典的街机游戏&#xff0c;通过控制挡板来反弹小球打碎屏幕上的砖块。该项目使用Python语言和Pygame库进行实现…

牛客NC392 参加会议的最大数目【中等 贪心+小顶堆 Java/Go/PHP 力扣1353】

题目 题目链接&#xff1a; https://www.nowcoder.com/practice/4d3151698e33454f98bce1284e553651 https://leetcode.cn/problems/maximum-number-of-events-that-can-be-attended/description/ 思路 贪心优先级队列Java代码 import java.util.*;public class Solution {/**…

纽曼新品X1000:轻巧便携仅重9.9公斤的1度电应急电源

在户外救援行动和应急设备中&#xff0c;电力供应的稳定性和安全性直接影响到救援工作的效率和成功率。在现代救援工作中&#xff0c;常见的光学声波探测仪、通信联络设备、气象检测仪、生命探测仪、照明设备等装备均需有持续的电力供应&#xff0c;才能保障救援工作的有序开展…

一文带你搞懂DiT(Diffusion Transformer)

节前&#xff0c;我们组织了一场算法岗技术&面试讨论会&#xff0c;邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。 针对大模型技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备面试攻略、面试常考点等热门话题进行了深入的讨论。 总结链接…

Redis 源码学习记录:集合 (set)

无序集合 Redis 源码版本&#xff1a;Redis-6.0.9&#xff0c;本篇文章无序集合的代码均在 intset.h / intset.c 文件中。 Redis 通常使用字典结构保存用户集合数据&#xff0c;字典键存储集合元素&#xff0c;字典值为空。如果一个集合全是整数&#xff0c;则使用字典国语浪费…

java图书电子商务网站的设计与实现源码(springboot+vue+mysql)

风定落花生&#xff0c;歌声逐流水&#xff0c;大家好我是风歌&#xff0c;混迹在java圈的辛苦码农。今天要和大家聊的是一款基于springboot的图书电子商务网站的设计与实现。项目源码以及部署相关请联系风歌&#xff0c;文末附上联系信息 。 项目简介&#xff1a; 图书电子商…

pikachu-Unsafe Filedownload

任意点击一个图片进行下载&#xff0c;发现下载的url。 http://127.0.0.1/pikachu/vul/unsafedownload/execdownload.php?filenamekb.png 构造payload&#xff1a; 即可下载 当前页面的源码&#xff0c;可以进行路径穿越来下载一些重要的配置文件来获取信息。 http://127.0.…

《书生·浦语大模型实战营》第一课 学习笔记:书生·浦语大模型全链路开源体系

文章大纲 1. 简介与背景智能聊天机器人与大语言模型目前的开源智能聊天机器人与云上运行模式 2. InternLM2 大模型 简介3. 视频笔记&#xff1a;书生浦语大模型全链路开源体系内容要点从模型到应用典型流程全链路开源体系 4. 论文笔记:InternLM2 Technical Report简介软硬件基础…

光电直读抄表技术详细说明

1.技术简述 光电直读抄表是一种智能化智能计量技术&#xff0c;主要是通过成像原理立即载入电度表里的标值&#xff0c;不用人工干预&#xff0c;大大提升了抄表效率数据可靠性。此项技术是智慧能源不可或缺的一部分&#xff0c;为电力公司的经营管理提供了有力的适用。 2.原…

在winnas中使用docker desktop遇到的问题及解决方法记录

最近在尝试从群晖转向winnas&#xff0c;一些简单的服务依然计划使用docker来部署。群晖的docker简单易用且稳定&#xff0c;在win上使用docker desktop过程中遇到了不少问题&#xff0c;在此记录一下以供后来人参考。 一、安装docker desktop后启动时遇到无法启动docker引擎 …

VMware虚拟机开机卡在Boot Manager

问题情况 虚拟机启动停留在Boot Manager 解决办法1 解决办法2 1、关闭虚拟机&#xff0c;并将其移除 2、找到虚拟机储存位置清除储存数据 3、使用360清除残留数据 4、重启VMware&#xff0c;重新创建虚拟机 关键词&#xff1a; BIOS 蓝色界面

超级初始网络

目录 一、网络发展史 1、独立模式 2、局域网 LAN&#xff08;Local Area Network&#xff09; 3、广域网 WAN (Wide Area Network) 二、网络通信基础 1、IP地址&#xff1a;用于定位主机的网络地址 2、端口号&#xff1a;用于定位主机中的进程 3、网络协议 4、五元组 …

GIT 新建分支和合并分支

文章目录 前言一、新建分支二、切回老分支&#xff0c;保留新分支的更改三、合并分支 前言 本文主要针对以下场景进行介绍&#xff1a; 场景一&#xff1a;创建新的分支 当前分支(dev_1)已经开发完毕&#xff0c;下一期的需求需要在新分支(dev_2)上进行开发&#xff0c;如何创…

Dubbo源码及总结

Springboot整合Dubbo启动解析Bean定义 根据springboot启动原理&#xff0c;会先把启动类下的所有类先进行解析bean定义&#xff0c;所以要先EnableDubbo这个注解&#xff0c;再根据这个注解里面的注解&#xff0c;可以知道import的两个类DubboComponentScanRegistrar和DubboCo…

嵌入式单片机寄存器操作与实现方法

大家好,今天给大家分享一下,单片机中寄存器该如何操作与实现。 “芯片里面的寄存器访问方式一般是: 1.可使用地址访问,2.可使用指令访问,3.不可访问” 第一:挂载到内存地址总线上了的 挂载到内存地址总线上了的,可以使用分配到的地址访问 如下是STM32单片机存储器映像…

hbase版本从1.2升级到2.1 spark读取hive数据写入hbase 批量写入类不存在问题

在hbase1.2版本中&#xff0c;pom.xml中引入hbase-server1.2…0和hbase-client1.2.0就已经可以有如下图的类。但是在hbase2.1.0版本中增加这两个不行。hbase-server2.1.0中没有mapred包&#xff0c;同时mapreduce下就2个类。版本已经不支持。 <dependency><groupId>…

3d全景电商网站搭建为用户的生产力、想象力和创造力插上腾飞的翅膀

为解决用户搭建3D电商网站制作费用高、难度大的困扰&#xff0c;华锐视点隆重推出全新3D电商网站制作编辑器&#xff0c;以全新的设计思维、交互范式和编辑工具&#xff0c;打破传统3D设计的专业界限&#xff0c;为用户的生产力、想象力和创造力插上腾飞的翅膀! 这款创新的3D电…

PGP软件安装文件加密解密签名实践记录

文章目录 环境说明PGP软件安装PGP软件汉化AB电脑新建密钥并互换密钥对称密钥并互换密钥 文件加密和解密A电脑加密B电脑解密 文件签名A电脑签名文件B电脑校验文件修改文件内容校验失败修改文件名称正常校验 环境说明 使用VM虚拟两个win11,进行操作演示 PGP软件安装 PGP软件下…