计算机毕业设计hadoop+spark微博舆情大数据分析 微博爬虫可视化 微博数据分析 微博采集分析平台 机器学习(大屏+LSTM情感分析+爬虫)

news2025/1/22 19:01:15

电商数据建模

一、分析背景与目的

1.1 背景介绍

电商平台数据分析是最为典型的一个数据分析赛道,且电商数据分析有着比较成熟的数据分析模型,比如:人货场模型。此文中我将通过分析国内最大的电商平台——淘宝的用户行为,来巩固数据分析技能以及思维。通过分析用户行为,以此来实现精准营销,总结现有问题,获得业务增长

1.2 数据说明

该数据包含了20230523用户一天购物行为的所有数据,主要包括人货场三个维度信息。用户维度、商品维度、地区维度构成一个用户下单的行为事实表。

1.3数据分析流程

提出业务问题—确认粒度—数据处理和清洗—构建模型—数据可视化——根据数据可视化分析解决问题

业务问题:

1.如何提高品牌销售力度?

2.如何刺激地区市场消费潜力?

3.如何刺激用户消费?

4.如何减少产品成本?

确认粒度:

用户信息表、订单表、订单明细表

商品信息表、品牌信息表、一二三级分类信息表

省份信息表、地区信息表

核心算法代码分享如下:

import sys

import numpy as np
from torch.utils.data import DataLoader
from torch import nn
import torch.nn.functional as F
import torch
from sklearn.metrics import precision_score,recall_score,accuracy_score

import dataloader


class ALS_MLP (nn.Module):
    def __init__(self, n_users, n_items, dim):
        super(ALS_MLP, self).__init__()
        '''
        :param n_users: 用户数量
        :param n_items: 物品数量
        :param dim: 向量维度
        '''
        # 随机初始化用户的向量,
        self.users = nn.Embedding( n_users, dim, max_norm=1 )
        # 随机初始化物品的向量
        self.items = nn.Embedding( n_items, dim, max_norm=1 )

        #初始化用户向量的隐层
        self.u_hidden_layer1 = self.dense_layer(dim, dim // 2)
        self.u_hidden_layer2 = self.dense_layer(dim//2, dim // 4)

        #初始化物品向量的隐层
        self.i_hidden_layer1 = self.dense_layer(dim, dim // 2)
        self.i_hidden_layer2 = self.dense_layer(dim//2, dim // 4)

        self.sigmoid = nn.Sigmoid()

    def dense_layer(self,in_features,out_features):
        #每一个mlp单元包含一个线性层和激活层,当前代码中激活层采取Tanh双曲正切函数。
        return nn.Sequential(
            nn.Linear(in_features, out_features),
            nn.Tanh()
        )

    def forward(self, u, v, isTrain=True):
        '''
         :param u: 用户索引id shape:[batch_size]
         :param i: 用户索引id shape:[batch_size]
         :return: 用户向量与物品向量的内积 shape:[batch_size]
         '''
        u = self.users(u)
        v = self.items(v)

        u = self.u_hidden_layer1(u)
        u = self.u_hidden_layer2(u)

        v = self.i_hidden_layer1(v)
        v = self.i_hidden_layer2(v)

        #训练时采取dropout来防止过拟合
        if isTrain:
            u = F.dropout(u)
            v = F.dropout(v)

        uv = torch.sum( u*v, axis = 1)
        logit = self.sigmoid(uv*3)
        return logit

def doEva(net, d):
    d = torch.LongTensor(d)
    u, i, r = d[:, 0], d[:, 1], d[:, 2]
    with torch.no_grad():
        out = net(u,i,False)
    y_pred = np.array([1 if i >= 0.5 else 0 for i in out])
    y_true = r.detach().numpy()
    p = precision_score(y_true, y_pred)
    r = recall_score(y_true, y_pred)
    acc = accuracy_score(y_true,y_pred)
    return p,r,acc

def train( epochs = 10, batchSize = 1024, lr = 0.001, dim = 256, eva_per_epochs = 1):
    '''
    :param epochs: 迭代次数
    :param batchSize: 一批次的数量
    :param lr: 学习率
    :param dim: 用户物品向量的维度
    :param eva_per_epochs: 设定每几次进行一次验证
    '''
    #读取数据
    user_set, item_set, train_set, test_set = \
        dataloader.readRecData(test_ratio = 0.1)
    #初始化ALS模型
    net = ALS_MLP(len(user_set), len(item_set), dim)
    #定义优化器
    optimizer = torch.optim.AdamW( net.parameters(), lr = lr, weight_decay=0.2)
    #定义损失函数
    criterion = torch.nn.BCELoss()
    #开始迭代
    for e in range(epochs):
        all_lose = 0
        #每一批次地读取数据
        for u, i, r in DataLoader(train_set,batch_size = batchSize, shuffle = True):
            optimizer.zero_grad()
            r = torch.FloatTensor(r.detach().numpy())
            result = net(u,i)
            loss = criterion(result,r)
            all_lose += loss
            loss.backward()
            optimizer.step()
        print('epoch {}, avg_loss = {:.4f}'.format(e,all_lose/(len(train_set)//batchSize)))

        #评估模型
        if e % eva_per_epochs==0:
            p, r, acc = doEva(net, train_set)
            print('train: Precision {:.4f} | Recall {:.4f} | accuracy {:.4f}'.format(p, r, acc))
            p, r, acc = doEva(net, test_set)
            print('test: Precision {:.4f} | Recall {:.4f} | accuracy {:.4f}'.format(p, r, acc))

def als_mlp_predict(userId=1, itemSize=100, count=4, dim=64):
    # 读取数据
    user_set, item_set, train_set, test_set = \
        dataloader.readRecData( test_ratio=0.1)

    # 预测一个用户的所有的评分形成一个元祖
    train_set = []
    for i in range(1, itemSize):
        train_set.append((userId, i, 0))
    # print(train_set)
    # print(train_set)
    # 初始化ALS模型
    net = ALS_MLP(len(user_set), len(item_set), dim)

    d = torch.LongTensor(train_set)
    u, i, r = d[:, 0], d[:, 1], d[:, 2]
    with torch.no_grad():
        out = net(u, i)

    predict = []
    preds = out.tolist()
    # print(len(preds))
    # 找出最大值,通过这种方式可以求出多个
    for i in range(0, count):
        m = max(preds)
        idx = preds.index(m)
        predict.append(dict(iid=idx, score=m))
        del preds[idx]

    # print(predict)
    return predict

def test(dim = 64):
    result = als_mlp_predict(1, 2000, 5)
    print(result)

if __name__ == '__main__':
    # train()
    # test()
    param1 = sys.argv[1]
    # param1 = "1"
    result = als_mlp_predict(int(param1), 55, 4)
    list = []
    # print(result)
    for r in result:
        list.append(dict(iid=r['iid'], rate=r['score']))
    print(list)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1690436.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

WebRTC | 网络传输协议 RTP 和 RTCP

WebRTC | 网络传输协议 RTP 和 RTCP WebRTC | 网络传输协议 RTP 和 RTCP如何选择 TCP 与 UDPRTP概述工作机制报文结构RTP 的使用RTP 拓展头RTP 中的填充数据翻译器和混合器同步控制报文大小wireshark 抓取 RTP 报文 RTCP概述工作机制分组类型报文结构WebRTC 的反馈报文RTPFBPSF…

接口响应断言

目录 接口断言介绍接口断言方式介绍响应状态码断言 课程目标 掌握什么是接口断言。了解接口断言的多种方式。掌握如何对响应状态码完成断言。 思考 这两段代码是完整的接口自动化测试代码吗? …省略… when().get(“https://httpbin.ceshiren.com/get?namead&…

白鹭群优化算法,原理详解,MATLAB代码免费获取

白鹭群优化算法(Egret Swarm Optimization Algorithm,ESOA)是一种受自然启发的群智能优化算法。该算法从白鹭和白鹭的捕食行为出发,由三个主要部分组成:坐等策略、主动策略和判别条件。将ESOA算法与粒子群算法(PSO)、遗传算法(GA)…

5.24学习记录

[FSCTF 2023]ez_php2 比较简单的pop链 <?php highlight_file(__file__); Class Rd{public $ending;public $cl;public $poc;public function __destruct(){echo "All matters have concluded";die($this->ending);}public function __call($name, $arg){for…

揭秘Python的魔法:装饰器的超能力大揭秘 ‍♂️✨

文章目录 Python进阶之装饰器详解1. 引言装饰器的概念与意义装饰器在Python编程中的作用 2. 背景介绍2.1 函数作为对象2.2 高阶函数 3. 装饰器基础3.1 理解装饰器3.2 装饰器的工作原理 4. 带参数的装饰器4.1 为什么需要带参数4.2 实现带参数的装饰器使用函数包裹装饰器使用类实…

【ZYNQ】AXI-Quad-SPI SDK 开发记录 测试

前人工作 如前人工作&#xff0c;在Navigate to BSP Settings中找到历例程 file:///F:/Xilinx/Vitis/2019.2/data/embeddedsw/XilinxProcessorIPLib/drivers/spi_v4_5/doc/html/api/example.html使用XSpi_LowLevelExample例子&#xff0c;源代码的AI解析 int XSpi_LowLeve…

蓝桥杯Web开发【模拟题一】15届

1.动态的Tab栏 日常在使用移动端 APP 或访问 PC 端网站的时候&#xff0c;常常发现在一些有工具栏或者 Tab 栏的页面会有顶栏固定的效果。简单来说&#xff0c;在页面未开始滚动时顶栏处在其原有的位置上&#xff0c;当页面向下滚动一定区域后&#xff0c;顶栏会跟随滚动固定在…

python-数据分析与可视化基础

1、data1.csv中的B、C、D和E列数据分别是日期、权重、A企业的销售额、B企业的销售额。读取C、D、E列数据,并统计E列数据的算术平均数、加权平均值(权值为C列数据)、方差、中位数、最小值、最大值。并绘制E列数据的直方图。 &#xff08;1&#xff09;源代码&#xff1a; impo…

vue3的api风格

Vue的组件有两种不同的风格&#xff1a;组合式API 和 选项式API 选项式api 选项式API&#xff0c;可以用包含多个选项的对象来描述组件的逻辑&#xff0c;如&#xff1a;data&#xff0c;methods&#xff0c;mounted等。 组合式api setup&#xff1a;是一个标识&#xff0c;告…

ST-SLAS Technology 实验室自动化与筛查学会技术

文章目录 一、期刊简介二、征稿信息三、期刊表现四、投稿须知五、出版支持 一、期刊简介 SLAS Technology ——SLAS技术强调促进和改进生命科学研发的科学和技术进步;药物递送;诊断;生物医学和分子成像&#xff1b;以及个性化和精准医疗。这包括高通量和其他实验室自动化技术;…

Springboot项目打包:将依赖的jar包输出到指定目录

场景 公司要对springboot项目依赖的jar包进行升级&#xff0c;但是遇到一个问题&#xff0c;项目打包之后&#xff0c;没办法看到他里面依赖的jar包&#xff0c;版本到底是不是升上去了&#xff0c;没办法看到。 下面是项目打的jar包 我们通过反编译工具jdgui&#xff0c;来…

云计算架构最全方案详解

云计算架构最全详解(图文全面总结) 一、引言云计算已经成为现代企业和科技发展的重要支柱。本文将详细介绍云计算架构的组成部分及其工作原理&#xff0c;帮助读者深入理解这一复杂而强大的系统。二、云计算架构组成部分云计算架构主要包括以下几个关键组件&#xff1a;基础设施…

【软件工程】【23.10】p3

关键字&#xff1a; 软件工程定义及目的、需求规约定义及性质、模块的控制域及作用域、类和类图、调试特征、瀑布模型

LINUX系统编程:命名管道

匿名管道的通信只能在&#xff0c;有血缘关系的进程中&#xff0c;本质就是&#xff0c;子进程会拷贝一份父进程的文件描述符表&#xff0c;父子进程就可以看到操作系统的同一块资源&#xff08;文件&#xff09;&#xff0c;以这块资源为媒介进行通信。 命名管道&#xff0c;…

shell文本三剑客——awk命令【☆】

目录 一、akw原理 二、命令格式 三、常用变量 四、awk的用法 1.输出整行内容 2.按字段输出文本内容 3.按列输出文件内容 FS变量为列分隔符 4.awk的三个模式 5. awk ‘控制语句条件 {操作}’ 文件 6.awk的数组 7.awk的应用 一、akw原理 逐行读取文本&#xff0c;默认…

SpringFramework实战指南

二、SpringFramework实战指南 目录 一、技术体系结构 1.1 总体技术体系1.2 框架概念和理解 二、SpringFramework介绍 2.1 Spring 和 SpringFramework概念2.2 SpringFramework主要功能模块2.3 SpringFramework 主要优势 三、Spring IoC容器和核心概念 3.1 组件和组件管理概念3…

基于灰狼优化算法优化RBF(GWO-RBF)的数据回归预测(多输入多输出)

代码原理及流程 基于灰狼优化算法优化多输入多输出&#xff08;MIMO&#xff09;的RBF神经网络的数据回归预测&#xff0c;可以采取以下步骤&#xff1a; 1. 数据准备&#xff1a;准备包含多个输入特征和多个输出目标的数据集&#xff0c;确保数据已经经过预处理和归一化。 …

探寻最强性能云电脑:ToDesk云电脑、无影云、网易云游戏、易腾云横测大比拼

大家好&#xff0c;我是herosunly。985院校硕士毕业&#xff0c;现担任算法研究员一职&#xff0c;热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名&#xff0c;CCF比赛第二名&#xff0c;科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的…

massCode打造个人代码知识库的利器

缘起 作为一名软件工程师,我在编写代码时经常遇到这样的情况:我记得之前在某个应用程序中使用过某种语法,但我却不记得是在什么时候或哪个项目中使用的。通过浏览所有代码来找到这个语法是非常耗时的,尤其是当你不记得可以简化搜索的关键字时。此外,你可能有代码片段,但…

本地连不上远程阿里云MySQL数据库,密码对就是连不上

三步解决 设置安全组&#xff1a; 设置防火墙&#xff1a; iptables -A INPUT -m state --state NEW -m tcp -p tcp --dport 3306 -j ACCEPT设置root用户连接host&#xff1a; 终端登录mysql&#xff0c;然后&#xff1a; use mysql; select user,host from user where use…