声纹识别的对抗与防御

news2024/11/15 11:19:20

       随着机器学习理论和方法的发展, 出现了用于模仿特定说话人语音的深度伪造、针对语音识别和声纹识别的对抗样本, 它们都为破坏语音载体的可信性和安全性提供了具体手段, 进而对各自应用场景的信息安全构成了挑战。

     深度伪造是利用生成式对抗网络等方法, 通过构建特定的模型, 产生听起来像目标说话人的语音样本。之所以称之为伪造, 是因为目标说话人根本没有说过这些话。深度伪造的欺骗对象主要是人耳听觉, 也可以用于导致声纹识别系统出错。与深度伪造不同, 语音对抗样本旨在通过对载体信号引入微小的扰动, 使语音识别或声纹识别系统出现。特定的差错, 但并不影响人耳对该语音样本的听觉感知。相对于深度伪造, 利用声纹识别系统自身的脆弱性,声纹系统对抗样本的攻击具有很强的隐蔽性

1、声纹识别的对抗样本攻击

1.1 研究现状

      白盒攻击中, 攻击者完全了解被攻击模型的结构、参数、损失函数和梯度等信息, 利用被攻击白盒模型的结构和参数信息构建对抗样本生成算法,从而有指导性地修改原始样本, 以生成对抗样本。在黑盒攻击中, 攻击者不掌握被攻击模型的结构、参数等内部信息, 只能通过利用白盒模型对抗样本的迁移性, 或利用黑盒模型的输出结果训练替代模型等方式来生成对抗样本。在现实场景中, 攻击者难以获取被攻击模型的内部信息, 因此黑盒攻击相对于白盒攻击难度更高, 但也更符合实际。

方法

对抗知识

优点

缺点

基于梯度/迭代优化

白盒

攻击成功率高、信噪比高

需要访问模型结构,迭代计算对抗扰动,生成

对抗样本的时间长,容易被检测

基于生成网络

白盒

生成对抗样本的时间短

攻击成功率和信噪比难以平衡

基于查询

黑盒

不需访问梯度,仅靠置信度或决策就可以实现攻击

攻击成功率较低;查询过多时容易被检测到

基于迁移性

黑盒

不需要访问目标模型结构

对抗样本迁移性弱,黑盒攻击成功率低

1.2 关键技术路线

1.3 白盒攻击

下图展示Symmetric Saliency-based Adversarial Attack to Speaker Identification 是一种针对说话人识别系统的对抗性攻击方法:

  • 模型逆向工程:攻击者首先需要了解目标说话人识别系统的内部结构和参数。由于是对抗性攻击,攻击者可能需要访问模型的权重和架构,以便更好地设计攻击。
  • 确定攻击目标:攻击者确定他们想要系统误解的具体说话人,例如,他们可能希望系统将说话人A误认为说话人B。
  • 构建对称显著性模块:在SSED中,显著性模块用于突出显示语音信号中对说话人识别最重要的部分。在对抗性攻击中,这个模块可以被用来识别那些对模型预测影响最大的特征,从而在这些特征上引入扰动。
  • 优化过程:通过梯度下降或其他优化算法,攻击者在保持语音变化不可察觉的同时,寻找能够最小化损失函数的对抗性扰动。损失函数通常包括两部分:一部分是针对说话人识别任务的错误分类损失,另一部分是针对语音变化的感知损失,以确保扰动对人类听众来说是不可察觉的。
  • 生成对抗性样本:一旦找到最佳扰动,攻击者将其添加到原始语音中,生成对抗性样本。
  • 攻击评估:最后,攻击者评估生成的对抗性样本是否能够成功地欺骗说话人识别系统,使其做出错误的预测。
  1. 1.4 黑盒攻击

下图展示Interpretable Spectrum Transformation Attacks to Speaker Recognition 是一种针对说话人识别系统的对抗性攻击方法。说话人识别系统通常基于语音信号中的频谱特征来识别不同的说话人

  • 选择目标说话人:攻击者首先确定他们想要系统误解的具体说话人,例如,他们可能希望系统将说话人A误认为说话人B。
  • 构建频谱转换模型:攻击者构建一个频谱转换模型,该模型能够将目标说话人的语音频谱转换为攻击目标说话人的频谱。这个模型可以是基于深度学习的,如神经网络或卷积神经网络。
  • 优化过程:通过梯度下降或其他优化算法,攻击者在保持语音内容不变的同时,寻找能够最小化损失函数的频谱转换。损失函数通常包括两部分:一部分是针对说话人识别任务的错误分类损失,另一部分是针对语音内容的损失,以确保语音内容的不变性。
  • 生成对抗性样本:一旦找到最佳频谱转换,攻击者将其应用于原始语音,生成对抗性样本。
  • 攻击评估:攻击者评估生成的对抗性样本是否能够成功地欺骗说话人识别系统,使其做出错误的预测。

2、声纹识别的对抗样本防御

2.1 研究现状

      声纹识别的对抗样本防御是指采取一系列措施来增强声纹识别系统对对抗性攻击的鲁棒性。防御策略可以单独使用,也可以组合使用,以提高声纹识别系统对对抗性攻击的鲁棒性。

方法

研究方向

优点

缺点

纯化

提高语音纯化质量

对任何样本都 可以进行有效声纹判定

对任意样本都进行语音纯化,可能造成声纹识别系统性能下降,

检测

改进检测模型

不改变样本

被误判的纯净样本会被丢弃

混合训练

改进训练数据的合成方法

声纹识别模型,自带防御功能

模型训练规模大,对抗样本造成声纹识别模型精度下降

2.2 纯化防御

纹识别的对抗样本防御中,扩散(Diffusion)模型纯化利用了扩散模型在生成高质量语音方面的能力,以净化对抗性扰动,从而提高声纹识别系统的鲁棒性。

扩散模型是一种深度学习模型,它通过迭代去噪的过程来生成数据。在声纹识别的背景下,扩散模型首先将干净的声纹信号逐渐添加噪声,直到信号变成随机噪声,然后将这些噪声逐渐去噪,恢复出原始的声纹信号。这个过程可以看作是对声纹信号的纯化,因为它可以去除声纹信号中的噪声和扰动。

Diffusion模型纯化

两阶段 diffusion模型纯化

大语言模型驱动的diffusion模型纯化

  • 对抗样本生成:首先,使用特定的对抗攻击方法生成对抗性声纹样本。这些样本在人类听起来与原始语音几乎相同,但能够导致声纹识别模型错误地识别说话人。
  • 扩散过程:将生成的对抗性声纹样本输入到扩散模型中,通过迭代添加噪声,将样本逐渐转换为随机噪声。
  • 去噪过程:在去噪过程中,扩散模型将噪声逐渐去除,尝试恢复出原始的声纹信号。由于扩散模型在生成声纹信号时已经学习了声纹信号的本质特征,因此它可以在去噪过程中识别并去除对抗性扰动。
  • 声纹识别:将去噪后的声纹样本输入到声纹识别模型中,进行说话人识别

2.3 检测防御

基于可学习Mask的对抗样本检测方法的核心思想是利用可学习的Mask来识别和去除声纹信号中的对抗性扰动,从而保护声纹识别系统不受攻击

  • 训练可学习Mask:首先,需要训练一个可学习的Mask。这个Mask是一个神经网络,它能够学习如何识别声纹信号中的对抗性扰动。训练数据包括正常的声纹信号和被对抗性攻击污染的声纹信号。通过训练,Mask学会了识别和去除对抗性扰动。
  • 声纹信号输入:当一个新的声纹信号输入到系统时,首先通过可学习Mask进行处理。Mask会识别并去除信号中的对抗性扰动,从而净化声纹信号。
  • 声纹识别:将净化后的声纹信号输入到声纹识别模型中,进行说话人识别。

基于规则Mask的对抗样本检测方法的核心思想是利用预先定义的规则来生成Mask,这个Mask用于识别和去除声纹信号中的对抗性扰动,从而保护声纹识别系统不受攻击。

  • 定义规则:首先,需要定义一组规则,这些规则用于确定哪些部分的声纹信号可能是对抗性扰动。这些规则可以是基于声学特征的,例如音高、能量、频谱特性等,或者是基于信号处理的技术,例如滤波、傅里叶变换等。
  • 生成规则Mask:根据定义的规则,生成一个规则Mask。这个Mask是一个矩阵,它将声纹信号中的每个部分标记为正常或异常。规则Mask可以通过编程实现,也可以通过机器学习算法学习得到。
  • 声纹信号输入:当一个新的声纹信号输入到系统时,首先通过规则Mask进行处理。规则Mask会识别并去除信号中可能是对抗性扰动的部分,从而净化声纹信号。
  • 声纹识别:将净化后的声纹信号输入到声纹识别模型中,进行说话人识别。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1678538.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

用HAL库改写江科大的stm32入门例子4-1 OLED

大体 步骤: step1:使用STM32CubeMX初始化I2C1,生成初始化代码 step2:将任意一个库导入到工程,配置好编译路径 step3:调用函数即可 IIC原理图: 接线图: 先设置clock: 开…

GPT-4o模型介绍和使用方法

大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法…

VBA直连SAP RFC 接口实例

引用依赖: VBA 调用 SAP API的RFC函数:RFC_READ_TABLE Sub A() 查询SAP表数据并输出到EXCEL,VBA中不区分大小写(保存后会自动把代码、变量转换大小写)Dim iData As Integer Dim nField As Integer Dim nData As Integer Dim Result As Boolean Dim vRow As Variant MsgBox…

Socks5:网络世界的隐形斗篷

在数字化时代,网络隐私和安全已成为人们日益关注的话题。Socks5,作为一种代理协议,为用户在网络世界中的匿名性提供了强有力的支持。本文将从Socks5的多个方面,深入探讨这一技术如何成为网络世界的“隐形斗篷”。 一、Socks5的基本…

如何在WordPress中启用两因素身份验证?

在WordPress中启用两因素身份验证方法:安装和激活WordFence安全性、启用两因素验证。 使用您可以从任何位置登录的任何门户,建议启用两个因素身份验证以增加帐户的安全性。 这样,即使有人可以正确猜测你的密码,它们仍然需要获得2…

代码随想录算法训练营第四十八天|121. 买卖股票的最佳时机 、122.买卖股票的最佳时机II

121. 买卖股票的最佳时机 思路: 动规五部曲分析如下: 1.确定dp数组(dp table)以及下标的含义 dp[i][0] 表示第i天持有股票所得最多现金 ,这里可能有同学疑惑,本题中只能买卖一次,持有股票之…

队列的实现与OJ题目解析

"不是你变优秀了, 那个人就会喜欢你." 文章索引 前言1. 什么是队列2. 队列的实现3. OJ题目解析4. 总结 前言 感情可以培养是个伪命题. 如果有足够多的时间和爱, 就可以让另一个人爱上你的话, 那谁和谁都可以相爱了. 爱情之所以会让人死去活来, 是因为, 答案都写在了…

虚拟化技术 安装和配置StartWind iSCSI目标服务器

一、实验内容 安装StartWind iSCSI目标服务器配置StartWind iSCSI目标服务器 二、实验主要仪器设备及材料 安装有64位Windows操作系统的台式电脑或笔记本电脑,建议4C8G或以上配置已安装vSphere Client已创建虚拟机并在其上安装CentOS6.5StarWind安装介质starwind.…

VUE如何实现批量下载多个文件并导出zip格式

效果图 1、安装jszip和file-saver插件 npm install jszip npm install file-saver2、在所需页面引入 import JSZip from "jszip"; import FileSaver from "file-saver";3、模拟fileList数组 //fileList模拟文件数组export default {name: "notic…

react18【系列实用教程】useMemo —— 缓存数据 (2024最新版)

为什么添加了 memo &#xff0c;子组件2依然重新渲染了呢&#xff1f; 因为父组件向子组件2传递了引用类型的数据 const userInfo {name: "朝阳",};<Child2 userInfo{userInfo} />memo() 函数的本质是通过校验Props中数据的内存地址是否改变来决定组件是否重新…

《米小圈动画成语》—和孩子一起意动“神州”成语连击!

成语有着独特的语言魅力&#xff0c;以其源远流长、凝练浓缩、概括力强而历久弥新,久盛不衰&#xff0c;是中华民族特有的文化现象。成语既是语言文字符号&#xff0c;又具有无穷的艺术魅力。在表情达意、传递高质量语言信息方面起着以一当十的作用。成语的结构严谨、言简意赅&…

动规解决01背包/完全背包精讲

还不会用动态规划解决01背包/完全背包&#xff1f;看这一篇文章就够了&#xff01; 首先我们要明白什么是01背包和完全背包。 背包问题总体问法就是&#xff1a; 你有一个背包&#xff0c;最多能容纳的体积是V。 现在有n个物品&#xff0c;第i个物品的体积为vi​ ,价值为wi​…

2023年数维杯国际大学生数学建模挑战赛D题洗衣房清洁计算解题全过程论文及程序

2023年数维杯国际大学生数学建模挑战赛 D题 洗衣房清洁计算 原题再现&#xff1a; 洗衣房清洁是人们每天都要做的事情。洗衣粉的去污作用来源于一些表面活性剂。它们可以增加水的渗透性&#xff0c;并利用分子间静电排斥机制去除污垢颗粒。由于表面活性剂分子的存在&#xff…

zip压缩unzip解压缩、gzip和gunzip解压缩、tar压缩和解压缩

一、tar压缩和解压缩 tar [选项] 打包文件名 源文件或目录 选项含义-c创建新的归档文件-x从归档文件中提取文件-v显示详细信息-f指定归档文件的名称-z通过gzip进行压缩或解压缩-j通过bzip2进行压缩或解压缩-J通过xz进行压缩或解压缩-p保留原始文件的权限和属性–excludePATTE…

查看Linux服务器的硬盘占用情况

查看Linux服务器的硬盘占用情况 一、查看各分区的使用情况和磁盘挂载1、查看磁盘分区使用和磁盘挂载2、结果解释&#xff08;1&#xff09;列名解释&#xff08;2&#xff09;各系统解释 二、查看一个目录及其所有子目录中文件的总占用大小1、查看指定目录的总大小2、列出目录下…

2024/5/15 英语每日一段

Many pet owners are now turning to pet insurance policies to avoid higher vet bills should something bad happen unexpectedly. But Carlson said that preventive veterinary care—like vaccination, parasite control and weight management—is "the best way …

【REST2SQL】14 基于角色的数据权限设计与实现

【REST2SQL】01RDB关系型数据库REST初设计 【REST2SQL】02 GO连接Oracle数据库 【REST2SQL】03 GO读取JSON文件 【REST2SQL】04 REST2SQL第一版Oracle版实现 【REST2SQL】05 GO 操作 达梦 数据库 【REST2SQL】06 GO 跨包接口重构代码 【REST2SQL】07 GO 操作 Mysql 数据库 【RE…

Redis教程(二):Redis在Linux环境下的安装

Linux环境下安装&#xff1a; 下载地址&#xff1a;Downloads - Redis 安装步骤&#xff1a; 下载得到一个 tar.gz 压缩文件 上传到Linux的/opt/soft目录&#xff0c;使用以下命令解压 tar -zxvf redis-6.2.14.tar.gz Linux安装基本环境gcc&#xff0c;安装命令 yum insta…

安泰ATA-7015高压放大器在材料极化中的应用研究

材料极化是材料科学中一个重要的研究领域&#xff0c;它涉及到材料内部电荷和极化性质的调控和分析。高压放大器在材料极化研究中起着至关重要的作用&#xff0c;通过提供高压力和高电场条件&#xff0c;研究人员可以深入探讨材料的电子结构、相变行为以及许多其他关键性质。 材…

17.多线程

多线程 程序、进程、线程的概念 程序&#xff1a;是指令和数据的有序集合&#xff0c;是一个静态的概念。比如&#xff0c;在电脑中&#xff0c;打开某个软件&#xff0c;就是启动程序。 进程&#xff1a;是执行程序的一次执行过程&#xff0c;是一个动态的概念&#xff0c;…