Qwen-VL环境搭建推理测试

news2024/11/17 16:31:42

引子

这几天阿里的Qwen2.5大模型在大模型圈引起了轰动,号称地表最强中文大模型。前面几篇也写了QWen的微调等,视觉语言模型也写了一篇CogVLM,感兴趣的小伙伴可以移步Qwen1.5微调-CSDN博客。前面也写过一篇智谱AI的视觉大模型(CogVLM/CogAgent环境搭建&推理测试-CSDN博客)。Qwen-VL 是阿里云研发的大规模视觉语言模型(Large Vision Language Model, LVLM)。Qwen-VL 可以以图像、文本、检测框作为输入,并以文本和检测框作为输出。

一、模型介绍

1、强大的性能

在四大类多模态任务的标准英文测评中(Zero-shot Captioning/VQA/DocVQA/Grounding)上,均取得同等通用模型大小下最好效果;

2、多语言对话模型

天然支持英文、中文等多语言对话,端到端支持图片里中英双语的长文本识别;这里就得吐槽下CogVLM了,竟然没有支持中文

3、多图交错对话

支持多图输入和比较,指定图片问答,多图文学创作等;

4、首个支持中文开放域定位的通用模型

通过中文开放域语言表达进行检测框标注;

5、细粒度识别和理解

相比于目前其它开源LVLM使用的224分辨率,Qwen-VL是首个开源的448分辨率的LVLM模型。更高分辨率可以提升细粒度的文字识别、文档问答和检测框标注。

二、安装环境

请移步QWen1.5微调的地址,Qwen1.5微调-CSDN博客

docker run -it --rm --gpus=all -v /mnt/code/LLM_Service/:/workspace qwen:v1.0 bash

三、推理测试

1、QWen-VL-chat

cd /workspace/qwen-vl

python qwen-vl-chat.py

from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
import torch
torch.manual_seed(1234)

# 请注意:分词器默认行为已更改为默认关闭特殊token攻击防护。
tokenizer = AutoTokenizer.from_pretrained("/workspace/model/Qwen-VL-Chat", trust_remote_code=True)

# 打开bf16精度,A100、H100、RTX3060、RTX3070等显卡建议启用以节省显存
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL-Chat", device_map="auto", trust_remote_code=True, bf16=True).eval()
# 打开fp16精度,V100、P100、T4等显卡建议启用以节省显存
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL-Chat", device_map="auto", trust_remote_code=True, fp16=True).eval()
# 使用CPU进行推理,需要约32GB内存
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL-Chat", device_map="cpu", trust_remote_code=True).eval()
# 默认gpu进行推理,需要约24GB显存
model = AutoModelForCausalLM.from_pretrained("/workspace/model/Qwen-VL-Chat", device_map="cuda", trust_remote_code=True, fp16=True).eval()

# 可指定不同的生成长度、top_p等相关超参(transformers 4.32.0及以上无需执行此操作)
# model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-VL-Chat", trust_remote_code=True)

# 第一轮对话
query = tokenizer.from_list_format([
    {'image': 'https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg'}, # Either a local path or an url
    {'text': '这是什么?'},
])
response, history = model.chat(tokenizer, query=query, history=None)
print(response)
# 图中是一名女子在沙滩上和狗玩耍,旁边是一只拉布拉多犬,它们处于沙滩上。

# 第二轮对话
response, history = model.chat(tokenizer, '框出图中击掌的位置', history=history)
print(response)
# <ref>击掌</ref><box>(536,509),(588,602)</box>
image = tokenizer.draw_bbox_on_latest_picture(response, history)
if image:
  image.save('1.jpg')
else:
  print("no box")

2、QWen-VL

python qwen-vl.py

from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
import torch
torch.manual_seed(1234)

tokenizer = AutoTokenizer.from_pretrained("/workspace/model/Qwen-VL-Chat", trust_remote_code=True)

# 打开bf16精度,A100、H100、RTX3060、RTX3070等显卡建议启用以节省显存
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL", device_map="auto", trust_remote_code=True, bf16=True).eval()
# 打开fp16精度,V100、P100、T4等显卡建议启用以节省显存
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL", device_map="auto", trust_remote_code=True, fp16=True).eval()
# 使用CPU进行推理,需要约32GB内存
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL", device_map="cpu", trust_remote_code=True).eval()
# 默认gpu进行推理,需要约24GB显存
model = AutoModelForCausalLM.from_pretrained("/workspace/model/Qwen-VL-Chat", device_map="cuda", trust_remote_code=True, fp16=True).eval()

# 可指定不同的生成长度、top_p等相关超参(transformers 4.32.0及以上无需执行此操作)
# model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-VL", trust_remote_code=True)

query = tokenizer.from_list_format([
    {'image': 'https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg'}, # Either a local path or an url
    {'text': 'Generate the caption in English with grounding:'},
])
inputs = tokenizer(query, return_tensors='pt')
inputs = inputs.to(model.device)
pred = model.generate(**inputs)
response = tokenizer.decode(pred.cpu()[0], skip_special_tokens=False)
print(response)
# <img>https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg</img>Generate the caption in English with grounding:<ref> Woman</ref><box>(451,379),(731,806)</box> and<ref> her dog</ref><box>(219,424),(576,896)</box> playing on the beach<|endoftext|>
image = tokenizer.draw_bbox_on_latest_picture(response)
if image:
  image.save('2.jpg')
else:
  print("no box")

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1676207.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

计算礼品发放的最小分组数目 - 贪心思维

系列文章目录 文章目录 系列文章目录前言一、题目描述二、输入描述三、输出描述四、java代码五、测试用例 前言 本人最近再练习算法&#xff0c;所以会发布自己的解题思路&#xff0c;希望大家多指教 一、题目描述 又到了一年的末尾&#xff0c;项目组让小明负责为使得参加晚…

信创项目推进步骤

信创项目推进步骤 文章目录 信创项目推进步骤1. 制定信创替代计划2. 选择合适的信创产品3. 进行试点验证4. 全面部署和替换5. 加强网络安全建设6. 培训和技术支持7. 持续监督和评估 1. 制定信创替代计划 需要对现有的信息化硬件设备进行全面的梳理和评估&#xff0c;确定哪些设…

Properties配置文件和源码

先对测试类进行get方法复写得到getReqType 判断caseinfo等于get时&#xff0c;就是get请求&#xff0c;反之就不是 这里的url和param都是xxx代替&#xff0c;如果直接写内容&#xff0c;每次都会请求 三目运算优化 为什么要用配置文件 test里时url,可以将ip和端口写在配置文…

openlayer实现ImageStatic扩展支持平铺Wrapx

地图平铺&#xff08;Tiling&#xff09;是地图服务中常见的技术&#xff0c;用于将大尺寸的地图数据分割成许多小块&#xff08;瓦片&#xff09;&#xff0c;便于高效加载和展示。这种技术特别适用于网络环境&#xff0c;因为它允许浏览器只加载当前视图窗口内所需的地图瓦片…

【时隙ALOHA,CSMA(载波侦听多路访问)carrier sense mltiple access,无线局域网: CSMA/CA】

文章目录 时隙ALOHA时隙ALOHA的效率( Efficiency )纯ALOHA(非时隙)----效率低CSMA(载波侦听多路访问)carrier sense mltiple accessCSMA冲突CSMA/CD(冲突检测)边说边听&#xff08;提高了信道利用率&#xff09;以太网就是用的这个无线局域网: CSMA/CA无线局域网中的 MAC&#…

人工智能与机器学习的演进:重塑IT行业的未来

目录 前言一、人工智能与机器学习的最新发展1、算法和硬件的进步2、AI & ML的民主化 二、AI & ML在自动化中的应用1、工业与服务业自动化1.1 实践方式1.2 伪代码样例 2、软件开发与运维自动化2.1实践方式2.2伪代码样例 三、AI & ML在个性化服务中的应用1、推荐系统…

【C++】每日一题 17 电话号码的字母组合

给定一个仅包含数字 2-9 的字符串&#xff0c;返回所有它能表示的字母组合。答案可以按 任意顺序 返回。 给出数字到字母的映射如下&#xff08;与电话按键相同&#xff09;。注意 1 不对应任何字母。 可以使用回溯法来解决这个问题。首先定义一个映射关系将数字与字母对应起来…

tarjan学习

1.割点&#xff08;必须经过&#xff09;&#xff1a;当时&#xff0c;y是一个割点&#xff0c;x是y的一个子节点&#xff0c;当没有点x时&#xff0c;y无法访问其他点 2.割边&#xff08;必须经过&#xff09;&#xff1a;当时&#xff0c;y不经过这条边无法到达x&#xff0c…

算法-卡尔曼滤波之卡尔曼滤波的第二个方程:预测方程(状态外推方程)

在上一节中&#xff0c;使用了静态模型&#xff0c;我们推导出了卡尔曼滤波的状态更新方程&#xff0c;但是在实际情况下&#xff0c;系统都是动态&#xff0c;预测阶段&#xff0c;前后时刻的状态是改变的&#xff0c;此时我们引入预测方程&#xff0c;也叫状态外推方程&#…

月入8.5k,计算机应届生转行网优,就业难,不妨另辟蹊径!

随着2024年毕业生人数的预计达到惊人的1179万&#xff0c;就业市场的竞争愈发激烈。作为即将踏入社会的毕业生&#xff0c;如何做好准备&#xff0c;减轻自己的就业压力&#xff0c;成为了摆在我们面前的一大难题。 今天主人公是一位刚毕业的22岁大学生小L&#xff0c;河南郑州…

如何轻松获得稳定的静态IP?

在当今互联网时代&#xff0c;静态IP地址对于许多领域至关重要。无论是个人用户还是企业&#xff0c;拥有一个稳定的静态IP地址都能够提供诸多便利。静态IP地址与动态IP地址相比&#xff0c;具有不变性和可追溯性&#xff0c;适用于需要长期稳定通信和追踪的场景。了解静态IP的…

《控制系统实验与综合设计》计控第三次(含程序和题目)

实验七 采样控制系统的分析 一、实验完成任务 1、熟悉用 LF398 组成的采样控制系统&#xff1b; 2、通过本实验理解采样定理和零阶保持器的原理及其实现方法&#xff1b; 3、观察系统在阶跃作用下的稳态误差。 4.、研究开环增益 K 和采样周期 T 的变化对系统动态性能的影响…

工作太闲怎么办?有没有什么副业推荐?

如果您的工作太闲&#xff0c;可以考虑参加一些副业&#xff0c;利用您的空余时间进行一些有意义的活动。以下是一些副业建议 1. 在线兼职 可以通过一些在线平台寻找兼职工作&#xff0c;如做在线调查、参与评估、进行数据输入等。 2.做任务 还可以做下百度的致米宝库&#…

由于安全设置错误,远程桌面连接失败怎么办?

问题&#xff1a;远程桌面安全设置错误&#xff1f; “我是一名IT经理&#xff0c;需要经常使用远程桌面连接到办公室的电脑。近期&#xff0c;我在使用远程桌面时&#xff0c;远程桌面提示‘由于安全设置错误&#xff0c;客户端无法连接到远程计算机。’我不清楚是什么原因所…

电子邮箱是什么?怎么申请一个电子邮箱?

电子邮箱是我们沟通的工具&#xff0c;细分为免费版电子邮箱和付费版电子邮箱。怎么申请一个属于自己的电子邮箱&#xff1f;今天小编就分享一下电子邮箱注册教程&#xff0c;手把手教您注册一个电子邮箱。 一、电子邮箱的定义 电子邮箱&#xff0c;简称邮箱&#xff0c;是一…

mysql查询优化索引篇

其实在写这篇文章之前,也对查询优化做过一些设置,但这次则更为具体一点,之前做的无非就是增加查询字段的索引,让select里和where里的内容全部都包含在索引内(覆盖索引不走回表的基本概念),但这次这么做的时候发现了一些问题,这也是我接下来要提到的,而且之前使用的是sqlserver的…

Android 集成Bugly完成线上的异常Exception收集及处理

文章目录 &#xff08;一&#xff09;添加产品APP&#xff08;二&#xff09;集成SDK&#xff08;三&#xff09;参数配置权限混淆 &#xff08;四&#xff09;初始化 &#xff08;一&#xff09;添加产品APP 一&#xff09;在个人头像 -> 我的头像 -> 新建产品 二&…

计算机组成原理(超详解!!) 第八节 总线系统

1.总线的概念和结构形态 1.总线&#xff08;BUS&#xff09;的基本概念 是构成计算机系统的互联机构&#xff0c;是多个系统功能部件&#xff08;运算器、控制器、存储器、输入/输出设备&#xff09;之间进行数据传送的公共通路。 由传输信息的电路和管理信息传输的协议组成…

【AI学习】对指令微调(instruction tuning)的理解

前面对微调&#xff08;Fine-tuning&#xff09;的学习中&#xff0c;提到指令微调。当时&#xff0c;不清楚何为指令微调&#xff0c;也一直没来得及仔细学习。 什么是指令微调&#xff1f;LLM经过预训练后&#xff0c;通过指令微调提升模型的指令遵循能力。所谓指令&#xf…

Sectigo SSL证书申请的流程是怎样的?

在当今数字化时代&#xff0c;网络安全成为了一个不可忽视的问题。为了保护网站和用户数据的安全&#xff0c;SSL证书成为了网站运营的重要组成部分。Sectigo作为全球领先的数字证书颁发机构之一&#xff0c;提供了一系列的证书解决方案来满足不同类型网站的需求。以下是对Sect…