【人工智能Ⅱ】实验7:目标检测算法2

news2024/12/23 4:32:47

实验7:目标检测算法2

一:实验目的与要求

1:了解一阶段目标检测模型-YOLOv3模型的原理和结构.

2:学习通过YOLOv3模型解决目标检测问题。

二:实验资源

pytorch代码各文件夹内容介绍

1. data_loader.py:能够传入模型的Dataloader构建函数。

2. data_operate.py: 数据操作。

3. get_box.py: 获取数据标记框函数。

4. Loss.py:训练主体程序。

5. main.py: 主函数。

6. metric.py: 评价指标函数,用于模型训练时,评价val数据集。

7. model_YOLOV3.py: 模型函数。

8. utils.py: 其他工具函数。

参考paddle版本代码

搭建YoloV3对螺母螺栓进行目标检测 - 飞桨AI Studio星河社区

三:实验要求

1:阅读示例代码,学习YOLOv3模型。

2:基于螺丝螺母数据集或昆虫数据集,调试运行模型代码。

3:调整各类参数,优化模型效果。

4:撰写实验报告。

三:实验环境

本实验所使用的环境条件如下表所示。

操作系统

Ubuntu(Linux)

程序语言

Python(3.11.4)

第三方依赖

torch, torchvision, matplotlib等

四:实验原理

YOLOv3是一种高效的实时目标检测算法,其核心思想是将目标检测任务视为一个回归问题。通过一次前向传播,YOLOv3能够直接预测出图像中目标的边界框和类别概率,从而实现了快速且准确的目标检测。

(1)网络结构

YOLOv3的网络结构采用了Darknet-53作为特征提取网络。Darknet-53是一个深度卷积神经网络,包含53个卷积层和5个最大池化层。这些卷积层和池化层能够有效地提取图像中的特征信息。此外,YOLOv3还在Darknet-53的基础上添加了3个额外的卷积层,用于检测不同尺寸的目标。这些卷积层能够预测不同大小的目标框,以适应各种目标的检测需求。


YOLOv3的网络结构如下图所示。

(2)目标检测原理

在YOLOv3中,目标检测任务是通过将输入图像划分为S×S个网格单元来完成的。每个网格单元负责预测B个边界框和对应的置信度分数,以及每个边界框的类别概率。这样,每个网格单元都能够独立地预测出目标的存在、位置以及类别。

为了得到准确的预测结果,YOLOv3采用了多尺度损失函数和非极大值抑制算法。多尺度损失函数能够综合考虑不同尺度的目标框,从而提高检测的准确性。非极大值抑制算法则用于去除冗余的边界框,保留最佳的检测结果。

(3)训练和检测

在训练阶段,YOLOv3需要大量的标注数据进行学习。标注数据包括图像中目标的类别、位置以及边界框的大小等信息。通过不断迭代和优化网络参数,YOLOv3能够逐渐提高目标检测的准确性。

在检测阶段,YOLOv3可以直接对输入的图像进行前向传播,得到目标的预测结果。这些预测结果包括目标的类别、位置以及边界框的大小等信息,可以用于后续的应用或处理。

五:算法流程

  1. 数据准备。准备训练所需的昆虫数据集,并确保每个图像都有对应的标注文件,即相应的边界框标注和类别信息。
  2. 数据预处理。对准备好的数据进行预处理,包括图像大小调整、归一化等操作,以便模型更好地学习和处理。
  3. 模型架构选择。选择YOLOv3-tiny作为目标网络结构,并修改相应yaml文件。
  4. 模型超参数调整。调整模型的超参数,如学习率、训练轮数(epoch)、正则化参数等。
  5. 模型训练。在前向传播中,模型接收输入图像并生成预测结果;在反向传播中,根据预测结果与实际标签之间的误差调整模型参数;参数更新则根据优化算法更新模型权重。
  6. 模型验证与测试。评估模型在未见过的数据上的性能。通过不断调整模型架构和超参数,优化模型在OOD数据集上的表现。
  7. 模型推理与后处理。

六:实验展示

    本次实验采用YOLOv3-tiny网络结构,数据集为昆虫数据集。

【模型训练过程】

    设置模型超参数如下:epoch为30,预训练权重为yolov3.pt(来自ultralytics官方),网络结构为yolov3-tiny.yaml,数据结构为voc.yaml,batch_size为16,优化器为SGD,线程为8。

训练完成后的评价指标汇总如下图所示。

混淆矩阵,如下图所示。

F1值的曲线,如下图所示。

Precision的曲线,如下图所示。

  Recall的曲线,如下图所示。

Precision- Recall的曲线,如下图所示。

训练和验证时的锚框损失和分类损失,以及mAP等评价指标的曲线,如下图所示。

每个类别的数据量、标签、center xy、labels 标签的长和宽的信息,如下图所示。

真实值的标签结果,如下图所示。

预测值的标签结果,如下图所示。

【模型测试过程】

由于测试集的数据量过大,因此此处仅展示具备代表性的一些案例结果。


案例1含有一些重复框,如下图所示。

案例2昆虫的排布较为分散,检测效果良好,如下图所示。

案例3存在漏检的昆虫,如下图所示。

七:实验结论与心得

1:one-stage算法由其算法结构决定了其准确率一般会低于two-stage算法, YOLO等one-stage算法凭借其更快的前向传播速度,获得了更加广泛的实际工业应用。

2:YOLO v3算法产生的预测框数目比Faster-RCNN少很多。Faster-RCNN中每个真实框可能对应多个标签为正的候选区域,而YOLO v3里面每个真实框只对应一个正的候选区域。

3:YOLOv3模型存在一些不足之处,如对小目标的检测能力相对较弱,以及在某些复杂场景下可能会出现误检或漏检的情况。

4:YOLOv3最主要的改进之处如下:

(1)更好的backbone:从YOLOv2的darknet-19到YOLOv3的darknet-53。

(2)多尺度预测:引入FPN。

(3)考虑到检测物体的重叠情况,用多标签的方式替代了之前softmax单标签方式,分类器不再使用softmax,损失函数中采用二分类交叉损失熵。

八:主要代码

xml标注文件转txt

import os

import xml.etree.ElementTree as ET

def convert_xml_to_txt(xml_folder, txt_folder, class_list):

    if not os.path.exists(txt_folder):

        os.makedirs(txt_folder)

   

    for xml_file in os.listdir(xml_folder):

        if xml_file.endswith('.xml'):

            tree = ET.parse(os.path.join(xml_folder, xml_file))

            root = tree.getroot()

            txt_filename = os.path.splitext(xml_file)[0] + '.txt'

            with open(os.path.join(txt_folder, txt_filename), 'w') as txt_file:

                for obj in root.findall('object'):

                    cls = obj.find('name').text

                    if cls not in class_list:

                        continue

                    cls_id = class_list.index(cls)

                    xmlbox = obj.find('bndbox')

                    xmin = int(xmlbox.find('xmin').text)

                    ymin = int(xmlbox.find('ymin').text)

                    xmax = int(xmlbox.find('xmax').text)

                    ymax = int(xmlbox.find('ymax').text)

                    img_width = int(root.find('size').find('width').text)

                    img_height = int(root.find('size').find('height').text)

                    x_center = ((xmin + xmax) / 2) / img_width

                    y_center = ((ymin + ymax) / 2) / img_height

                    width = (xmax - xmin) / img_width

                    height = (ymax - ymin) / img_height

                    txt_file.write(f"{cls_id} {x_center:.6f} {y_center:.6f} {width:.6f} {height:.6f}\n")

# 定义您的类别列表

classes = ['Leconte', 'Boerner', 'linnaeus', 'armandi', 'coleoptera']

# 转换 XML 文件

xmlpath = r"/home/ubuntu/yolov3/dataset/labels-xml/val"

txtpath = r"/home/ubuntu/yolov3/dataset/labels/val"

convert_xml_to_txt(xmlpath, txtpath, classes)

Data.yaml(数据加载)

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license

# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford

# Example usage: python train.py --data VOC.yaml

# parent

# ├── yolov5

# └── datasets

#     └── VOC  ← downloads here (2.8 GB)

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]

path: ../datasets/VOC

train: # train images (relative to 'path')  16551 images

  - /home/ubuntu/yolov3/dataset/images/train

val: # val images (relative to 'path')  4952 images

  - /home/ubuntu/yolov3/dataset/images/val

test: # test images (optional)

# Classes

names:

  0: Leconte

  1: Boerner

  2: linnaeus

  3: armandi

  4: coleoptera

Yolov3-tiny.yaml(网络结构加载)

# YOLOv3 🚀 by Ultralytics, AGPL-3.0 license

# Parameters

nc: 5 # number of classes

depth_multiple: 1.0 # model depth multiple

width_multiple: 1.0 # layer channel multiple

anchors:

  - [10, 14, 23, 27, 37, 58] # P4/16

  - [81, 82, 135, 169, 344, 319] # P5/32

# YOLOv3-tiny backbone

backbone:

  # [from, number, module, args]

  [

    [-1, 1, Conv, [16, 3, 1]], # 0

    [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 1-P1/2

    [-1, 1, Conv, [32, 3, 1]],

    [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 3-P2/4

    [-1, 1, Conv, [64, 3, 1]],

    [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 5-P3/8

    [-1, 1, Conv, [128, 3, 1]],

    [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 7-P4/16

    [-1, 1, Conv, [256, 3, 1]],

    [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 9-P5/32

    [-1, 1, Conv, [512, 3, 1]],

    [-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]], # 11

    [-1, 1, nn.MaxPool2d, [2, 1, 0]], # 12

  ]

# YOLOv3-tiny head

head: [

    [-1, 1, Conv, [1024, 3, 1]],

    [-1, 1, Conv, [256, 1, 1]],

    [-1, 1, Conv, [512, 3, 1]], # 15 (P5/32-large)

    [-2, 1, Conv, [128, 1, 1]],

    [-1, 1, nn.Upsample, [None, 2, "nearest"]],

    [[-1, 8], 1, Concat, [1]], # cat backbone P4

    [-1, 1, Conv, [256, 3, 1]], # 19 (P4/16-medium)

    [[19, 15], 1, Detect, [nc, anchors]], # Detect(P4, P5)

  ]

Train.py(模型训练)

# YOLOv3 🚀 by Ultralytics, AGPL-3.0 license

"""

Train a YOLOv3 model on a custom dataset. Models and datasets download automatically from the latest YOLOv3 release.

Usage - Single-GPU training:

    $ python train.py --data coco128.yaml --weights yolov5s.pt --img 640  # from pretrained (recommended)

    $ python train.py --data coco128.yaml --weights '' --cfg yolov5s.yaml --img 640  # from scratch

Usage - Multi-GPU DDP training:

    $ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 train.py --data coco128.yaml --weights yolov5s.pt --img 640 --device 0,1,2,3

Models:     https://github.com/ultralytics/yolov5/tree/master/models

Datasets:   https://github.com/ultralytics/yolov5/tree/master/data

Tutorial:   https://docs.ultralytics.com/yolov5/tutorials/train_custom_data

"""

import argparse

import math

import os

import random

import subprocess

import sys

import time

from copy import deepcopy

from datetime import datetime

from pathlib import Path

try:

    import comet_ml  # must be imported before torch (if installed)

except ImportError:

    comet_ml = None

import numpy as np

import torch

import torch.distributed as dist

import torch.nn as nn

import yaml

from torch.optim import lr_scheduler

from tqdm import tqdm

FILE = Path(__file__).resolve()

ROOT = FILE.parents[0]  # YOLOv3 root directory

if str(ROOT) not in sys.path:

    sys.path.append(str(ROOT))  # add ROOT to PATH

ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

import val as validate  # for end-of-epoch mAP

from models.experimental import attempt_load

from models.yolo import Model

from utils.autoanchor import check_anchors

from utils.autobatch import check_train_batch_size

from utils.callbacks import Callbacks

from utils.dataloaders import create_dataloader

from utils.downloads import attempt_download, is_url

from utils.general import (

    LOGGER,

    TQDM_BAR_FORMAT,

    check_amp,

    check_dataset,

    check_file,

    check_git_info,

    check_git_status,

    check_img_size,

    check_requirements,

    check_suffix,

    check_yaml,

    colorstr,

    get_latest_run,

    increment_path,

    init_seeds,

    intersect_dicts,

    labels_to_class_weights,

    labels_to_image_weights,

    methods,

    one_cycle,

    print_args,

    print_mutation,

    strip_optimizer,

    yaml_save,

)

from utils.loggers import Loggers

from utils.loggers.comet.comet_utils import check_comet_resume

from utils.loss import ComputeLoss

from utils.metrics import fitness

from utils.plots import plot_evolve

from utils.torch_utils import (

    EarlyStopping,

    ModelEMA,

    de_parallel,

    select_device,

    smart_DDP,

    smart_optimizer,

    smart_resume,

    torch_distributed_zero_first,

)

LOCAL_RANK = int(os.getenv("LOCAL_RANK", -1))  # https://pytorch.org/docs/stable/elastic/run.html

RANK = int(os.getenv("RANK", -1))

WORLD_SIZE = int(os.getenv("WORLD_SIZE", 1))

GIT_INFO = check_git_info()

def train(hyp, opt, device, callbacks):  # hyp is path/to/hyp.yaml or hyp dictionary

    save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = (

        Path(opt.save_dir),

        opt.epochs,

        opt.batch_size,

        opt.weights,

        opt.single_cls,

        opt.evolve,

        opt.data,

        opt.cfg,

        opt.resume,

        opt.noval,

        opt.nosave,

        opt.workers,

        opt.freeze,

    )

    callbacks.run("on_pretrain_routine_start")

    # Directories

    w = save_dir / "weights"  # weights dir

    (w.parent if evolve else w).mkdir(parents=True, exist_ok=True)  # make dir

    last, best = w / "last.pt", w / "best.pt"

    # Hyperparameters

    if isinstance(hyp, str):

        with open(hyp, errors="ignore") as f:

            hyp = yaml.safe_load(f)  # load hyps dict

    LOGGER.info(colorstr("hyperparameters: ") + ", ".join(f"{k}={v}" for k, v in hyp.items()))

    opt.hyp = hyp.copy()  # for saving hyps to checkpoints

    # Save run settings

    if not evolve:

        yaml_save(save_dir / "hyp.yaml", hyp)

        yaml_save(save_dir / "opt.yaml", vars(opt))

    # Loggers

    data_dict = None

    if RANK in {-1, 0}:

        loggers = Loggers(save_dir, weights, opt, hyp, LOGGER)  # loggers instance

        # Register actions

        for k in methods(loggers):

            callbacks.register_action(k, callback=getattr(loggers, k))

        # Process custom dataset artifact link

        data_dict = loggers.remote_dataset

        if resume:  # If resuming runs from remote artifact

            weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size

    # Config

    plots = not evolve and not opt.noplots  # create plots

    cuda = device.type != "cpu"

    init_seeds(opt.seed + 1 + RANK, deterministic=True)

    with torch_distributed_zero_first(LOCAL_RANK):

        data_dict = data_dict or check_dataset(data)  # check if None

    train_path, val_path = data_dict["train"], data_dict["val"]

    nc = 1 if single_cls else int(data_dict["nc"])  # number of classes

    names = {0: "item"} if single_cls and len(data_dict["names"]) != 1 else data_dict["names"]  # class names

    is_coco = isinstance(val_path, str) and val_path.endswith("coco/val2017.txt")  # COCO dataset

    # Model

    check_suffix(weights, ".pt")  # check weights

    pretrained = weights.endswith(".pt")

    if pretrained:

        with torch_distributed_zero_first(LOCAL_RANK):

            weights = attempt_download(weights)  # download if not found locally

        ckpt = torch.load(weights, map_location="cpu")  # load checkpoint to CPU to avoid CUDA memory leak

        model = Model(cfg or ckpt["model"].yaml, ch=3, nc=nc, anchors=hyp.get("anchors")).to(device)  # create

        exclude = ["anchor"] if (cfg or hyp.get("anchors")) and not resume else []  # exclude keys

        csd = ckpt["model"].float().state_dict()  # checkpoint state_dict as FP32

        csd = intersect_dicts(csd, model.state_dict(), exclude=exclude)  # intersect

        model.load_state_dict(csd, strict=False)  # load

        LOGGER.info(f"Transferred {len(csd)}/{len(model.state_dict())} items from {weights}")  # report

    else:

        model = Model(cfg, ch=3, nc=nc, anchors=hyp.get("anchors")).to(device)  # create

    amp = check_amp(model)  # check AMP

    # Freeze

    freeze = [f"model.{x}." for x in (freeze if len(freeze) > 1 else range(freeze[0]))]  # layers to freeze

    for k, v in model.named_parameters():

        v.requires_grad = True  # train all layers

        # v.register_hook(lambda x: torch.nan_to_num(x))  # NaN to 0 (commented for erratic training results)

        if any(x in k for x in freeze):

            LOGGER.info(f"freezing {k}")

            v.requires_grad = False

    # Image size

    gs = max(int(model.stride.max()), 32)  # grid size (max stride)

    imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2)  # verify imgsz is gs-multiple

    # Batch size

    if RANK == -1 and batch_size == -1:  # single-GPU only, estimate best batch size

        batch_size = check_train_batch_size(model, imgsz, amp)

        loggers.on_params_update({"batch_size": batch_size})

    # Optimizer

    nbs = 64  # nominal batch size

    accumulate = max(round(nbs / batch_size), 1)  # accumulate loss before optimizing

    hyp["weight_decay"] *= batch_size * accumulate / nbs  # scale weight_decay

    optimizer = smart_optimizer(model, opt.optimizer, hyp["lr0"], hyp["momentum"], hyp["weight_decay"])

    # Scheduler

    if opt.cos_lr:

        lf = one_cycle(1, hyp["lrf"], epochs)  # cosine 1->hyp['lrf']

    else:

        lf = lambda x: (1 - x / epochs) * (1.0 - hyp["lrf"]) + hyp["lrf"]  # linear

    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)  # plot_lr_scheduler(optimizer, scheduler, epochs)

    # EMA

    ema = ModelEMA(model) if RANK in {-1, 0} else None

    # Resume

    best_fitness, start_epoch = 0.0, 0

    if pretrained:

        if resume:

            best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume)

        del ckpt, csd

    # DP mode

    if cuda and RANK == -1 and torch.cuda.device_count() > 1:

        LOGGER.warning(

            "WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n"

            "See Multi-GPU Tutorial at https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training to get started."

        )

        model = torch.nn.DataParallel(model)

    # SyncBatchNorm

    if opt.sync_bn and cuda and RANK != -1:

        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)

        LOGGER.info("Using SyncBatchNorm()")

    # Trainloader

    train_loader, dataset = create_dataloader(

        train_path,

        imgsz,

        batch_size // WORLD_SIZE,

        gs,

        single_cls,

        hyp=hyp,

        augment=True,

        cache=None if opt.cache == "val" else opt.cache,

        rect=opt.rect,

        rank=LOCAL_RANK,

        workers=workers,

        image_weights=opt.image_weights,

        quad=opt.quad,

        prefix=colorstr("train: "),

        shuffle=True,

        seed=opt.seed,

    )

    labels = np.concatenate(dataset.labels, 0)

    mlc = int(labels[:, 0].max())  # max label class

    assert mlc < nc, f"Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}"

    # Process 0

    if RANK in {-1, 0}:

        val_loader = create_dataloader(

            val_path,

            imgsz,

            batch_size // WORLD_SIZE * 2,

            gs,

            single_cls,

            hyp=hyp,

            cache=None if noval else opt.cache,

            rect=True,

            rank=-1,

            workers=workers * 2,

            pad=0.5,

            prefix=colorstr("val: "),

        )[0]

        if not resume:

            if not opt.noautoanchor:

                check_anchors(dataset, model=model, thr=hyp["anchor_t"], imgsz=imgsz)  # run AutoAnchor

            model.half().float()  # pre-reduce anchor precision

        callbacks.run("on_pretrain_routine_end", labels, names)

    # DDP mode

    if cuda and RANK != -1:

        model = smart_DDP(model)

    # Model attributes

    nl = de_parallel(model).model[-1].nl  # number of detection layers (to scale hyps)

    hyp["box"] *= 3 / nl  # scale to layers

    hyp["cls"] *= nc / 80 * 3 / nl  # scale to classes and layers

    hyp["obj"] *= (imgsz / 640) ** 2 * 3 / nl  # scale to image size and layers

    hyp["label_smoothing"] = opt.label_smoothing

    model.nc = nc  # attach number of classes to model

    model.hyp = hyp  # attach hyperparameters to model

    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc  # attach class weights

    model.names = names

    # Start training

    t0 = time.time()

    nb = len(train_loader)  # number of batches

    nw = max(round(hyp["warmup_epochs"] * nb), 100)  # number of warmup iterations, max(3 epochs, 100 iterations)

    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training

    last_opt_step = -1

    maps = np.zeros(nc)  # mAP per class

    results = (0, 0, 0, 0, 0, 0, 0)  # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)

    scheduler.last_epoch = start_epoch - 1  # do not move

    scaler = torch.cuda.amp.GradScaler(enabled=amp)

    stopper, stop = EarlyStopping(patience=opt.patience), False

    compute_loss = ComputeLoss(model)  # init loss class

    callbacks.run("on_train_start")

    LOGGER.info(

        f'Image sizes {imgsz} train, {imgsz} val\n'

        f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'

        f"Logging results to {colorstr('bold', save_dir)}\n"

        f'Starting training for {epochs} epochs...'

    )

    for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------

        callbacks.run("on_train_epoch_start")

        model.train()

        # Update image weights (optional, single-GPU only)

        if opt.image_weights:

            cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc  # class weights

            iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw)  # image weights

            dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n)  # rand weighted idx

        # Update mosaic border (optional)

        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)

        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(3, device=device)  # mean losses

        if RANK != -1:

            train_loader.sampler.set_epoch(epoch)

        pbar = enumerate(train_loader)

        LOGGER.info(("\n" + "%11s" * 7) % ("Epoch", "GPU_mem", "box_loss", "obj_loss", "cls_loss", "Instances", "Size"))

        if RANK in {-1, 0}:

            pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT)  # progress bar

        optimizer.zero_grad()

        for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------

            callbacks.run("on_train_batch_start")

            ni = i + nb * epoch  # number integrated batches (since train start)

            imgs = imgs.to(device, non_blocking=True).float() / 255  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup

            if ni <= nw:

                xi = [0, nw]  # x interp

                # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)

                accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())

                for j, x in enumerate(optimizer.param_groups):

                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0

                    x["lr"] = np.interp(ni, xi, [hyp["warmup_bias_lr"] if j == 0 else 0.0, x["initial_lr"] * lf(epoch)])

                    if "momentum" in x:

                        x["momentum"] = np.interp(ni, xi, [hyp["warmup_momentum"], hyp["momentum"]])

            # Multi-scale

            if opt.multi_scale:

                sz = random.randrange(int(imgsz * 0.5), int(imgsz * 1.5) + gs) // gs * gs  # size

                sf = sz / max(imgs.shape[2:])  # scale factor

                if sf != 1:

                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to gs-multiple)

                    imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False)

            # Forward

            with torch.cuda.amp.autocast(amp):

                pred = model(imgs)  # forward

                loss, loss_items = compute_loss(pred, targets.to(device))  # loss scaled by batch_size

                if RANK != -1:

                    loss *= WORLD_SIZE  # gradient averaged between devices in DDP mode

                if opt.quad:

                    loss *= 4.0

            # Backward

            scaler.scale(loss).backward()

            # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html

            if ni - last_opt_step >= accumulate:

                scaler.unscale_(optimizer)  # unscale gradients

                torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0)  # clip gradients

                scaler.step(optimizer)  # optimizer.step

                scaler.update()

                optimizer.zero_grad()

                if ema:

                    ema.update(model)

                last_opt_step = ni

            # Log

            if RANK in {-1, 0}:

                mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses

                mem = f"{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G"  # (GB)

                pbar.set_description(

                    ("%11s" * 2 + "%11.4g" * 5)

                    % (f"{epoch}/{epochs - 1}", mem, *mloss, targets.shape[0], imgs.shape[-1])

                )

                callbacks.run("on_train_batch_end", model, ni, imgs, targets, paths, list(mloss))

                if callbacks.stop_training:

                    return

            # end batch ------------------------------------------------------------------------------------------------

        # Scheduler

        lr = [x["lr"] for x in optimizer.param_groups]  # for loggers

        scheduler.step()

        if RANK in {-1, 0}:

            # mAP

            callbacks.run("on_train_epoch_end", epoch=epoch)

            ema.update_attr(model, include=["yaml", "nc", "hyp", "names", "stride", "class_weights"])

            final_epoch = (epoch + 1 == epochs) or stopper.possible_stop

            if not noval or final_epoch:  # Calculate mAP

                results, maps, _ = validate.run(

                    data_dict,

                    batch_size=batch_size // WORLD_SIZE * 2,

                    imgsz=imgsz,

                    half=amp,

                    model=ema.ema,

                    single_cls=single_cls,

                    dataloader=val_loader,

                    save_dir=save_dir,

                    plots=False,

                    callbacks=callbacks,

                    compute_loss=compute_loss,

                )

            # Update best mAP

            fi = fitness(np.array(results).reshape(1, -1))  # weighted combination of [P, R, mAP@.5, mAP@.5-.95]

            stop = stopper(epoch=epoch, fitness=fi)  # early stop check

            if fi > best_fitness:

                best_fitness = fi

            log_vals = list(mloss) + list(results) + lr

            callbacks.run("on_fit_epoch_end", log_vals, epoch, best_fitness, fi)

            # Save model

            if (not nosave) or (final_epoch and not evolve):  # if save

                ckpt = {

                    "epoch": epoch,

                    "best_fitness": best_fitness,

                    "model": deepcopy(de_parallel(model)).half(),

                    "ema": deepcopy(ema.ema).half(),

                    "updates": ema.updates,

                    "optimizer": optimizer.state_dict(),

                    "opt": vars(opt),

                    "git": GIT_INFO,  # {remote, branch, commit} if a git repo

                    "date": datetime.now().isoformat(),

                }

                # Save last, best and delete

                torch.save(ckpt, last)

                if best_fitness == fi:

                    torch.save(ckpt, best)

                if opt.save_period > 0 and epoch % opt.save_period == 0:

                    torch.save(ckpt, w / f"epoch{epoch}.pt")

                del ckpt

                callbacks.run("on_model_save", last, epoch, final_epoch, best_fitness, fi)

        # EarlyStopping

        if RANK != -1:  # if DDP training

            broadcast_list = [stop if RANK == 0 else None]

            dist.broadcast_object_list(broadcast_list, 0)  # broadcast 'stop' to all ranks

            if RANK != 0:

                stop = broadcast_list[0]

        if stop:

            break  # must break all DDP ranks

        # end epoch ----------------------------------------------------------------------------------------------------

    # end training -----------------------------------------------------------------------------------------------------

    if RANK in {-1, 0}:

        LOGGER.info(f"\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.")

        for f in last, best:

            if f.exists():

                strip_optimizer(f)  # strip optimizers

                if f is best:

                    LOGGER.info(f"\nValidating {f}...")

                    results, _, _ = validate.run(

                        data_dict,

                        batch_size=batch_size // WORLD_SIZE * 2,

                        imgsz=imgsz,

                        model=attempt_load(f, device).half(),

                        iou_thres=0.65 if is_coco else 0.60,  # best pycocotools at iou 0.65

                        single_cls=single_cls,

                        dataloader=val_loader,

                        save_dir=save_dir,

                        save_json=is_coco,

                        verbose=True,

                        plots=plots,

                        callbacks=callbacks,

                        compute_loss=compute_loss,

                    )  # val best model with plots

                    if is_coco:

                        callbacks.run("on_fit_epoch_end", list(mloss) + list(results) + lr, epoch, best_fitness, fi)

        callbacks.run("on_train_end", last, best, epoch, results)

    torch.cuda.empty_cache()

    return results

def parse_opt(known=False):

    parser = argparse.ArgumentParser()

    parser.add_argument("--weights", type=str, default=ROOT / "weights/yolov3.pt", help="initial weights path")

    parser.add_argument("--cfg", type=str, default=ROOT / "models/yolov3-tiny.yaml", help="model.yaml path")

    parser.add_argument("--data", type=str, default=ROOT / "voc.yaml", help="dataset.yaml path")

    parser.add_argument("--hyp", type=str, default=ROOT / "data/hyps/hyp.scratch-low.yaml", help="hyperparameters path")

    parser.add_argument("--epochs", type=int, default=30, help="total training epochs")

    parser.add_argument("--batch-size", type=int, default=16, help="total batch size for all GPUs, -1 for autobatch")

    parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="train, val image size (pixels)")

    parser.add_argument("--rect", action="store_true", help="rectangular training")

    parser.add_argument("--resume", nargs="?", const=True, default=False, help="resume most recent training")

    parser.add_argument("--nosave", action="store_true", help="only save final checkpoint")

    parser.add_argument("--noval", action="store_true", help="only validate final epoch")

    parser.add_argument("--noautoanchor", action="store_true", help="disable AutoAnchor")

    parser.add_argument("--noplots", action="store_true", help="save no plot files")

    parser.add_argument("--evolve", type=int, nargs="?", const=300, help="evolve hyperparameters for x generations")

    parser.add_argument("--bucket", type=str, default="", help="gsutil bucket")

    parser.add_argument("--cache", type=str, nargs="?", const="ram", help="image --cache ram/disk")

    parser.add_argument("--image-weights", action="store_true", help="use weighted image selection for training")

    parser.add_argument("--device", default="0", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")

    parser.add_argument("--multi-scale", action="store_true", help="vary img-size +/- 50%%")

    parser.add_argument("--single-cls", action="store_true", help="train multi-class data as single-class")

    parser.add_argument("--optimizer", type=str, choices=["SGD", "Adam", "AdamW"], default="SGD", help="optimizer")

    parser.add_argument("--sync-bn", action="store_true", help="use SyncBatchNorm, only available in DDP mode")

    parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)")

    parser.add_argument("--project", default=ROOT / "runs/train", help="save to project/name")

    parser.add_argument("--name", default="exp", help="save to project/name")

    parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")

    parser.add_argument("--quad", action="store_true", help="quad dataloader")

    parser.add_argument("--cos-lr", action="store_true", help="cosine LR scheduler")

    parser.add_argument("--label-smoothing", type=float, default=0.0, help="Label smoothing epsilon")

    parser.add_argument("--patience", type=int, default=100, help="EarlyStopping patience (epochs without improvement)")

    parser.add_argument("--freeze", nargs="+", type=int, default=[0], help="Freeze layers: backbone=10, first3=0 1 2")

    parser.add_argument("--save-period", type=int, default=-1, help="Save checkpoint every x epochs (disabled if < 1)")

    parser.add_argument("--seed", type=int, default=0, help="Global training seed")

    parser.add_argument("--local_rank", type=int, default=-1, help="Automatic DDP Multi-GPU argument, do not modify")

    # Logger arguments

    parser.add_argument("--entity", default=None, help="Entity")

    parser.add_argument("--upload_dataset", nargs="?", const=True, default=False, help='Upload data, "val" option')

    parser.add_argument("--bbox_interval", type=int, default=-1, help="Set bounding-box image logging interval")

    parser.add_argument("--artifact_alias", type=str, default="latest", help="Version of dataset artifact to use")

    return parser.parse_known_args()[0] if known else parser.parse_args()

def main(opt, callbacks=Callbacks()):

    # Checks

    if RANK in {-1, 0}:

        print_args(vars(opt))

        check_git_status()

        check_requirements(ROOT / "requirements.txt")

    # Resume (from specified or most recent last.pt)

    if opt.resume and not check_comet_resume(opt) and not opt.evolve:

        last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run())

        opt_yaml = last.parent.parent / "opt.yaml"  # train options yaml

        opt_data = opt.data  # original dataset

        if opt_yaml.is_file():

            with open(opt_yaml, errors="ignore") as f:

                d = yaml.safe_load(f)

        else:

            d = torch.load(last, map_location="cpu")["opt"]

        opt = argparse.Namespace(**d)  # replace

        opt.cfg, opt.weights, opt.resume = "", str(last), True  # reinstate

        if is_url(opt_data):

            opt.data = check_file(opt_data)  # avoid HUB resume auth timeout

    else:

        opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = (

            check_file(opt.data),

            check_yaml(opt.cfg),

            check_yaml(opt.hyp),

            str(opt.weights),

            str(opt.project),

        )  # checks

        assert len(opt.cfg) or len(opt.weights), "either --cfg or --weights must be specified"

        if opt.evolve:

            if opt.project == str(ROOT / "runs/train"):  # if default project name, rename to runs/evolve

                opt.project = str(ROOT / "runs/evolve")

            opt.exist_ok, opt.resume = opt.resume, False  # pass resume to exist_ok and disable resume

        if opt.name == "cfg":

            opt.name = Path(opt.cfg).stem  # use model.yaml as name

        opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))

    # DDP mode

    device = select_device(opt.device, batch_size=opt.batch_size)

    if LOCAL_RANK != -1:

        msg = "is not compatible with YOLOv3 Multi-GPU DDP training"

        assert not opt.image_weights, f"--image-weights {msg}"

        assert not opt.evolve, f"--evolve {msg}"

        assert opt.batch_size != -1, f"AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size"

        assert opt.batch_size % WORLD_SIZE == 0, f"--batch-size {opt.batch_size} must be multiple of WORLD_SIZE"

        assert torch.cuda.device_count() > LOCAL_RANK, "insufficient CUDA devices for DDP command"

        torch.cuda.set_device(LOCAL_RANK)

        device = torch.device("cuda", LOCAL_RANK)

        dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")

    # Train

    if not opt.evolve:

        train(opt.hyp, opt, device, callbacks)

    # Evolve hyperparameters (optional)

    else:

        # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)

        meta = {

            "lr0": (1, 1e-5, 1e-1),  # initial learning rate (SGD=1E-2, Adam=1E-3)

            "lrf": (1, 0.01, 1.0),  # final OneCycleLR learning rate (lr0 * lrf)

            "momentum": (0.3, 0.6, 0.98),  # SGD momentum/Adam beta1

            "weight_decay": (1, 0.0, 0.001),  # optimizer weight decay

            "warmup_epochs": (1, 0.0, 5.0),  # warmup epochs (fractions ok)

            "warmup_momentum": (1, 0.0, 0.95),  # warmup initial momentum

            "warmup_bias_lr": (1, 0.0, 0.2),  # warmup initial bias lr

            "box": (1, 0.02, 0.2),  # box loss gain

            "cls": (1, 0.2, 4.0),  # cls loss gain

            "cls_pw": (1, 0.5, 2.0),  # cls BCELoss positive_weight

            "obj": (1, 0.2, 4.0),  # obj loss gain (scale with pixels)

            "obj_pw": (1, 0.5, 2.0),  # obj BCELoss positive_weight

            "iou_t": (0, 0.1, 0.7),  # IoU training threshold

            "anchor_t": (1, 2.0, 8.0),  # anchor-multiple threshold

            "anchors": (2, 2.0, 10.0),  # anchors per output grid (0 to ignore)

            "fl_gamma": (0, 0.0, 2.0),  # focal loss gamma (efficientDet default gamma=1.5)

            "hsv_h": (1, 0.0, 0.1),  # image HSV-Hue augmentation (fraction)

            "hsv_s": (1, 0.0, 0.9),  # image HSV-Saturation augmentation (fraction)

            "hsv_v": (1, 0.0, 0.9),  # image HSV-Value augmentation (fraction)

            "degrees": (1, 0.0, 45.0),  # image rotation (+/- deg)

            "translate": (1, 0.0, 0.9),  # image translation (+/- fraction)

            "scale": (1, 0.0, 0.9),  # image scale (+/- gain)

            "shear": (1, 0.0, 10.0),  # image shear (+/- deg)

            "perspective": (0, 0.0, 0.001),  # image perspective (+/- fraction), range 0-0.001

            "flipud": (1, 0.0, 1.0),  # image flip up-down (probability)

            "fliplr": (0, 0.0, 1.0),  # image flip left-right (probability)

            "mosaic": (1, 0.0, 1.0),  # image mixup (probability)

            "mixup": (1, 0.0, 1.0),  # image mixup (probability)

            "copy_paste": (1, 0.0, 1.0),

        }  # segment copy-paste (probability)

        with open(opt.hyp, errors="ignore") as f:

            hyp = yaml.safe_load(f)  # load hyps dict

            if "anchors" not in hyp:  # anchors commented in hyp.yaml

                hyp["anchors"] = 3

        if opt.noautoanchor:

            del hyp["anchors"], meta["anchors"]

        opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir)  # only val/save final epoch

        # ei = [isinstance(x, (int, float)) for x in hyp.values()]  # evolvable indices

        evolve_yaml, evolve_csv = save_dir / "hyp_evolve.yaml", save_dir / "evolve.csv"

        if opt.bucket:

            # download evolve.csv if exists

            subprocess.run(

                [

                    "gsutil",

                    "cp",

                    f"gs://{opt.bucket}/evolve.csv",

                    str(evolve_csv),

                ]

            )

        for _ in range(opt.evolve):  # generations to evolve

            if evolve_csv.exists():  # if evolve.csv exists: select best hyps and mutate

                # Select parent(s)

                parent = "single"  # parent selection method: 'single' or 'weighted'

                x = np.loadtxt(evolve_csv, ndmin=2, delimiter=",", skiprows=1)

                n = min(5, len(x))  # number of previous results to consider

                x = x[np.argsort(-fitness(x))][:n]  # top n mutations

                w = fitness(x) - fitness(x).min() + 1e-6  # weights (sum > 0)

                if parent == "single" or len(x) == 1:

                    # x = x[random.randint(0, n - 1)]  # random selection

                    x = x[random.choices(range(n), weights=w)[0]]  # weighted selection

                elif parent == "weighted":

                    x = (x * w.reshape(n, 1)).sum(0) / w.sum()  # weighted combination

                # Mutate

                mp, s = 0.8, 0.2  # mutation probability, sigma

                npr = np.random

                npr.seed(int(time.time()))

                g = np.array([meta[k][0] for k in hyp.keys()])  # gains 0-1

                ng = len(meta)

                v = np.ones(ng)

                while all(v == 1):  # mutate until a change occurs (prevent duplicates)

                    v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)

                for i, k in enumerate(hyp.keys()):  # plt.hist(v.ravel(), 300)

                    hyp[k] = float(x[i + 7] * v[i])  # mutate

            # Constrain to limits

            for k, v in meta.items():

                hyp[k] = max(hyp[k], v[1])  # lower limit

                hyp[k] = min(hyp[k], v[2])  # upper limit

                hyp[k] = round(hyp[k], 5)  # significant digits

            # Train mutation

            results = train(hyp.copy(), opt, device, callbacks)

            callbacks = Callbacks()

            # Write mutation results

            keys = (

                "metrics/precision",

                "metrics/recall",

                "metrics/mAP_0.5",

                "metrics/mAP_0.5:0.95",

                "val/box_loss",

                "val/obj_loss",

                "val/cls_loss",

            )

            print_mutation(keys, results, hyp.copy(), save_dir, opt.bucket)

        # Plot results

        plot_evolve(evolve_csv)

        LOGGER.info(

            f'Hyperparameter evolution finished {opt.evolve} generations\n'

            f"Results saved to {colorstr('bold', save_dir)}\n"

            f'Usage example: $ python train.py --hyp {evolve_yaml}'

        )

def run(**kwargs):

    # Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')

    opt = parse_opt(True)

    for k, v in kwargs.items():

        setattr(opt, k, v)

    main(opt)

    return opt

if __name__ == "__main__":

    opt = parse_opt()

    main(opt)

Detect.py(测试模型)

# YOLOv3 🚀 by Ultralytics, AGPL-3.0 license

"""

Run YOLOv3 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc.

Usage - sources:

    $ python detect.py --weights yolov5s.pt --source 0                               # webcam

                                                     img.jpg                         # image

                                                     vid.mp4                         # video

                                                     screen                          # screenshot

                                                     path/                           # directory

                                                     list.txt                        # list of images

                                                     list.streams                    # list of streams

                                                     'path/*.jpg'                    # glob

                                                     'https://youtu.be/LNwODJXcvt4'  # YouTube

                                                     'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream

Usage - formats:

    $ python detect.py --weights yolov5s.pt                 # PyTorch

                                 yolov5s.torchscript        # TorchScript

                                 yolov5s.onnx               # ONNX Runtime or OpenCV DNN with --dnn

                                 yolov5s_openvino_model     # OpenVINO

                                 yolov5s.engine             # TensorRT

                                 yolov5s.mlmodel            # CoreML (macOS-only)

                                 yolov5s_saved_model        # TensorFlow SavedModel

                                 yolov5s.pb                 # TensorFlow GraphDef

                                 yolov5s.tflite             # TensorFlow Lite

                                 yolov5s_edgetpu.tflite     # TensorFlow Edge TPU

                                 yolov5s_paddle_model       # PaddlePaddle

"""

import argparse

import os

import platform

import sys

from pathlib import Path

import torch

FILE = Path(__file__).resolve()

ROOT = FILE.parents[0]  # YOLOv3 root directory

if str(ROOT) not in sys.path:

    sys.path.append(str(ROOT))  # add ROOT to PATH

ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

from ultralytics.utils.plotting import Annotator, colors, save_one_box

from models.common import DetectMultiBackend

from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams

from utils.general import (

    LOGGER,

    Profile,

    check_file,

    check_img_size,

    check_imshow,

    check_requirements,

    colorstr,

    cv2,

    increment_path,

    non_max_suppression,

    print_args,

    scale_boxes,

    strip_optimizer,

    xyxy2xywh,

)

from utils.torch_utils import select_device, smart_inference_mode

@smart_inference_mode()

def run(

    weights=ROOT / "yolov5s.pt",  # model path or triton URL

    source=ROOT / "data/images",  # file/dir/URL/glob/screen/0(webcam)

    data=ROOT / "data/coco128.yaml",  # dataset.yaml path

    imgsz=(1262,1262),  # inference size (height, width)

    conf_thres=0.25,  # confidence threshold

    iou_thres=0.45,  # NMS IOU threshold

    max_det=1000,  # maximum detections per image

    device="",  # cuda device, i.e. 0 or 0,1,2,3 or cpu

    view_img=False,  # show results

    save_txt=False,  # save results to *.txt

    save_conf=False,  # save confidences in --save-txt labels

    save_crop=False,  # save cropped prediction boxes

    nosave=False,  # do not save images/videos

    classes=None,  # filter by class: --class 0, or --class 0 2 3

    agnostic_nms=False,  # class-agnostic NMS

    augment=False,  # augmented inference

    visualize=False,  # visualize features

    update=False,  # update all models

    project=ROOT / "runs/detect",  # save results to project/name

    name="exp",  # save results to project/name

    exist_ok=False,  # existing project/name ok, do not increment

    line_thickness=3,  # bounding box thickness (pixels)

    hide_labels=False,  # hide labels

    hide_conf=False,  # hide confidences

    half=False,  # use FP16 half-precision inference

    dnn=False,  # use OpenCV DNN for ONNX inference

    vid_stride=1,  # video frame-rate stride

):

    source = str(source)

    save_img = not nosave and not source.endswith(".txt")  # save inference images

    is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)

    is_url = source.lower().startswith(("rtsp://", "rtmp://", "http://", "https://"))

    webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file)

    screenshot = source.lower().startswith("screen")

    if is_url and is_file:

        source = check_file(source)  # download

    # Directories

    save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run

    (save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

    # Load model

    device = select_device(device)

    model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)

    stride, names, pt = model.stride, model.names, model.pt

    imgsz = check_img_size(imgsz, s=stride)  # check image size

    # Dataloader

    bs = 1  # batch_size

    if webcam:

        view_img = check_imshow(warn=True)

        dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)

        bs = len(dataset)

    elif screenshot:

        dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)

    else:

        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)

    vid_path, vid_writer = [None] * bs, [None] * bs

    # Run inference

    model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz))  # warmup

    seen, windows, dt = 0, [], (Profile(), Profile(), Profile())

    for path, im, im0s, vid_cap, s in dataset:

        with dt[0]:

            im = torch.from_numpy(im).to(model.device)

            im = im.half() if model.fp16 else im.float()  # uint8 to fp16/32

            im /= 255  # 0 - 255 to 0.0 - 1.0

            if len(im.shape) == 3:

                im = im[None]  # expand for batch dim

        # Inference

        with dt[1]:

            visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False

            pred = model(im, augment=augment, visualize=visualize)

        # NMS

        with dt[2]:

            pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)

        # Second-stage classifier (optional)

        # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)

        # Process predictions

        for i, det in enumerate(pred):  # per image

            seen += 1

            if webcam:  # batch_size >= 1

                p, im0, frame = path[i], im0s[i].copy(), dataset.count

                s += f"{i}: "

            else:

                p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0)

            p = Path(p)  # to Path

            save_path = str(save_dir / p.name)  # im.jpg

            txt_path = str(save_dir / "labels" / p.stem) + ("" if dataset.mode == "image" else f"_{frame}")  # im.txt

            s += "%gx%g " % im.shape[2:]  # print string

            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh

            imc = im0.copy() if save_crop else im0  # for save_crop

            annotator = Annotator(im0, line_width=line_thickness, example=str(names))

            if len(det):

                # Rescale boxes from img_size to im0 size

                det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()

                # Print results

                for c in det[:, 5].unique():

                    n = (det[:, 5] == c).sum()  # detections per class

                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results

                for *xyxy, conf, cls in reversed(det):

                    if save_txt:  # Write to file

                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh

                        line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format

                        with open(f"{txt_path}.txt", "a") as f:

                            f.write(("%g " * len(line)).rstrip() % line + "\n")

                    if save_img or save_crop or view_img:  # Add bbox to image

                        c = int(cls)  # integer class

                        label = None if hide_labels else (names[c] if hide_conf else f"{names[c]} {conf:.2f}")

                        annotator.box_label(xyxy, label, color=colors(c, True))

                    if save_crop:

                        save_one_box(xyxy, imc, file=save_dir / "crops" / names[c] / f"{p.stem}.jpg", BGR=True)

            # Stream results

            im0 = annotator.result()

            if view_img:

                if platform.system() == "Linux" and p not in windows:

                    windows.append(p)

                    cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO)  # allow window resize (Linux)

                    cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])

                cv2.imshow(str(p), im0)

                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)

            if save_img:

                if dataset.mode == "image":

                    cv2.imwrite(save_path, im0)

                else:  # 'video' or 'stream'

                    if vid_path[i] != save_path:  # new video

                        vid_path[i] = save_path

                        if isinstance(vid_writer[i], cv2.VideoWriter):

                            vid_writer[i].release()  # release previous video writer

                        if vid_cap:  # video

                            fps = vid_cap.get(cv2.CAP_PROP_FPS)

                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))

                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))

                        else:  # stream

                            fps, w, h = 30, im0.shape[1], im0.shape[0]

                        save_path = str(Path(save_path).with_suffix(".mp4"))  # force *.mp4 suffix on results videos

                        vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

                    vid_writer[i].write(im0)

        # Print time (inference-only)

        LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")

    # Print results

    t = tuple(x.t / seen * 1e3 for x in dt)  # speeds per image

    LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}" % t)

    if save_txt or save_img:

        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ""

        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")

    if update:

        strip_optimizer(weights[0])  # update model (to fix SourceChangeWarning)

def parse_opt():

    parser = argparse.ArgumentParser()

    parser.add_argument(

        "--weights", nargs="+", type=str, default=ROOT / "runs/train/exp3/weights/best.pt", help="model path or triton URL"

    )

    parser.add_argument("--source", type=str, default=ROOT / "dataset/test", help="file/dir/URL/glob/screen/0(webcam)")

    parser.add_argument("--data", type=str, default=ROOT / "voc.yaml", help="(optional) dataset.yaml path")

    parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[1262], help="inference size h,w")

    parser.add_argument("--conf-thres", type=float, default=0.25, help="confidence threshold")

    parser.add_argument("--iou-thres", type=float, default=0.45, help="NMS IoU threshold")

    parser.add_argument("--max-det", type=int, default=1000, help="maximum detections per image")

    parser.add_argument("--device", default="0", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")

    parser.add_argument("--view-img", action="store_true", help="show results")

    parser.add_argument("--save-txt", action="store_true", help="save results to *.txt")

    parser.add_argument("--save-conf", action="store_true", help="save confidences in --save-txt labels")

    parser.add_argument("--save-crop", action="store_true", help="save cropped prediction boxes")

    parser.add_argument("--nosave", action="store_true", help="do not save images/videos")

    parser.add_argument("--classes", nargs="+", type=int, help="filter by class: --classes 0, or --classes 0 2 3")

    parser.add_argument("--agnostic-nms", action="store_true", help="class-agnostic NMS")

    parser.add_argument("--augment", action="store_true", help="augmented inference")

    parser.add_argument("--visualize", action="store_true", help="visualize features")

    parser.add_argument("--update", action="store_true", help="update all models")

    parser.add_argument("--project", default=ROOT / "runs/detect", help="save results to project/name")

    parser.add_argument("--name", default="exp", help="save results to project/name")

    parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")

    parser.add_argument("--line-thickness", default=3, type=int, help="bounding box thickness (pixels)")

    parser.add_argument("--hide-labels", default=False, action="store_true", help="hide labels")

    parser.add_argument("--hide-conf", default=False, action="store_true", help="hide confidences")

    parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")

    parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference")

    parser.add_argument("--vid-stride", type=int, default=1, help="video frame-rate stride")

    opt = parser.parse_args()

    opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expand

    print_args(vars(opt))

    return opt

def main(opt):

    check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop"))

    run(**vars(opt))

if __name__ == "__main__":

    opt = parse_opt()

    main(opt)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1673343.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Kali Linux工具篇】wpscan的基本介绍与使用

介绍 WPScan是Kali Linux默认自带的一款漏洞扫描工具&#xff0c;它采用Ruby编写&#xff0c;能够扫描WordPress网站中的多种安全漏洞&#xff0c;其中包括主题漏洞、插件漏洞和WordPress本身的漏洞。最新版本WPScan的数据库中包含超过18000种插件漏洞和2600种主题漏洞&#x…

LeetCode 力扣题目:买卖股票的最佳时机 III

❤️❤️❤️ 欢迎来到我的博客。希望您能在这里找到既有价值又有趣的内容&#xff0c;和我一起探索、学习和成长。欢迎评论区畅所欲言、享受知识的乐趣&#xff01; 推荐&#xff1a;数据分析螺丝钉的首页 格物致知 终身学习 期待您的关注 导航&#xff1a; LeetCode解锁100…

template——模板进阶(C++)

在之前的文章中&#xff0c;介绍了模板初阶&#xff1a;Cpp_桀桀桀桀桀桀的博客-CSDN博客 在本篇中将会对模板进一步的讲解。本篇中的主要内容为&#xff1a;非类型模板参数、函数模板的特化、类模板的特化&#xff08;其中包含全特化和偏特化&#xff09;&#xff0c;最后讲解…

什么是数据中心?关于数据中心的这些知识一定要知道

在数字化时代&#xff0c;数据已成为企业最宝贵的资产之一。数据中心&#xff0c;作为支撑海量数据存储、处理和分发的基础设施&#xff0c;其战略地位日益凸显。它们不仅是信息技术的心脏&#xff0c;更是推动现代商业决策、创新和运营的核心引擎。随着云计算、大数据、物联网…

React 第三十章 React 和 Vue 描述页面的区别

面试题&#xff1a;React 和 Vue 是如何描述 UI 界面的&#xff1f;有一些什么样的区别&#xff1f; 标准且浅显的回答&#xff1a; React 中使用的是 JSX&#xff0c;Vue 中使用的是模板来描述界面 前端领域经过长期的发展&#xff0c;目前有两种主流的描述 UI 的方案&#xf…

英语学习笔记12——名词所有格的运用

Whose is this … ? This is my/your/his/her … 这……是谁的&#xff1f;这是我的 / 你的 / 他的 / 她的…… Whose is that … ? That is my/your/his/her … 那……是谁的&#xff1f;那是我的 / 你的 / 他的 / 她的…… 词汇 Vocabulary father n. 爸爸 口语&#xf…

ICode国际青少年编程竞赛- Python-6级训练场-多次递归

ICode国际青少年编程竞赛- Python-6级训练场-多次递归 1、 def recur(n):# 边界条件if n<1:return# 额外动作Dev.turnLeft()Dev.step(n)Dev.turnRight()Dev.step(n)Dev.step(-n)Dev.turnRight()Dev.step(2*n)Dev.turnLeft()Dev.step(n)# 递归调用recur(n-1) recur(4)2、 d…

详解xlswriter 操作Excel的高级应用conditional_format

在文章详解xlsxwriter 操作Excel的常用API-CSDN博客 我们介绍了xlswriter 基础api的使用情况&#xff0c;在实际工作中我们经常会遇到下面的需求&#xff0c;cell满足某某条件时&#xff0c;进行对应的格式化处理。这时候我们可以使用conditional_format的函数&#xff0c;他允…

Softing dataFEED OPC Suite通过OPC UA标准加速数字化转型

数字化转型的关键在于成功将信息技术&#xff08;IT&#xff09;与运营技术&#xff08;OT&#xff09;相融合&#xff0c;例如将商业应用程序和服务器与可编程逻辑控制器&#xff08;PLC&#xff09;和设备传感器相融合&#xff0c;为此&#xff0c;各种设备和系统必须能够相互…

ERP系统为何适合电子元件行业?

在快速发展的电子元件行业中&#xff0c;高效、精确的管理系统对于企业的成功至关重要。IC设计ERP系统&#xff0c;作为一套高度集成的企业管理解决方案&#xff0c;其独特的特性和功能使其特别适用于电子元件行业。 首先&#xff0c;ERP系统(Enterprise Resource Planning&…

钽酸锂集成光子芯片:引领光电集成新纪元

在信息技术飞速发展的今天&#xff0c;光电集成技术已成为推动全球集成电路产业持续创新的重要力量。随着全球集成电路产业发展步入“后摩尔时代”&#xff0c;芯片性能提升的难度和成本不断攀升&#xff0c;业界急需寻找新的技术突破口。在这一背景下&#xff0c;中国科学院上…

【深度学习目标检测】二十六、基于深度学习的垃圾检测系统-含数据集、GUI和源码(python,yolov8)

设计垃圾检测系统的意义在于多个方面&#xff0c;这些方面不仅关乎环境保护和城市管理&#xff0c;还涉及到技术进步和社会效益。以下是设计垃圾检测系统的主要意义&#xff1a; 环境保护与资源回收&#xff1a; 垃圾检测系统能够有效地识别不同种类的垃圾&#xff0c;帮助人们…

江苏省人大财经委主任委员谢志成一行莅临聚合数据走访调研

4月18日&#xff0c;江苏省人大财经委主任委员谢志成莅临聚合数据展开考察调研。省人大财经委副主任委员&#xff08;正厅&#xff09;周毅、省人大常委会办公厅一级巡视员吕小鹏、外事委委员赵正驰、省数据局副局长王万军&#xff1b;苏州市人大常委会副秘书长毛元龙、数据局副…

快手二面:你有没有调用过第三方接口?碰到过哪些坑?

在我们的业务开发中&#xff0c;调用第三方接口已经成为常态&#xff0c;比如对接一些ERP系统、WMS系统、一些数据服务系统等&#xff0c;它极大地扩展了我们应用的功能和服务范围。然而&#xff0c;实际对接过程中&#xff0c;我们往往会在这一环节遇到各种意想不到的问题&…

【自动驾驶技术栈学习】1-硬件《大话自动驾驶》| 综述要点总结 by.Akaxi

----------------------------------------------------------------------------------------------------------------- 致谢&#xff1a;感谢十一号线人老师的《大话自动驾驶》书籍&#xff0c;收获颇丰 链接&#xff1a;大话自动驾驶 (豆瓣) (douban.com) -------------…

【科学研究】 女性主义:网络中的性别歧视现象

::: block-1 “时问桫椤”是一个致力于为本科生到研究生教育阶段提供帮助的不太正式的公众号。我们旨在在大家感到困惑、痛苦或面临困难时伸出援手。通过总结广大研究生的经验&#xff0c;帮助大家尽早适应研究生生活&#xff0c;尽快了解科研的本质。祝一切顺利&#xff01;—…

##20 实现图像风格迁移:使用PyTorch深入学习的艺术之旅

文章目录 前言项目概述准备阶段图像处理模型选择风格和内容特征提取风格迁移算法优化过程结果展示完整代码与实验项目结论参考文献 前言 图像风格迁移是一种使一幅图像呈现另一幅画作风格的技术&#xff0c;通过深度学习&#xff0c;我们能够捕捉到内容图像的结构信息和风格图…

函数memcpy的实现及详解

前言 今天我们来了解一下memcpy函数和它的作用吧&#xff0c;咋们之前已经熟悉了strcpy的使用&#xff0c;它的作用是字符串的拷贝&#xff0c;那么当我们要拷贝其他类型的数据时&#xff0c;应该使用什么函数呢&#xff0c;我们今天给大家介绍的就是memcpy函数&#xff0c;他可…

1960—2021年中国月日均温降水时间序列

基于均质级数&#xff08;MASH&#xff09;和气候多元分析方法&#xff0c;首先对1960—2021年中国366个站点的日均气温、最高气温、最低气温和降水量进行不均匀性检测、估计和调整&#xff0c;建立均质化日气温和降水数据集。所有数据集均由希腊&#xff08;帕特雷大学物理系大…

Quests system for Unity

一个简单而灵活的任务系统将帮助你实现所有的想法,而不需要事件和逻辑中的一堆额外代码! 我的资产是一个用于执行任务的独立系统。 特征: 任务逻辑不需要继承MonoBehaviour。 在一行中完成所需任务的激活/进度/完成。 易于理解的界面,包含项目中所有任务的列表。 不需要连接…