深度学习技术之加宽前馈全连接神经网络

news2024/11/28 8:51:51

深度学习技术

  • 加宽前馈全连接神经网络
    • 1. Functional API 搭建神经网络模型
      • 1.1 利用Functional API编写宽深神经网络模型进行手写数字识别
        • 1.1.1 导入需要的库
        • 1.1.2 加载虹膜(Iris)数据集
        • 1.1.3 分割训练集和测试集
        • 1.1.4 定义模型输入层
        • 1.1.5 添加隐藏层
        • 1.1.6 拼接输入层和第二个隐藏层
        • 1.1.7 添加输出层
        • 1.1.8 创建模型
        • 1.1.9 打印模型的摘要
        • 1.1.10 模型编译并训练
      • 1.2 利用Functional API编写多输入神经网络模型进行手写数字识别
        • 1.2.1 分割子集
        • 1.2.2 定义输入层
        • 1.2.3 定义全连接层
        • 1.2.4 创建模型
        • 1.2.5 编译与训练模型
        • 1.2.6 训练历史数据的可视化
    • 2. SubClassing API 搭建神经网络模型
      • 2.1 前馈全连接神经网络手写数字识别
        • 2.1.1 定义一个Keras模型类
        • 2.1.2 定义方法
        • 2.1.3 初始化模型
        • 2.1.4 通过在初始化中传递参数改变模型元素默认值
        • 2.1.5 编译与训练模型
        • 2.1.6 打印模型摘要

加宽前馈全连接神经网络

1. Functional API 搭建神经网络模型

1.1 利用Functional API编写宽深神经网络模型进行手写数字识别

1.1.1 导入需要的库

利用Sequential API建立一个顺序传播的前馈全连接神经网络,导入numpy、pandas,tensorflow等库,以及导入matplotlib的pyplot模块。从sklearn库的datasets模块中导入load_iris函数,以及从sklearn库的model_selection模块中导入train_test_split函数。从TensorFlow库中导入Keras模块。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import tensorflow as tf
from tensorflow import keras
1.1.2 加载虹膜(Iris)数据集

虹膜(Iris)数据集是scikit-learn库中内置的一个样本数据集,它包含了150个样本,分为三个类,每个类有50个样本。这三个类分别是山鸢尾(Iris Setosa)、杂色鸢尾(Iris Versicolour)和维吉尼亚鸢尾(Iris Virginica)。

iris = load_iris()
1.1.3 分割训练集和测试集

将虹膜(Iris)数据集分割为训练集和测试集,得到训练集x_train和y_train,再将分割得到的训练集x_train和y_train分割为新的训练集和验证集。

x_train,x_test,y_train,y_test=train_test_split(iris.data,iris.target, test_size=0.2, random_state=23)
X_train, X_valid, y_train, y_valid=train_test_split(x_train, y_train,test_size=0.2, random_state=12)
1.1.4 定义模型输入层

使用X_train.shape[1:]作为输入层的形状,因为X_train.shape[0]是批量大小,通常在训练过程中改变,而X_train.shape[1:]包含了特征的数量,这些数量在训练过程中保持不变。

inputs = keras.layers.Input(shape=X_train.shape[1:])
1.1.5 添加隐藏层

隐藏层,包含神经元,并使用ReLU激活函数。

hidden1 = keras.layers.Dense(300, activation="relu")(inputs)
hidden2 = keras.layers.Dense(100, activation="relu")(hidden1)
1.1.6 拼接输入层和第二个隐藏层

将输入层和第二个隐藏层的输出进行拼接,得到一个融合了输入和中间层信息的特征向量。

concat = keras.layers.concatenate([inputs, hidden2])
1.1.7 添加输出层

添加了一个输出层,包含10个神经元,使用softmax激活函数,因为模型是用于多类分类任务。

output = keras.layers.Dense(10, activation="softmax")(concat)
1.1.8 创建模型

创建了一个完整的模型,将输入层和输出层连接起来,形成了一个有监督学习的模型结构。
这个模型结构结合了“宽”模型(wide model)和“深”模型(deep model)的特点,通过输入层和隐藏层的拼接来融合这两种模型。

model_fun_WideDeep = keras.models.Model(inputs=[inputs], outputs=[output])

运行结果:
在这里插入图片描述

1.1.9 打印模型的摘要
model_fun_WideDeep.summary()
1.1.10 模型编译并训练

model_fun_WideDeep.fit()方法将开始模型的训练过程,并在每个轮次结束后使用验证数据评估模型的性能。训练过程中,模型将逐渐学习如何将输入特征映射到正确的输出类别。

model_fun_WideDeep.compile(loss="sparse_categorical_crossentropy",optimizer="sgd",metrics=["accuracy"])
h=model_fun_WideDeep.fit(X_train, y_train, batch_size=32, epochs=30, validation_data=(X_valid, y_valid))

运行结果:
在这里插入图片描述

1.2 利用Functional API编写多输入神经网络模型进行手写数字识别

1.2.1 分割子集

将训练集X_train和验证集X_valid分割为两个子集。

X_train_A, X_train_B = X_train[:, :200], X_train[:, 100:]
X_valid_A, X_valid_B = X_valid[:, :200], X_valid[:, 100:]
1.2.2 定义输入层
input_A = keras.layers.Input(shape=X_train_A.shape[1])
input_B = keras.layers.Input(shape=X_train_B.shape[1])
1.2.3 定义全连接层
hidden1 = keras.layers.Dense(300, activation="relu")(input_B)
hidden2 = keras.layers.Dense(100, activation="relu")(hiddenl)
1.2.4 创建模型

将输入层和输出层连接起来。

model_fun_MulIn = keras.models.Model(inputs=[input_A, input_B], outputs=[output])
1.2.5 编译与训练模型

在训练过程中,模型将使用指定的损失函数和优化器来更新权重,并使用准确率作为评估指标来监控性能。

model_fun_MulIn.compile(loss="sparse_categorical_crossentropy",optimizer="sgd",metrics=["accuracy"])

运行结果:
在这里插入图片描述

1.2.6 训练历史数据的可视化

图中显示了训练和验证集上的损失和准确率随轮次的变化情况。

pd.DataFrame(h.history).plot(figsize=(8,5))
plt.grid(True)
plt.gca().set_ylim(0,1)
plt.show()

运行结果:
在这里插入图片描述

2. SubClassing API 搭建神经网络模型

2.1 前馈全连接神经网络手写数字识别

2.1.1 定义一个Keras模型类

定义一个自定义的Keras模型类Model_sub_fnn,继承自keras.models.Model。这个类定义了一个简单的全连接神经网络,它有两个隐藏层和一个输出层。

class Model_sub_fnn(keras.models.Model):
    def __init__(self, units_1=300, units_2=100, units_out=10, activation='relu'):
        super().__init__()
        self.hidden1 = keras.layers.Dense(units_1, activation=activation)
        self.hidden2 = keras.layers.Dense(units_2, activation=activation)
        self.main_output = keras.layers.Dense(units_out, activation='softmax')
2.1.2 定义方法

给Model_sub_fnn类定义一个call方法。这个方法是Keras模型中的一个特殊方法,它定义了模型的前向传播过程,它将输入数据通过模型的所有层,并返回最终的输出。

def call(self, data):
    hidden1 = self.hidden1(data)
    hidden2 = self.hidden2(hidden1)
    main_output = self.main_output(hidden2)
    return main_output
2.1.3 初始化模型
model_sub_fnn = Model_sub_fnn()
2.1.4 通过在初始化中传递参数改变模型元素默认值
model_sub_fnn2 = Model_sub_fnn(300, 100, 10, activation='relu')
2.1.5 编译与训练模型

编译模型,使用训练数据和验证数据进行训练。在训练过程中,模型将使用指定的损失函数和优化器来更新权重,并使用准确率作为评估指标来监控性能。训练完成后,将得到模型的摘要,其中包含了模型的详细信息。

model_sub_fnn.compile(loss='sparse_categorical_crossentropy',optimizer='sgd',metrics=["accuracy")
h= model_sub_fnn.fit(X_train,y_train,batch_size=32,epochs=30,validation_data = (X_valid,y_valid))

运行结果:
在这里插入图片描述

2.1.6 打印模型摘要

打印出模型的摘要,其中包括模型的层结构、每个层的输出形状、层的参数数量以及整个模型的总参数数量。

model_sub_fnn.summary()

运行结果:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1670821.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

值得关注的10种新兴网络安全威胁

随着人类社会的技术、商业和工业活动不断发展,网络犯罪分子也总在寻找更先进的攻击技术和模式。不久前,欧盟网络安全机构(ENISA)编写发布了《2030年网络安全威胁展望报告》,对未来可能影响数字领域的10种新兴网络安全威…

变频器通过Modbus转Profinet网关接电机与PLC通讯在自动化的应用

Modbus转Profinet网关(XD-MDPN100/300/600)的作用是将Modbus协议转换为Profinet协议,支持Modbus RTU主站/从站,并且Modbus转Profinet网关设备自带网口和串口,既可以实现协议转换的同时,也可以实现接口的转换…

Diffusion Inversion技术

Diffusion Inversion技术 在图像生成/编辑领域中,Inversion 技术是指将一张(真实)图片转换为生成模型对应的 latent,要求将这个 latent 输入到生成模型中之后,能够重构出原始图片。这项技术是进行图像编辑的重要基础。…

【触想智能】无风扇工控一体机的优点与定制要求分析

随着工业自动化的不断推进,工控一体机作为自动化生产的核心设备,在工业生产中发挥着越来越重要的作用。 在工控一体机的设计中,散热是一个非常关键的问题,而无风扇工控一体机的出现为解决这个问题提供了新方法。 无风扇工控一体机…

栈结构(详解)

1.栈的概念 栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFO(Last In First Out)的原则。 压栈&am…

【SAP ABAP学习资料】通过RFC接口上传图片至SAP 图片格式转换 图片大小调整

SAP图片相关: 链接: 【SAP ABAP学习资料】图片上传SAP 链接: 【SAP ABAP学习资料】屏幕图片预览 链接: 【SAP ABAP学习资料】smartforms打印图片,动态打印图片 需求: SAP上传图片只能本地电脑选择图片通过SE78或PERFORM IMPORT_BITMAP_BDS上…

免费的集成组件有哪些?

集成组件是指将多个软件或系统进行整合,以实现更高效、更可靠的数据处理和管理。在数据管理和分析领域,集成组件是不可或缺的工具之一。 在当今高度信息化的时代,集成组件在各行各业的应用中扮演着举足轻重的角色。集成组件能够将不同来源的…

品牌舆情都包含什么内容?建议收藏

一个品牌的声誉、形象、产品质量、服务质量等,无时无刻不在接受着大众的检验。互联网传播迅速,一个不好的舆论直接导致整个品牌的声誉受到严重影响。品牌舆情都包含什么内容?接下来伯乐网络传媒就来给大家讲一讲。 一、品牌舆情的基本构成 1…

局域网语音对讲系统_IP广播对讲系统停车场解决方案

局域网语音对讲系统_IP广播对讲系统停车场解决方案 需求分析: 随着国民经济和社会的发展, 选择坐车出行的民众越来越多。在保护交通安全的同时,也给停车场服务部门提出了更高的要求。人们对停车场系统提出了更高的要求与挑战, 需要…

从XML配置角度理解Spring AOP

1. Spring AOP与动态代理 1.1 Spring AOP和动态代理的关系 Spring AOP使用动态代理作为其主要机制来实现面向切面的编程。这种机制允许Spring在运行时动态地创建代理对象,这些代理对象包装了目标对象(即业务组件),以便在调用目标对…

C++11智能指针之一(简介)

1 概述 从C11开始C语言越来向现代化语言转变。尤其是智能指针的引入,代码中不会直接使用new/delete了。C11智能指针有三种分别是:shared_ptr,weak_ptr 和unique_ptr 。 2 类图 3 共享指针(shared_ptr) 接口函数: shared_ptr 构…

华企盾DSC数据防泄密软件有哪些水印功能?

在企业数据安全领域,水印技术是一种重要的信息保护策略,用于防止数据泄露和确保信息的原始性和完整性。根据回顾的资料,以下是企业中常用的几种水印技术: 屏幕浮水印:这种水印能够在用户的屏幕上显示公司的标志或者其他…

【回溯 栈 代数系统 动态规划】282. 给表达式添加运算符

本文涉及知识点 回溯 栈 代数系统 动态规划 LeetCode 282. 给表达式添加运算符 给定一个仅包含数字 0-9 的字符串 num 和一个目标值整数 target ,在 num 的数字之间添加 二元 运算符(不是一元)、- 或 * ,返回 所有 能够得到 ta…

【小笔记】neo4j用load csv指令导入数据

【小笔记】neo4j用load csv指令导入数据 背景 很久没有用load CSV的方式导入过数据了因为它每次导入有数量限制(印象中是1K还是1W),在企业中构建的图谱往往都是大规模的,此时通常采用的是Neo4j-admin import方式。最近遇到了一些…

HarmonyOS开发案例:【Stage模型下Ability的创建和使用】

介绍 基于Stage模型,对Ability的创建和使用进行讲解。首先在课程中我们将带领大家使用DevEco Studio创建一个Stage模型Ability,并使用UIAbilityContext启动另一个Ability,然后借助Want,在Ability之间传递参数,最后我们…

Redis实战笔记

黑马点评项目笔记 一:数据交互: 1.把String解析成Java对象集合并且存入Redis及Java对象集合转换成JSON。 Overridepublic Result queryTypeList() {String s stringRedisTemplate.opsForValue().get("cache:list:");System.out.println(&qu…

Gitee添加仓库成员

1.进入你的项目 2.点击管理 3.左侧有个仓库管理 4.要加哪个加哪个,有三个方式~ 可以直接添加之前仓库合作过的开发者

【SpringBoot记录】从基本使用案例入手了解SpringBoot-数据访问-更改DataSource(2)

前言 通过上一个数据访问基本案例成功可以发现,SpringBoot在数据访问案例中也做了许多自动配置,上节只分析了其中的Properties。 而在自动配置包的jdbc下 还有其他配置文件。 根据名称可以大致了解他们的作用: DataSourceAutoConfiguration…

前端报错 SyntaxError: Unexpected number in JSON at position xxxx at JSON.parse

问题描述​ 控制台提示 SyntaxError: Unexpected number in JSON at position xxxx at JSON.parse 问题原因​ 原因:JSON 数据格式错误,是否符合 JSON 格式。 解决方法​ 应为json格式数据 什么是json格式数据 JSON(JavaScript Object …

前端XHR请求数据

axios封装了XHR(XMLHttpRequest) 效果 项目结构 Jakarta EE9&#xff0c;Web项目。 无额外的maven依赖 1、Web页面 index.html <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>Title</title&…