RT-Thread系列--组件初始化

news2025/1/12 21:05:57

一、目的

RT-Thread里面有个特别有意思的软件设计叫做组件自动初始化。

有些小伙伴可能是第一次听说,所以这边我解释一下,请看下面的代码片段

static void clock_init() {
    // 时钟初始化
}
static void uart_init() {
    // 串口初始化
}
static void i2c_init() {
    // I2C初始化
}
int main() {
    clock_init();
    uart_init();
    i2c_init();
    // 业务代码
}

在main函数中我们依次调用了clock_init/uart_init/i2c_init这些必要的初始化操作,如果后续我们还要添加pwm的初始化,我们需要再次在main函数里面添加pwm_init调用这样的代码;但是当一个系统中各种各样的初始化比较多时,我们很容易忘记对某个模块或者功能调用初始化函数。

那有没有一种更加高效简单的并且不易出错的方式呢?那就是组件初始化。

本篇就给大家详细讲解一下RT-Thread的组件初始化实现原理。

本篇涉及到的知识点比较多,每个知识点都需要理解。

二、介绍

在正式介绍之前,大家需要知道几个基本知识点。

  • 函数指针类型和函数指针变量

  • 编译器基本知识

  • GNU属性扩展__attribute__

  • 指针引用与解引用

在RT-Thread源码有这样两个宏定义

#define RT_SECTION(x)               __attribute__((section(x)))

通常情况下编译会将代码放置在.code段中,数据放置在.data或者.bss段;有些时候我们可能想将某个代码或者数据放置在特殊的段内,就可以使用section属性,具体用法如下

int a RT_SECTION(".mydata") = 10;
RT_SECTION(".mybss") int b; 

int my_function() RT_SECTION(".mycode");
int my_funciton() {
    return 0;
}

上面的代码片段中,全局变量a放置在.mydata段,全局变量b放置在.mybss段,my_function函数放置在.mycode段。

关于section的详细说明请查看

Variable Attributes - Using the GNU Compiler Collection (GCC)


#define RT_USED                     __attribute__((used))

有些时候我们可能定义了一些函数或者变量并没有被引用,编译可能会将这些函数或者变量从目标文件中去除,used属性的作用就是保留这些符号。

接下来我们来看一下跟组件初始化有关的宏定义

/* initialization export */
#ifdef RT_USING_COMPONENTS_INIT
typedef int (*init_fn_t)(void);
#ifdef _MSC_VER
#pragma section("rti_fn$f",read)
    #if RT_DEBUG_INIT
        struct rt_init_desc
        {
            const char* level;
            const init_fn_t fn;
            const char* fn_name;
        };
        #define INIT_EXPORT(fn, level)                                  \
                                const char __rti_level_##fn[] = ".rti_fn." level;       \
                                const char __rti_##fn##_name[] = #fn;                   \
                                __declspec(allocate("rti_fn$f"))                        \
                                RT_USED const struct rt_init_desc __rt_init_msc_##fn =  \
                                {__rti_level_##fn, fn, __rti_##fn##_name};
    #else
        struct rt_init_desc
        {
            const char* level;
            const init_fn_t fn;
        };
        #define INIT_EXPORT(fn, level)                                  \
                                const char __rti_level_##fn[] = ".rti_fn." level;       \
                                __declspec(allocate("rti_fn$f"))                        \
                                RT_USED const struct rt_init_desc __rt_init_msc_##fn =  \
                                {__rti_level_##fn, fn };
    #endif
#else
    #if RT_DEBUG_INIT
        struct rt_init_desc
        {
            const char* fn_name;
            const init_fn_t fn;
        };
        #define INIT_EXPORT(fn, level)                                                       \
            const char __rti_##fn##_name[] = #fn;                                            \
            RT_USED const struct rt_init_desc __rt_init_desc_##fn RT_SECTION(".rti_fn." level) = \
            { __rti_##fn##_name, fn};
    #else
        #define INIT_EXPORT(fn, level)                                                       \
            RT_USED const init_fn_t __rt_init_##fn RT_SECTION(".rti_fn." level) = fn
    #endif
#endif
#else
#define INIT_EXPORT(fn, level)
#endif

/* board init routines will be called in board_init() function */
#define INIT_BOARD_EXPORT(fn)           INIT_EXPORT(fn, "1")

/* pre/device/component/env/app init routines will be called in init_thread */
/* components pre-initialization (pure software initialization) */
#define INIT_PREV_EXPORT(fn)            INIT_EXPORT(fn, "2")
/* device initialization */
#define INIT_DEVICE_EXPORT(fn)          INIT_EXPORT(fn, "3")
/* components initialization (dfs, lwip, ...) */
#define INIT_COMPONENT_EXPORT(fn)       INIT_EXPORT(fn, "4")
/* environment initialization (mount disk, ...) */
#define INIT_ENV_EXPORT(fn)             INIT_EXPORT(fn, "5")
/* application initialization (rtgui application etc ...) */
#define INIT_APP_EXPORT(fn)             INIT_EXPORT(fn, "6")

首先看看一下关于INIT_EXPORT的宏定义

    typedef int (*init_fn_t)(void);
    #if RT_DEBUG_INIT
        struct rt_init_desc
        {
            const char* fn_name;
            const init_fn_t fn;
        };
        #define INIT_EXPORT(fn, level)                                                       \
            const char __rti_##fn##_name[] = #fn;                                            \
            RT_USED const struct rt_init_desc __rt_init_desc_##fn RT_SECTION(".rti_fn." level) = \
            { __rti_##fn##_name, fn};
    #else
        #define INIT_EXPORT(fn, level)                                                       \
            RT_USED const init_fn_t __rt_init_##fn RT_SECTION(".rti_fn." level) = fn
    #endif

首先关于代码行

typedef int (*init_fn_t)(void);

这是一个函数指针类型声明,没有入参,返回值为int。关于函数指针类型和函数指针变量的说明请看上面的链接,这边不再赘述。

其次代码行

RT_USED const init_fn_t __rt_init_##fn RT_SECTION(".rti_fn." level) = fn

RT_USED我们已经讲解过了,用于限定函数或者变量属性的。

##是用于宏定义中拼接字符使用的

假如我在代码中按照下面的代码片段调用INIT_EXPORT宏

int myfunction() {
    return 0;
}
INIT_EXPORT(myfunction, "1");

展开后

__attribute__((used)) const init_fn_t __rt_init_myfunction __attribute__((section(".rti_fn.1"))) = myfunction;

注意此处的__rt_init_myfunction是个函数指针类型变量,指向myfunction这个函数,既然是变量那么其类型就是Data,并且这个变量最终放在.rti_fn.1段中。


/* board init routines will be called in board_init() function */
#define INIT_BOARD_EXPORT(fn)           INIT_EXPORT(fn, "1")

/* pre/device/component/env/app init routines will be called in init_thread */
/* components pre-initialization (pure software initialization) */
#define INIT_PREV_EXPORT(fn)            INIT_EXPORT(fn, "2")
/* device initialization */
#define INIT_DEVICE_EXPORT(fn)          INIT_EXPORT(fn, "3")
/* components initialization (dfs, lwip, ...) */
#define INIT_COMPONENT_EXPORT(fn)       INIT_EXPORT(fn, "4")
/* environment initialization (mount disk, ...) */
#define INIT_ENV_EXPORT(fn)             INIT_EXPORT(fn, "5")
/* application initialization (rtgui application etc ...) */
#define INIT_APP_EXPORT(fn)             INIT_EXPORT(fn, "6")

这几个宏都是INIT_EXPORT的扩展,区别在于通过不同的宏限定后其段名的区别分别为.rti_fn.1、.rti_fn.2、.rti_fn.3、.rti_fn.4、.rti_fn.5

注意这边关于编译链接有个知识点

编译器会按照段名对符号进行排序,排序方式默认是按照字符的升序排序;也就是说用INIT_BOARD_EXPORT的限定的函数符号的地址肯定比INIT_APP_EXPORT限定的地址小。

有些博客中没有提到这点,或许是认为大家都对编译链接的过程很了解。

有了上面介绍的知识点后,我们从代码层面来详细说明组件初始化的实现

static int rti_start(void)
{
    return 0;
}
INIT_EXPORT(rti_start, "0");

static int rti_board_start(void)
{
    return 0;
}
INIT_EXPORT(rti_board_start, "0.end");

static int rti_board_end(void)
{
    return 0;
}
INIT_EXPORT(rti_board_end, "1.end");

static int rti_end(void)
{
    return 0;
}
INIT_EXPORT(rti_end, "6.end");

上面的代码片段定义了rti_start/rti_board_start/rti_board_end/rti_end本身之外,还定义了__rt_init_rti_start/__rt_init_rti_board_start/__rt_init_rti_board_end//__rt_init_rti_end这四个init_fn_t类型的函数指针类型变量,并且这些变量依次指向对应的函数。

我们通过map文件可以确认上面的描述

首先上图中的每个符号类型都是Data,也就是变量,其次因为每个变量都是函数指针类型,故大小都是4字节,最后每个变量的地址也是按照段名的升序排序。

RT-Thread中关于组件初始化代码

void rt_components_board_init(void)
{
#if RT_DEBUG_INIT
    int result;
    const struct rt_init_desc *desc;
    for (desc = &__rt_init_desc_rti_board_start; desc < &__rt_init_desc_rti_board_end; desc ++)
    {
        rt_kprintf("initialize %s", desc->fn_name);
        result = desc->fn();
        rt_kprintf(":%d done\n", result);
    }
#else
    volatile const init_fn_t *fn_ptr;

    for (fn_ptr = &__rt_init_rti_board_start; fn_ptr < &__rt_init_rti_board_end; fn_ptr++)
    {
        (*fn_ptr)();
    }
#endif /* RT_DEBUG_INIT */
}

我们只关注这段代码

volatile const init_fn_t *fn_ptr;

for (fn_ptr = &__rt_init_rti_board_start; fn_ptr < &__rt_init_rti_board_end; fn_ptr++)
{
    (*fn_ptr)();
}

for循环中首先对变量__rt_init_rti_board_start取地址赋值给fn_ptr这个函数指针类型的指针,然后再解引用,因为__rt_init_rti_board_start这个变量的值是一个函数地址,所以

(*fn_ptr)();

就是执行__rt_init_rti_board_start变量引用的函数;由于通过组件初始化宏

INIT_BOARD_EXPORT(fn) 

限定的函数都有一个对应的变量来记录其地址,这些变量的地址都被限定在变量__rt_init_rti_board_start/__rt_init_rti_board_end的地址区间内,故可以通过此循环依次执行这些函数,例如上图中__rt_init_mpu_init变量就保存的是mpu_init函数的地址。


void rt_components_init(void)
{
#if RT_DEBUG_INIT
    int result;
    const struct rt_init_desc *desc;

    rt_kprintf("do components initialization.\n");
    for (desc = &__rt_init_desc_rti_board_end; desc < &__rt_init_desc_rti_end; desc ++)
    {
        rt_kprintf("initialize %s", desc->fn_name);
        result = desc->fn();
        rt_kprintf(":%d done\n", result);
    }
#else
    volatile const init_fn_t *fn_ptr;

    for (fn_ptr = &__rt_init_rti_board_end; fn_ptr < &__rt_init_rti_end; fn_ptr ++)
    {
        (*fn_ptr)();
    }
#endif /* RT_DEBUG_INIT */
}

其中代码段

volatile const init_fn_t *fn_ptr;

for (fn_ptr = &__rt_init_rti_board_end; fn_ptr < &__rt_init_rti_end; fn_ptr ++)
{
    (*fn_ptr)();
}

代码基本相同,只是for循环限定的函数是__rt_init_rti_board_end/__rt_init_rti_end两个地址区间内的。

另外需要注意的是rt_components_init是main_thread_entry线程函数执行,也就是说此时调度器已经运行;rt_components_board_init在rt_hw_board_init函数被调用,此时调度器还未运行。

最后关于组件初始化的一些参考资料大家可以查看RT-Thread官网组件初始化

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/166642.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SpringBoot自定义拦截器

&#x1f341;博客主页&#xff1a;&#x1f449;不会压弯的小飞侠 ✨欢迎关注&#xff1a;&#x1f449;点赞&#x1f44d;收藏⭐留言✒ ✨系列专栏&#xff1a;&#x1f449;SpringBoot专栏 &#x1f525;欢迎大佬指正&#xff0c;一起学习&#xff01;一起加油&#xff01; …

JavaScript 浏览器的重排和重绘

文章目录JavaScript 浏览器的重排和重绘概述浏览器解析过程重排重绘优化将多次改变样式的属性操作合并为一次需要多次重排的元素设置为绝对定位减少DOM操作复杂元素处理先设置display为none处理完后再显示缓存频繁操作的属性减少使用table布局使用事件委托绑定事件处理程序利用…

上海亚商投顾:沪指重返3200点 牛市旗手回归!

上海亚商投顾前言&#xff1a;无惧大盘涨跌&#xff0c;解密龙虎榜资金&#xff0c;跟踪一线游资和机构资金动向&#xff0c;识别短期热点和强势个股。市场情绪三大指数今日继续走强&#xff0c;沪指重返3200点上方&#xff0c;创业板指午后一度涨近3%&#xff0c;随后涨幅有所…

2023.1. Stimulsoft 报告和仪表板的新版本:Crack

2023.1. Stimulsoft 报告和仪表板的新版本。 发布时间&#xff1a;2022 年 12 月 9 日 我们很高兴地宣布发布 Stimulsoft Reports and Dashboards 2023.1 版&#xff01;我们为 .NET Core 组件添加了对Razor Pages的支持&#xff0c;为PHP和Blazor平台更新了组件。此外&#x…

【Linux】基础:进程间通信

【Linux】基础&#xff1a;进程间通信 摘要&#xff1a;本文主要介绍进程间通信的基础知识&#xff0c;首先将会对进程间通信进行简单概述&#xff0c;其中包括本质目的和方法分类。再介绍对于方法的实现过程&#xff0c;其中有三大类方法&#xff08;管道、System V、POSIX&am…

Kotlin 中变量,类型,表达式,函数详解

博主前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住也分享一下给大家 &#x1f449;点击跳转到教程 一、变量&#xff0c;编译时变量 1、要声明可修改变量&#xff0c;使用var关键字。 2、要声明只读变量&#xff0c;使用…

35岁高龄程序员的 4 条出路,提早布局,避免出局!

目录 一、40岁回首往事&#xff1a;自己竟没有任何核心优势二、公司遇到危机时40岁大龄程序员会怎么样三、适合大龄程序员的几条职业发展路线四、最后的寄语 这篇文章&#xff0c;给大家聊聊Java工程师的职业发展规划的一些思考&#xff0c;同时也给不少20多岁、30多岁&#…

Spark 运行架构

文章目录Spark 运行架构一、运行架构二、核心组件1、Driver2、Executor3、Master & Worker4、ApplicationMaster三、核心概念1、Exuecutor 和 Core2、并行度&#xff08;Parallelism&#xff09;3、有向无环图&#xff08;DAG&#xff09;4、提交流程Yarn Client 模式Spark…

Spring Cloud Gateway(黑马springcloud笔记)

Gateway 目录Gateway一、为什么需要网关二、gateway入门三、断言工厂四、过滤器工厂五、全局过滤1. 实现2. 过滤器执行顺序六、跨域问题一、为什么需要网关 不能让外部能够直接访问微服务&#xff0c;而是需要通过网关访问&#xff1a; 网关的作用&#xff1a; 身份认证和权限…

数据结构与算法基础(王卓)(8):线性表的应用(并集和有序表合并)

PPT&#xff1a;第二章P173&#xff1b; 并集集合&#xff1a;线性表的合并&#xff08;无需有序&#xff0c;不能重复&#xff09; 线性表&#xff1a; Status Union(Sqlist& A, Sqlist& B)//并集 {int len_A A.length;int len_B B.length;for (int i 1; i < …

研究生如何能(较快)找出某领域(去噪)已有算法的创新点或者引入其他领域的新算法?

广义上说&#xff0c;滤波就是给不同的信号分量分配不同的权重&#xff0c;较为复杂的维纳滤波, 是根据信号的统计量设计权重。狭义上说&#xff0c;降噪/去噪&#xff0c;可以看成滤波的一种。降噪的目的在于突出信号本身而抑制噪声影响。从这个角度&#xff0c;降噪就是给信号…

C/C++ 调用规则

平栈&#xff1a;清理参数对调用栈的操作步骤&#xff1a;参数传递三种调用约定&#xff1a;cdecl &#xff08;C调用约定&#xff09;:从右往左传参&#xff0c;参数通过栈传递&#xff0c;调用方(caller)负责平参&#xff08;支持类似printf的不定参&#xff09;stdcall (标准…

hadoop简介

文章目录1&#xff1a;hadoop简介2&#xff1a;Hadoop系统2.1&#xff1a;hadoop架构1&#xff1a;MapReduce2&#xff1a;YARN架构3&#xff1a;HDFS2.2&#xff1a;HDFS、YARN、MapReduce三者关系1&#xff1a;hadoop简介 Hadoop是一个由Apache基金会所开发的分布式系统基础…

如何快速删除CSV、Excel、Markdown表格的重复行?

如果你正在使用 CSV、Excel 或 Markdown 表格&#xff0c;你可能会遇到重复行的问题。这可能是因为你手动输入了重复的数据&#xff0c;或者是因为你从其他源导入了重复的数据。无论原因是什么&#xff0c;删除重复行是一项重要的数据清理任务。本文将向你展示如何使用几种不同…

RESTful的风格提倡 URL 地址使用统一的风格设计

RESTful概念实现REST&#xff1a;Representational State Transfer&#xff0c;表现层资源状态转移。资源&#xff1a;资源是一种看待服务器的方式&#xff0c;即&#xff0c;将服务器看作是由很多离散的资源组成。每个资源是服务器上一个可命名的抽象概念。资源的表述资源的表…

nnUNet 训练 AMOS22数据集 Task216(抽丝剥茧指令+原理篇)

环境准备篇 安装hiddenlayer&#xff08;用来生成什么网络拓扑图&#xff1f;管他呢&#xff0c;装吧&#xff09; pip install --upgrade githttps://github.com/nanohanno/hiddenlayer.gitbugfix/get_trace_graph#egghiddenlayer 安装环境&#xff0c;由于服务器已经装好py…

网络安全日益严峻下计算机主机加固的意义

​ 近年来&#xff0c;计算机以及互联网应用在中国得到普及和发展&#xff0c;已经深入到社会每个角落&#xff0c;政府&#xff0c;经济&#xff0c;军事&#xff0c;社会&#xff0c;文化和人们生活等各方面都越来越依赖于计算机和网络&#xff0c;电子政务&#xff0c;无纸办…

【计算机体系结构】指令集体系结构、微体系结构简介

1. “虚拟” to “现实” 首先可以看这张图片&#xff0c;下面的 Physics 所指的是我们的物理世界中看得见摸得到或者是客观存在的事物&#xff0c;而人类希望将自己的工作内容或者需求以某种方式映射到物理层面上&#xff0c;用物理变化带来的影响来完成人类工作内容。例如早期…

《Linux Shell脚本攻略》学习笔记-第二章

2.1 简介 本章将为你介绍一些最值得关注同时也是最实用的命令。 2.2 用cat进行拼接 cat命令能够显示或者拼接文件内容。cat能够将标准输入数据与文件数据组合在一起。 通常的做法是将stdin重定向到一个文件&#xff0c;然后再合并两个文件。而cat命令一次就能搞定这些操作。 1&…

【Linux】基础常见指令

目录​​​​​​​ 前言 一、Linux的环境搭建与远程控制 Linux 环境的搭建方式主要有三种 使用 XShell 远程登陆到 Linux 二、常见指令 1. ls 指令 2. pwd命令 3. cd 指令 4. touch指令 5. mkdir指令 6. rmdir指令 && rm 指令 7. man指令 8. cp指令 9. mv指令 10.…