Leetcode 剑指 Offer II 077.排序链表

news2024/12/23 12:54:00

题目难度: 中等

原题链接

今天继续更新 Leetcode 的剑指 Offer(专项突击版)系列, 大家在公众号 算法精选 里回复 剑指offer2 就能看到该系列当前连载的所有文章了, 记得关注哦~

题目描述

给定链表的头结点 head ,请将其按 升序 排列并返回 排序后的链表 。

示例 1:

  • 输入:head = [4,2,1,3]
  • 输出:[1,2,3,4]

示例 2:

  • 输入:head = [-1,5,3,4,0]
  • 输出:[-1,0,3,4,5]

示例 3:

  • 输入:head = []
  • 输出:[]

提示:

  • 链表中节点的数目在范围 [0, 5 * 10^4] 内
  • -10^5 <= Node.val <= 10^5

进阶:你可以在 O(n log n) 时间复杂度和常数级空间复杂度下,对链表进行排序吗?

题目思考

  1. 如何做到 O(n log n) 时间复杂度和常数级空间复杂度?

解决方案

思路
  • 分析题目, 一个很容易想到的思路就是将链表每个节点存到一个数组中, 然后使用自定义排序, 对数组按照节点的值从小到大排序, 再依次连起来即可
  • 不过这样虽说时间复杂度可以做到 O(NlogN), 但使用了额外空间, 不满足进阶要求, 如何优化呢?
  • 要想做到常数级空间复杂度排序, 首先就不能采用递归, 因为递归有额外递归栈的空间消耗
  • 另外题目给的是单向链表, 不好从后往前遍历, 所以经典的快速排序在这里也不适用, 如果额外增加向前的连接, 又需要额外空间
  • 常见的 O(NlogN)排序还有归并排序, 虽然递归归并的实现方式比较经典, 但我们也可以利用迭代的方式实现, 这样就可以做到常数级空间复杂度
  • 具体思路就是先将相邻的单个节点进行归并, 然后再将 2 个节点作为整体, 将相邻部分归并, 然后是 4 个, 8 个, 以此类推, 最终实现全部节点的排序
  • 举个例子, 对于链表1->5->4->3->0->2
    1. 第一步, 对相邻节点从小到大归并排序, 即 1 和 5 归并, 4 和 3 归并, 0 和 2 归并, 得到1->5->3->4->0->2
    2. 第二步, 对相邻两个节点从小到大归并排序, 即1->53->4归并, 0->2不变, 得到1->3->4->5->0->2
    3. 第二步, 对相邻四个节点从小到大归并排序, 即1->3->4->50->2归并, 得到0->1->2->3->4->5
  • 这样只需要 logN 次归并, 然后每次归并只需要遍历每个节点常数次, 总体时间复杂度是 O(NlogN), 且没有使用额外空间
  • 具体实现方面, 我们需要记录链表总长度和当前归并部分的长度
  • 然后针对每个归并长度遍历整个链表, 分别得到当前待归并的左右部分, 归并后再继续下个左右部分的归并, 直到达到末尾
  • 最终当归并长度大于等于总长度时, 说明整个链表已经排序好了, 返回链表头即可
  • 另外注意在遍历过程中需要处理好节点的连接关系, 避免导致无限循环
  • 下面代码给出了每一步详细的注释, 大家可以结合代码和注释来理解
复杂度
  • 时间复杂度 O(NlogN): 每次归并排序的长度都是上次长度乘以 2, 所以一共只需要归并 logN 次, 然后每次归并时需要遍历所有节点两遍 (一遍记录左右部分的头和尾, 一遍实际归并), 这部分时间复杂度是 O(N), 所以整体时间复杂度就是 O(NlogN)
  • 空间复杂度 O(1): 只使用了几个常数空间的变量
代码
class Solution:
    def sortList(self, head: ListNode) -> ListNode:
        def merge(head1, head2):
            # 将链表head1和head2进行归并排序
            # 使用哨兵节点简化处理
            dummy = ListNode(0)
            cur = dummy
            while head1 or head2:
                if not head2 or head1 and head1.val <= head2.val:
                    # head2为空, 或者head1的值更小, 追加head1
                    cur.next = head1
                    # head1向后移动
                    head1 = head1.next
                else:
                    # 此时只能追加head2
                    cur.next = head2
                    # head2向后移动
                    head2 = head2.next
                # 当前节点向后移动
                cur = cur.next
            # 返回归并排序后的链表头和尾
            return (dummy.next, cur)

        # 统计原始链表的节点数
        n = 0
        cur = head
        while cur:
            cur = cur.next
            n += 1

        # 从长度为1的两个链表开始归并排序
        cnt = 1
        # 使用哨兵节点简化处理
        dummy = ListNode(0, head)
        # 只要长度不超过n, 就说明有至少两个链表需要归并
        while cnt < n:
            # ptail存储前一个归并好的链表的末尾, 初始化为哨兵
            ptail = dummy
            # cur是当前处理的节点
            cur = dummy.next
            while cur:
                # lhead和ltail是当前待归并的左侧链表头和尾
                lhead = cur
                ltail = cur
                # 遍历lcnt个节点, 并更新ltail和cur
                lcnt = cnt
                while lcnt > 0 and cur:
                    ltail = cur
                    cur = cur.next
                    lcnt -= 1
                if ltail:
                    # 断开ltail和右侧的连接
                    ltail.next = None
                # rhead和rtail是当前待归并的右侧链表头和尾
                rhead = cur
                rtail = cur
                # 遍历rcnt个节点, 并更新rtail和cur
                rcnt = cnt
                while rcnt > 0 and cur:
                    rtail = cur
                    cur = cur.next
                    rcnt -= 1
                if rtail:
                    # 断开rtail和右侧的连接
                    rtail.next = None
                # 归并左右链表, 得到归并后的新链表的头和尾
                nhead, ntail = merge(lhead, rhead)
                # 将前一个归并部分的尾指向当前归并部分的头
                ptail.next = nhead
                # 然后更新ptail尾当前归并部分的尾
                ptail = ntail
            # 归并长度乘以2, 不断循环归并排序更大长度的两部分, 直到整个链表有序
            cnt *= 2
        # 最终哨兵节点的下一个节点就是全部排序后的头
        return dummy.next

大家可以在下面这些地方找到我~😊

我的 GitHub

我的 Leetcode

我的 CSDN

我的知乎专栏

我的头条号

我的牛客网博客

我的公众号: 算法精选, 欢迎大家扫码关注~😊

算法精选 - 微信扫一扫关注我

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1666153.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

STM32入门_江协科技_5~6_OB记录的自学笔记_GPIO输出_LED流水灯_蜂鸣器

5. GPIO 输出 5.1. GPIO简介 GPIO&#xff08;General Purpose Input Output&#xff09;通用输入输出口可配置为8种输入输出模式引脚电平&#xff1a;0V~3.3V&#xff0c;部分引脚可容忍5V&#xff08;端口输入5V的电压&#xff0c;之前引脚定义表格中带FT标识的&#xff09…

暗区突围哪里获得测试资格 暗区突围测试资格获取方法

在游戏业界的浩瀚星空中&#xff0c;《暗区突围》如同一颗璀璨新星&#xff0c;以其独树一帜的游戏模式和前所未有的沉浸式体验&#xff0c;迅速吸引了全球玩家的目光。它不仅仅是一款游戏&#xff0c;更像是一次对勇气、智慧与团队合作的深度探索。玩家在危机四伏的暗区中&…

【软考高项】四十四、高级项目管理

一、项目集管理 相关角色 项目集发起人、项目集指导委员会、项目集经理、其他影响项目集的干系人项目集管理绩效域 项目集战略一致性、项目集效益管理、项目集干系人参与、项目集治理和项目集生命周期管理 二、项目组合管理 项目组合经理角色 项目组合管理原…

软件测试报告(交付文档支撑word原件)

软件测试报告在软件开发过程中起着至关重要的作用&#xff0c;主要有以下几个主要原因&#xff1a; 1、确保软件质量 2、提供决策支持 3、记录测试过程和结果 4、促进沟通和协作 5、符合标准和法规要求 6、改进测试流程和策略 7、降低风险 软件开发全套资料获取进主页或者本文…

【字符函数与字符串函数】

文章目录 一、strlen函数1.strlen函数的使用2.strlen函数的模拟实现(1)计算器办法(2)不创建临时变量计数器(3)指针 二、strcpy函数1、strcpy函数的使用2、strcpy函数的模拟实现 三、strcat函数1、strcat函数的使用2、strcat模拟实现3、字符串自己给自己追加&#xff1f; 四、st…

2024年数维杯数学建模

高质量原创论文已完成 需要的私我

构建内网yum仓库

1、环境介绍 系统&#xff1a;龙蜥os 7.9 2、安装epel源 yum install epel-release -y3、安装nginx服务器并启动 yum install nginx httpd -y配置 server {listen 80;server_name repo.wtown.com;root /usr/share/nginx/html/repo;index index.html index.htm;location / {…

信息安全-古典密码学简介

目录 C. D. Shannon: 一、置换密码 二、单表代替密码 ① 加法密码 ② 乘法密码 ③密钥词组代替密码 三、多表代替密码 代数密码 四、古典密码的穷举分析 1、单表代替密码分析 五、古典密码的统计分析 1、密钥词组单表代替密码的统计分析 2、英语的统计规…

报表-集成

1、部署报表服务器 以centos为例 1.1 将服务拷贝到服务器 其中JDK-17是对应平台的jdk 1.2 修改lite-report下的source.config 1.3 把设计好的报表文件拷贝到lite-report/report 1.4 启动服务&#xff1a;sh run.sh restart 2、使用Nginx location /litereport/ { …

前端笔记-day1

文章目录 01-标签的写法02-HTML的基本骨架03-标签的关系04-注释05-标题标签06-段落标签07-换行与水平线标签08-文本格式化标签09-图像的基本使用10-图像的属性12-绝对路径13-超链接14-音频15-视频标签16-招聘案例18-个人简历19-vue简介 01-标签的写法 <strong>文字内容&…

LabVIEW开发MOOG控制系统数据处理软件

LabVIEW开发MOOG控制系统数据处理软件 在现代航空领域&#xff0c;飞机结构的静强度试验是保证飞机安全运行的关键环节。MOOG加载控制系统作为试验中的关键设备&#xff0c;其数据输出的直观性和易处理性对于提高试验效率具有重要意义。设计了一种基于LabVIEW的MOOG控制系统数…

##15 探索高级数据增强技术以提高模型泛化能力

文章目录 前言数据增强的重要性常见的数据增强技术高级数据增强技术在PyTorch中实现数据增强结论 前言 在深度学习领域&#xff0c;数据增强是一种有效的技术&#xff0c;它可以通过在原始数据上应用一系列变换来生成新的训练样本&#xff0c;从而增加数据的多样性&#xff0c…

Redis过期删除策略和内存淘汰策略有什么区别?

Redis过期删除策略和内存淘汰策略有什么区别&#xff1f; 前言过期删除策略如何设置过期时间&#xff1f;如何判定 key 已过期了&#xff1f;过期删除策略有哪些&#xff1f;Redis 过期删除策略是什么&#xff1f; 内存淘汰策略如何设置 Redis 最大运行内存&#xff1f;Redis 内…

ADS基础介绍篇1

一. ADS简介 常用的射频仿真软件有ADS和AWR&#xff0c;ADS(Advanced Design system)最传统&#xff0c;是Agilent公司于2008年推出的电磁场仿真器&#xff0c;可提供原理图设计和layout版图设计。仿真功能十分强大&#xff0c;可提供从无源到有源&#xff0c;从直流到交流&am…

算法提高之矩阵距离

算法提高之矩阵距离 核心思想&#xff1a;多源bfs 从多个源头做bfs&#xff0c;求距离 先把所有1的坐标存入队列 再把所有1连接的位置存入 一层一层求 #include <iostream>#include <cstring>#include <algorithm>using namespace std;const int N 1…

关于画图-一次性搞定各类高级论文作图及配色

关于画图-一次性搞定各类高级论文作图及配色 图&#xff08;Figure&#xff09;可以让各类论文的结果更加直观&#xff0c;有时候一张图片比一大段文字更有说服力。 但许多新手作者可能会有一连串的疑惑&#xff1a;数据这么多&#xff0c;什么时候该做什么类型的图&#xff…

NASA数据集——2002-2011年全球18.7 至 89.0 千兆赫的亮度温度、海冰浓度和海冰积雪深度三级网格产品(AE_SI12)数据

AMSR-E/Aqua Daily L3 12.5 km Brightness Temperature, Sea Ice Concentration, & Snow Depth Polar Grids V003 三级网格产品&#xff08;AE_SI12&#xff09;包括 18.7 至 89.0 千兆赫的亮度温度、海冰浓度和海冰积雪深度。 简介 美国国家航空航天局地球观测系统 Aqu…

##16 利用迁移学习和微调提升深度学习模型性能

文章目录 前言什么是迁移学习&#xff1f;迁移学习的主要优势迁移学习的策略1. 特征提取器2. 微调 在PyTorch中实现迁移学习环境设置加载预训练模型修改模型以适应新任务训练和微调模型迁移学习的示例应用 结论 前言 在深度学习的多个领域中&#xff0c;迁移学习技术已经成为了…

现代信号处理9_正则化(CSDN_20240512)

正则化的引入 解线性方程组&#xff1a; 这项工作有很多种做法&#xff0c;下面介绍两种&#xff0c;如下图所示&#xff0c;有一些数据点需要拟合&#xff0c;拟合的方法有很多。 1&#xff09; 构造线性函数①&#xff0c;这种函数比较简单&#xff0c;此时 2&#xff09; 构…

信息系统项目管理师0102:可行性研究的内容(7项目立项管理—7.2项目可行性研究—7.2.1可行性研究的内容)

点击查看专栏目录 文章目录 7.2项目可行性研究7.2.1可行性研究的内容1.技术可行性分析2.经济可行性分析3.社会效益可行性分析4.运行环境可行性分析5.其他方面的可行性分析记忆要点总结7.2项目可行性研究 可行性研究是在项目建议书被批准后,从技术、经济、社会和人员等方面的条…