凸优化理论学习一|最优化及凸集的基本概念

news2024/11/17 8:21:20

文章目录

  • 一、优化问题
    • (一)数学优化
    • (二)凸优化
  • 二、凸集
    • (一)一些标准凸集
    • (二)保留凸性的运算
    • (三)正常锥和广义不等式
    • (四)分离和支撑超平面


一、优化问题

(一)数学优化

从本质上讲,人工智能的目标就是最优化——在复杂环境中与多体交互中做出最优决策。几乎所有的人工智能问题都会归结为一个优化问题。

  • 优化目标:minimize f 0 ( x ) f_0(x) f0(x)
  • 约束条件:
    • 非等式约束: f i ( x ) ≤ 0 , i = 1 , . . . , m f_i(x)\leq0,i=1,...,m fi(x)0i=1,...,m
    • 等式约束: g i ( x ) = 0 , i = 1 , . . . , m g_i(x)=0,i=1,...,m gi(x)=0i=1,...,m

将最优化问题用于求解最佳决策时, x x x代表决策,约束用于限制决策或对结果施加条件
将最优化问题用于求解最优模型时, x x x 表示模型中的参数,约束对模型参数提出要求(例如,非负性)

最优化问题一般情况下不能得到完全的解决,但是可以尝试近似地解决它,而且通常无伤大雅。这个问题的例外情况是:凸优化问题。

一般非凸问题的传统技术通常会涉及到一定的妥协:

  • 局部优化方法(非线性规划)
    • 在其附近的可行点中找到一个使 f 0 f_0 f0 最小的点
    • 可以处理大问题,例如神经网络训练
    • 需要初始猜测,并且通常需要算法参数微调
    • 不提供有关找到的点有多次优的信息
  • 全局优化方法
    • 找到(全局)解决方案
    • 最坏情况的复杂性随着问题的规模呈指数级增长
    • 通常基于解决凸子问题

(二)凸优化

凸优化问题是特殊形式的优化问题,包括线性规划 (LP)、二次规划 (QP) 等,我们通常能够可靠、高效地解决这些问题。

  • 优化目标:minimize f 0 ( x ) f_0(x) f0(x)
  • 约束条件:
    • 非等式约束: f i ( x ) ≤ 0 , i = 1 , . . . , m f_i(x)\leq0,i=1,...,m fi(x)0i=1,...,m
    • 等式约束: A x = b Ax=b Ax=b

凸优化问题与最优化问题的对比:

  • 凸优化问题的等式约束是线性的
  • f 0 , . . . , f m f_0,..., f_m f0,...,fm是凸的: θ ∈ [ 0 , 1 ] , f i ( θ x + ( 1 − θ ) y ) ≤ θ f i ( x ) + ( 1 − θ ) f i ( y ) \theta \in [0,1],f_i(\theta x+(1-\theta)y)\leq\theta f_i(x)+(1-\theta)f_i(y) θ[0,1],fi(θx+(1θ)y)θfi(x)+(1θ)fi(y)

二、凸集

(一)一些标准凸集

仿射集包含通过集合中任意两个不同点的线(通过 x 1 x_1 x1 x 2 x_2 x2两点的线: x = θ x 1 + ( 1 − θ ) x 2 , θ ∈ R x=\theta x_1+(1-\theta)x_2,\theta \in R x=θx1+(1θ)x2,θR

  • 函数形式为f=Ax+b,则称函数是仿射的,即线性函数加常数的形式。
  • 比如线性方程组的解 { x ∣ A x = b } \{x |Ax = b\} {xAx=b},并且每个仿射集都可以表示为线性方程组的解集
    在这里插入图片描述

凸集包含集合中任意两点之间的线段( x 1 x_1 x1 x 2 x_2 x2两点间的线段: x = θ x 1 + ( 1 − θ ) x 2 , 0 ≤ θ ≤ 1 x=\theta x_1+(1-\theta)x_2,0\leq\theta\leq1 x=θx1+(1θ)x2,0θ1

  • 凸集满足对于 x 1 , x 2 ∈ C , 0 ≤ θ ≤ 1 x_1,x_2\in C,0\leq\theta\leq1 x1,x2C,0θ1,有 θ x 1 + ( 1 − θ ) x 2 ∈ C \theta x_1+(1-\theta)x_2\in C θx1+(1θ)x2C
  • 以下为一个凸集和两个非凸集的示意:
    在这里插入图片描述

为什么 x = θ x 1 + ( 1 − θ ) x 2 x=\theta x_1+(1-\theta)x_2 x=θx1+(1θ)x2可以表示任意两点连接线段的所有点?将上式展开得:
x = θ x 1 + ( 1 − θ ) x 2 = θ x 1 + x 2 − θ x 2 = θ ( x 1 − x 2 ) + x 2 x=\theta x_1+(1-\theta)x_2=\theta x_1+x_2-\theta x_2=\theta(x_1-x_2)+x_2 x=θx1+(1θ)x2=θx1+x2θx2=θ(x1x2)+x2
在这里插入图片描述

凸包: S 中所有点的凸组合的集合( x 1 , . . . , x k x_1,...,x_k x1,...,xk的凸组合: x = θ 1 x 1 + θ 2 x 2 + . . . + θ k x k x=\theta_1 x_1+\theta_2 x_2+...+\theta_k x_k x=θ1x1+θ2x2+...+θkxk,其中 θ 1 + . . . + θ k = 1 , θ i ≥ 0 \theta_1+...+\theta_k =1,\theta_i \geq 0 θ1+...+θk=1,θi0
在这里插入图片描述
凸锥体: 包含集合中点的所有圆锥组合的集合( x 1 x_1 x1 x 2 x_2 x2的圆锥组合: x = θ 1 x 1 + θ 2 x 2 x=\theta_1 x_1+\theta_2 x_2 x=θ1x1+θ2x2,且 θ 1 ≥ 0 , θ 2 ≥ 0 \theta_1\geq0,\theta_2\geq0 θ10,θ20

在这里插入图片描述

超平面: 形式为 { x ∣ a T x = b } \{x | a^T x = b\} {xaTx=b}的集合,其中 a ≠ 0 a ≠ 0 a=0半空间: 形式为 { x ∣ a T x ≤ b } \{x | a^T x \leq b\} {xaTxb}的集合,其中 a ≠ 0 a ≠ 0 a=0。(a是法向量,超平面是仿射和凸的;半空间是凸的)
在这里插入图片描述

欧几里得球: B ( x c , r ) = { x ∣   ∣ ∣ x − x c ∣ ∣ 2 ≤ r } = { x c + r u ∣   ∣ ∣ u ∣ ∣ 2 ≤ 1 } B(x_c,r)=\{x|\ ||x-x_c||_2\leq r\} = \{x_c+ru|\ ||u||_2\leq1\} B(xc,r)={x ∣∣xxc2r}={xc+ru ∣∣u21}

椭球: { x ∣   ( x − x c ) T P − 1 ( x − x c ) ≤ 1 } = { x c + r u ∣   ∣ ∣ u ∣ ∣ 2 ≤ 1 } = { x c + A u ∣   ∣ ∣ u ∣ ∣ 2 ≤ 1 } \{x|\ (x-x_c)^T P^{-1}(x-x_c)\leq 1\} = \{x_c+ru|\ ||u||_2\leq1\} = \{x_c+Au|\ ||u||_2\leq1\} {x (xxc)TP1(xxc)1}={xc+ru ∣∣u21}={xc+Au ∣∣u21},其中 P ∈ S + + n P\in S^n_{++} PS++n,也就是说P 对称正定,A平方且非奇异。

中心为 x c x_c xc,半径为 r r r 的标准球: { x ∣   ∣ ∣ x − x c ∣ ∣ ≤ r } \{x|\ ||x − x_c|| ≤ r\} {x ∣∣xxc∣∣r}

标准锥: { ( x , t ) ∣   ∣ ∣ x ∣ ∣ ≤ t } \{(x, t) |\ ||x||≤t\} {(x,t) ∣∣x∣∣t}

欧几里得范数锥: { ( x , t ) ∣   ∣ ∣ x ∣ ∣ 2 ≤ t } \{(x, t) |\ ||x||_2≤t\} {(x,t) ∣∣x2t}

多面体 是有限多个线性不等式和等式的解集,也是有限数量的半空间和超平面的交集。 { x ∣ A x ≤ b , C x = d } \{x| Ax\leq b,Cx=d\} {xAxb,Cx=d}

(二)保留凸性的运算

证明集合 C 凸性的方法:

  • 基于定义:如果 x 1 , x 2 ∈ C , 0 ≤ θ ≤ 1 x_1,x_2\in C,0\leq\theta\leq 1 x1,x2C,0θ1,则有 θ x 1 + ( 1 − θ ) x 2 ∈ C \theta x_1+(1-\theta)x_2\in C θx1+(1θ)x2C
  • 使用凸函数;
  • 表明 C 是通过保留凸性的操作从简单凸集(超平面、半空间、范数球……)获得的;

交运算:(任意数量的)凸集的交集是凸的。
在这里插入图片描述

仿射映射:凸集的仿射映射也是凸的。(函数形式为f=Ax+b,则称函数是仿射的,即线性函数加常数的形式。)

在这里插入图片描述(仿射变换就认为是一个矩阵变换,足球可以映射成一个橄榄球,依然是凸集。)

由仿射变换推出凸集的和也是凸集:
在这里插入图片描述

透视函数:凸集在透视下的像和逆像都是凸的(透视函数实际上就是对向量进行伸缩规范化)
在这里插入图片描述

线性分数函数是仿射映射函数和透视变换的复合函数,依然还是保凸运算,凸集在线性分数函数下的像和逆像都是凸的。从联合概率到条件概率的变换是一个线性分数函数。

在这里插入图片描述

(三)正常锥和广义不等式

正常锥的定义:如果凸锥体 K ⊆ R n K⊆R_n KRn满足如下条件,则称锥 K ⊆ R n K⊆R_n KRn为正常锥。

  • K是凸的
  • K是闭的
  • K是实的,即K有非空的内部
  • K是尖的,即K不包含任何直线

在这里插入图片描述

广义不等式满足类似普通不等式的性质,如传递性,反对称性等等。 广义不等式和普通不等式最大的区别是不是任意两点都是可比的。即 x ≤ y x≤y xy y ≤ x y≤x yx对于普通不等式二者必居其一。而对于广义不等式这不一定成立。所以最小,最大这些概念对于广义不等式变得很复杂。

(四)分离和支撑超平面

分离超平面:利用超平面将两个不相交的凸集分离开来,即得到超平面分离定理。
在这里插入图片描述在这里插入图片描述
支撑超平面:如果C是凸的,那么在C的每个边界点都存在一个支持超平面。
在这里插入图片描述在这里插入图片描述支撑超平面不完全逆定理:如果一个集合是闭的,具有非空内部并且其边界上每个点均存在支撑超平面,那么它是凸的。

参考:
凸优化之保凸运算
广义不等式
【最优化理论与算法】数学预备知识、凸集和凸函数

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1664650.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

TriDet: Temporal Action Detection with Relative Boundary Modeling

标题:TriDet:采用相对边界建模的时间动作检测 原文链接:TriDet: Temporal Action Detection With Relative Boundary Modeling (thecvf.com)https://openaccess.thecvf.com/content/CVPR2023/papers/Shi_TriDet_Temporal_Action_Detection_W…

SpringBoot @DS注解 和 DynamicDataSource自定义实现多数据源的2种实现方式

前言 在实际的项目中,我们经常会遇到需要操作多个数据源的情况,SpringBoot为我们提供了多种实现多数据源的方式。本文将介绍两种常见的方式:使用DS注解实现多数据源的切换以及使用DynamicDataSource自定义实现多数据源的切换。 我们将分别介…

土地档案管理关系参考论文(论文 + 源码)

【免费】javaEE土地档案管理系统.zip资源-CSDN文库https://download.csdn.net/download/JW_559/89296786 土地档案管理关系 摘 要 研究土地档案管理关系即为实现一个土地档案管理系统。土地档案管理系统是将现有的历史纸质档案资料进行数字化加工处理,建成标准化的…

boost asio同步编程(附源码api)

首先注明,这里我写的都是关于tcp的通信。 通信大致流程 创建端点 创建tcp端点的api是boost::asio::ip::tcp::endpoint; 当然创建udp端点的api则是boost::asio::ip::udp::endpoint; 是一个表示 TCP/UDP 端点的类,在 Boost.Asio 库中用于网络编程。它通…

工业机器人应用实践之玻璃涂胶(篇三)

工业机器人 接上篇文章,浅谈一下实践应用,具体以玻璃涂胶为例: 了解工业机器人在玻璃涂胶领域的应用 认识工具坐标系的标定方法 掌握计时指令的应用 掌握人机交互指令的应用 掌握等待类指令用法(WaitDI、WaitUnitl 等&#xff0…

正点原子Linux学习笔记(九)在 LCD 上显示字符

在 LCD 上显示字符 23.1 原始方式:取模显示字符23.2 freetype 简介23.3 freetype 移植下载 FreeType 源码交叉编译 FreeType 源码安装目录下的文件移植到开发板 23.4 freetype 库的使用初始化 FreeType 库加载 face 对象设置字体大小加载字形图像 23.5 示例代码 前面…

再谈毕业论文设计投机取巧之IVR自动语音服务系统设计(信息与通信工程A+其实不难)

目录 举个IVR例子格局打开,万物皆能IVR IVR系统其实可盐可甜。还能可圈可点。 戎马一生,归来依然IVR。 举个IVR例子 以下是IVR系统的一个例子。 当您拨打电话进入IVR系统。 首先检验是否为工作时间。 如是,您将被送入ivr-lang阶段&#xff0…

【Delphi 爬虫库 6】使用正则表达式提取猫眼电影排行榜top100

正则表达式库的简单介绍 正则表达式易于使用,功能强大,可用于复杂的搜索和替换以及基于模板的文本检查。这对于输入形式的用户输入验证特别有用-验证电子邮件地址等。您还可以从网页或文档中提取电话号码,邮政编码等,在日志文件中…

机器学习算法应用——CART决策树

CART决策树(4-2) CART(Classification and Regression Trees)决策树是一种常用的机器学习算法,它既可以用于分类问题,也可以用于回归问题。CART决策树的主要原理是通过递归地将数据集划分为两个子集来构建决…

在 Kubernetes 上运行 Apache Spark 进行大规模数据处理的实践

在刚刚结束的 Kubernetes Community Day 上海站,亚马逊云科技在云原生分论坛分享的“在 Kunernets 上运行 Apache Spark 进行大规模数据处理实践”引起了现场参与者的关注。开发者告诉我们,为了充分利用 Kubernetes 的高可用设计、弹性,在越来…

Leedcode题目:移除链表元素

题目: 这个题目就是要我们将我们的链表中的值是val的节点删除。 我们题目提供的接口是 传入了指向一个链表的第一个节点的指针,和我们要删除的元素的值val,不只要删除第一个, 思路 我们这里可以创建一个新的链表,…

配置Docker对象与管理守护进程

前言:本博客仅作记录学习使用,部分图片出自网络,如有侵犯您的权益,请联系删除 本章节的快速目录导航: 一、配置Docker对象 1.1、Docker对象的标记 1.2、格式化命令和日志的输出 二、示例: 2.1、管理…

HTML【常用的标签】、CSS【选择器】

day45 HTML 继day44,w3cschool 常用的标签 k) 表格 表格由 table 标签来定义。每个表格均有若干行(由 tr 标签定义),每行被分割为若干单元格(由 标签定义)。字母 td指表格数据(table data&…

Qt | QSpinBox 类 QDoubleSpinBox 类(微调框)

01、QSpinBox 类 1、QSpinBox类是 QAbstractSpinBox 类的直接子类和具体实现, 2、QSpinBox 类被设计用于处理整数和离散值集合,对于浮点值使用 QDoubleSpinBox 类实现。 3、QSpinBox 默认只支持整数值,但可通过其内部的成员函数进行扩展,以支持使用不同的 字符串。 02…

ppt通过修改幻灯片母版修改页脚

修改幻灯片母版 幻灯片母版就可以了,就可以修改页脚

c++多态机制

多态 在 C 中,多态(Polymorphism)是一种面向对象编程的重要概念,它允许不同类的对象对同一消息做出不同的响应。具体来说,多态性允许基类的指针或引用在运行时指向派生类的对象,并且根据对象的实际类型来调…

汇昌联信科技:做拼多多网店要押金吗?

做拼多多网店要押金吗?”这个问题,其实与拼多多的平台规则有关。在开店之前,商家需要详细了解平台的各项规定和费用构成,这样才能做好充足的准备。 一、明确回答问题 做拼多多网店,不需要支付押金。拼多多的入驻门槛相对较低&…

烽火三十六技丨网络资产安全治理平台新版本发布,一文看懂四大核心优势

云计算、移动互联网、物联网等技术飞速发展,网络环境愈发开放互联,原有的资产管理方式已难以适应当下的变化。同时,网络资产需求的突发性和人为疏忽,也时常导致资产数量不明、类型模糊、安全漏洞检查不全面等问题。因此&#xff0…

增加表空间的数据文件

Oracle从入门到总裁:​​​​​​https://blog.csdn.net/weixin_67859959/article/details/135209645 表空间创建完成后,后期还可以为表空间增加数据文件,以扩大数据的存储空间。增加表空间数据文件的基本语法结构如下所示。 ALTER TABLESPACE 表空间名…

SpringCloud:服务拆分和远程调用

程序员老茶 🙈作者简介:练习时长两年半的Java up主 🙉个人主页:程序员老茶 🙊 P   S : 点赞是免费的,却可以让写博客的作者开心好久好久😎 📚系列专栏:Java全栈&#…