GPT+Python近红外光谱数据分析

news2024/11/20 12:25:58

原文链接:GPT+Python近红外光谱数据分析icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzUzNTczMDMxMg==&mid=2247603913&idx=1&sn=6eb8fd6f1abcdd8160815997a13eb03d&chksm=fa82172ecdf59e389a860547a238bb86c7f38ae3baa14e97c7490a52ef2a2c206f88d503a5eb&token=1727551034&lang=zh_CN#rd第一:ChatGPT入门基础

1、ChatGPT(GPT-1、GPT-2、GPT-3、GPT-3.5、GPT-4模型的演变)

2、ChatGPT对话初体验

3、GPT-4与GPT-3.5的区别,以及与国内大语言模型(文心一言、星火等)的区别

4、ChatGPT科研必备插件(Data Interpreter、Wolfram、WebPilot、MixerBox Scholar、ScholarAI、Show Me、AskYourPDF等)

5、定制自己的专属GPTs(制作专属GPTs的两种方式:聊天/配置参数、利用Knowledge上传本地知识库提升专属GPTs性能、利用Actions通过API获取外界信息、专属GPTs的分享)

6、GPT Store简介

图片

第二:ChatGPT提示词使用方法与技巧

1、ChatGPT Prompt (提示词)使用技巧(为ChatGPT设定身份、明确任务内容、提供任务相关的背景、举一个参考范例、指定返回的答案格式等)

2、常用的ChatGPT提示词模板

3、基于模板的ChatGPT提示词优化

4、利用ChatGPT4 及插件优化提示词

5、通过promptperfect.jina.ai优化提示词

6、利用ChatGPT4 及插件生成提示词

7、ChatGPT4突破Token限制实现接收或输出万字长文(什么是Token?Token数与字符数之间的互相换算、五种方法提交超过Token限制的文本、四种方法让ChatGPT的输出突破Token限制)

8、控制ChatGPT的输出长度(使用修饰语、限定回答的范围、通过上下文限定、限定数量等)

9、利用ChatGPT4 及插件保存喜欢的ChatGPT提示词并一键调用

10、案例演示:利用ChatGPT4实现网页版游戏的设计、代码自动生成与运行

图片

第三:ChatGPT助力信息检索与总结分析
1、传统信息检索方法与技巧总结(Google Scholar、ResearchGate、Sci-Hub、GitHub、关键词检索+同行检索、文献订阅)

2、利用ChatGPT4 及插件实现联网检索文献

3、利用ChatGPT4及插件总结分析文献内容(三句话摘要、子弹式要点摘要、QA摘要、表格摘要、关键词与关键句提取、页面定位、多文档对比、情感分析)

4、利用ChatGPT4 及插件总结Youtube视频内容

图片

第四:ChatGPT助理论文写作与投稿

1、利用ChatGPT4自动生成论文的总体框架

2、利用ChatGPT4完成论文翻译(指定翻译角色和翻译的领域、给一些背景提示)

3、利用ChatGPT4实现论文语法校正

4、利用ChatGPT4完成段落结构及句子逻辑润色

5、利用ChatGPT4完成论文评审意见的撰写与回复

图片

第五:ChatGPT助力python入门基础

1、Python环境搭建( 下载、安装与版本选择)。

2、如何选择Python编辑器?(IDLE、Notepad++、PyCharm、Jupyter…)

3、Python基础(数据类型和变量、字符串和编码、list和tuple、条件判断、循环、函数的定义与调用等)

4、第三方模块的安装与使用

5、Numpy模块库(Numpy的安装;ndarray类型属性与数组的创建;数组索引与切片;Numpy常用函数简介与使用)

6、Matplotlib基本图形绘制(线形图、柱状图、饼图、气泡图、直方图、箱线图、散点图等)、图形的布局(多个子图绘制、规则与不规则布局绘制、向画布中任意位置添加坐标轴)

图片

第六:ChatGPT助力近红外光谱数据预处理

1、近红外光谱数据标准化与归一化(为什么需要标准化与归一化?)

2、近红外光谱数据异常值、缺失值处理

3、近红外光谱数据离散化及编码处理

4、近红外光谱数据一阶导数与二阶导数

5、近红外光谱数据去噪与基线校正

6、近红外光谱数据预处理中的ChatGPT提示词模板

图片

第七:ChatGPT助力多元线性回归近红外光谱分析

1、多元线性回归模型(工作原理、最小二乘法)

2、岭回归模型(工作原理、岭参数k的选择、用岭回归选择变量)

3、LASSO模型(工作原理、特征选择、建模预测、超参数调节)

4、Elastic Net模型(工作原理、建模预测、超参数调节)

5、多元线性回归、岭回归、LASSO、Elastic Net的Python代码实现

6、多元线性回归中的ChatGPT提示词模板

图片

第八:ChatGPT助力BP神经网络近红外光谱分析

1、BP神经网络的基本原理(人工智能发展过程经历了哪些曲折?人工神经网络的分类有哪些?BP神经网络的拓扑结构和训练过程是怎样的?什么是梯度下降法?)

2、训练集和测试集划分? BP神经网络常用激活函数有哪些?如何查看模型参数?

3、BP神经网络参数(隐含层神经元个数、学习率)的优化(交叉验证)

4、值得研究的若干问题(欠拟合与过拟合、评价指标的设计、样本不平衡问题等)

5、BP神经网络的Python代码实现

6、BP神经网络中的ChatGPT提示词模板

图片

第九:ChatGPT助力支持向量机(SVM)近红外光谱分析

1、SVM的基本原理(什么是经验误差最小和结构误差最小?SVM的本质是解决什么问题?SVM的四种典型结构是什么?核函数的作用是什么?什么是支持向量?)

2、SVM扩展知识(如何解决多分类问题? SVM的启发:样本重要性排序及样本筛选)

3、SVM的Python代码实现

4、SVM中的ChatGPT提示词模板

图片

第十:ChatGPT助力决策树,随机森林,Adaboost,XGBoost和LighGBM近红外光谱分析

1、决策树的基本原理(什么是信息熵和信息增益?ID3和C4.5算法的区别与联系)

2、随机森林的基本原理与集成学习框架(为什么需要随机森林算法?广义与狭义意义下的“随机森林”分别指的是什么?“随机”提现在哪些地方?随机森林的本质是什么?)

3、Bagging与Boosting集成策略的区别

4、Adaboost算法的基本原理

5、Gradient Boosting Decision Tree (GBDT)模型的基本原理

6、XGBoost与LightGBM简介

7、决策树、随机森林、Adaboost、XGBoost与LightGBM的Python代码实现

8、决策树、随机森林、Adaboost、XGBoost与LightGBM的ChatGPT提示词模板

图片

第十一:ChatGPT助理遗传算法近红外光谱分析

1、群优化算法

2、遗传算法(Genetic Algorithm)的基本原理(什么是个体和种群?什么是适应度函数?选择、交叉与变异算子的原理与启发式策略)

3、遗传算法的Python代码实现

4、遗传算法中的ChatGPT提示词模板

图片

图片

第十二:ChatGPT助力近红外光谱变量降维与特征选择

1、主成分分析(PCA)的基本原理

2、偏最小二乘(PLS)的基本原理(PCA与PLS的区别与联系;PCA除了降维之外,还可以帮助我们做什么?)

3、近红外光谱波长选择算法的基本原理(Filter和Wrapper;前向与后向选择法;区间法;无信息变量消除法等)

4、PCA、PLS、特征选择算法的Python代码实现

5、PCA、PLS、特征选择算法中的ChatGPT提示词模板

6、案例演示:1)基于L1正则化的近红外光谱波长筛选

2)基于信息熵的近红外光谱波长筛选

3)基于Recursive feature elimination的近红外光谱波长筛选

4)基于Forward-SFS的近红外光谱波长筛选

图片

第十三:ChatGPT助力pytorch入门基础

1、深度学习框架(PyTorch、Tensorflow、Keras等)

2、PyTorch简介(动态计算图与静态计算图机制、PyTorch的优点)

3、PyTorch的安装与环境配置(Pip vs. Conda包管理方式、验证是否安装成功)

4、张量(Tensor)的定义,以及与标量、向量、矩阵的区别与联系)

5、张量(Tensor)的常用属性与方法(dtype、device、requires_grad、cuda等)

6、张量(Tensor)的创建(直接创建、从numpy创建、依据概率分布创建)

7、张量(Tensor)的运算(加法、减法、矩阵乘法、哈达玛积(element wise)、除法、幂、开方、指数与对数、近似、裁剪)

8、张量(Tensor)的索引与切片

9、PyTorch的自动求导(Autograd)机制与计算图的理解

10、PyTorch常用工具包及API简介(torchvision(transforms、datasets、model)、torch.nn、torch.optim、torch.utils(Dataset、DataLoader))

图片

第十四:ChatGPT助力卷积网络近红外光谱分析

1、深度学习与传统机器学习的区别与联系

2、卷积神经网络的基本原理

3、卷积神经网络参数调试技巧

4、卷积神经网络的进化史:LeNet、AlexNet、Vgg-16/19、GoogLeNet、ResNet等经典深度神经网络的区别与联系

5、利用PyTorch构建卷积神经网络(Convolution层、Batch Normalization层、Pooling层、Dropout层、Flatten层等)

6、卷积神经网络中的ChatGPT提示词模板

7、案例演示:(1)CNN预训练模型实现物体识别;(2)利用卷积神经网络抽取抽象特征;(3)自定义卷积神经网络拓扑结构;(4)基于一维卷积神经网络的近红外光谱模型建立;(5)基于二维卷积神经网络的红外图像分类识别模型建立

图片

图片

第十五:ChatGPT助力近红外光谱迁移学习

1、迁移学习算法的基本原理(为什么需要迁移学习?为什么可以迁移学习?迁移学习的基本思想是什么?)

2、常用的迁移学习算法(基于实例、特征和模型,譬如:TrAdaboost算法)

3、基于卷积神经网络的迁移学习算法

4、迁移学习的Python代码实现

图片

第十六:ChatGPT助力自编码近红外光谱分析

1、自编码器(Auto-Encoder的工作原理)

2、常见的自编码器类型简介(降噪自编码器、深度自编码器、掩码自编码器等)

3、自编码器的Python代码实现

4、自编码器中的ChatGPT提示词模板

5、案例演示:1)基于自编码器的近红外光谱数据预处理

2)基于自编码器的近红外光谱数据降维与有效特征提取

图片

第十七:ChatGPT助力U-Net多光谱图像语义分割

1、语义分割(Semantic Segmentation)

2、U-Net模型的基本原理

3、语义分割、U-Net模型中的ChatGPT提示词模板

图片

第十八:ChatGPT助理深度学习模型可解释性与可视化方法

1、什么是模型可解释性?为什么需要对深度学习模型进行解释?

2、常用的可视化方法有哪些(特征图可视化、卷积核可视化、类别激活可视化等)?

3、类激活映射CAM(Class Activation Mapping)、梯度类激活映射GRAD-CAM、局部可解释模型-敏感LIME(Local Interpretable Model-agnostic Explanation)等原理

4、t-SNE的基本概念及使用t-SNE可视化深度学习模型的高维特征

5、深度学习模型可解释性与可视化中的ChatGPT提示词模板

图片

图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1661648.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

推荐几款国内的AI写作工具,好用免费还能在线生成AI文案

AI写作简介: 在专业领域中,人工智能技术的进步正以前所未有的速度推动着写作行业的革新。当前,我们见证了生成式人工智能(AI)在文本产生领域的广泛应用,其对提升创作效率和拓展创意边界的贡献是显著的。以…

Vue3知识总结-1

前面学习一段时间的前端,但是没有进行过太多的练习,并且对于里面一些重要的知识点也没有去着重的记忆,所以打算在学习Vue3的时候,做一些笔记,方便后面翻看。这个笔记会对于学习一些做一些,而不是一个整体的…

java中的oop(一)、概念

一、三大主线 (非官方) 成员:属性、方法、构造器、(代码块,内部类); 特征:封装、继承、多态、(抽象)——三大特征; 关键字: this、…

免费软件不一定不好用,分享5个实用小工具

​ 今天继续分享5个超实用的小工具,都是非常小巧精致的免费软件。 1.广告拦截与隐私保护——AdGuard ​ AdGuard是一款跨平台广告拦截和隐私保护软件,支持Windows、MacOS、Android和iOS系统。它能有效屏蔽不必要的广告、弹窗和跟踪,同时抵御…

(Mac)RocketMQ的本地安装测试(详细图示)

目录 部署服务 namesrv / broker下载解压缩运行 namesrvnohup ./bin/mqnamesrv & 启动命令详解运行 broker 测试收发消息运行自带的生产者测试类运行自带的消费者测试类 部署 Dashboard 可视化下载打包运行访问 部署服务 namesrv / broker 下载解压缩 官网下载 https://r…

会话劫持攻击就在我们身边,我们要如何防范

会话劫持攻击(Session Hijacking)是一种网络攻击方式,攻击者通过某种手段获取到用户的会话标识(Session ID),然后使用这个会话标识冒充合法用户进行恶意操作。这种攻击方式允许攻击者以合法用户的身份访问受…

【go项目01_学习记录10】

操作数据库 1 插入数据2 显示文章2.1 修改 articlesShowHandler() 函数2.2 代码解析 3 编辑文章3.1 添加路由3.2 编辑articlesEditHandler()3.3 新建 edit 模板3.4 代码重构3.5 完善articlesUpdateHandler()3.6 测试更新3.7 封装表单验证 1 插入数据 . . . func articlesStore…

测径仪供风设备的操作和维护

关键字:测径仪供风系统,测径仪供风设备,测径仪冷却设备维护,测径仪冷却设备故障, 测径仪的供风设备包括高压鼓风机和空气过滤装置两部分。 鼓风机要求有独立的供电系统和电源开关,安装时应调整好风机叶轮的旋向,保证接通电源后鼓风机正常工作。另外&am…

Nginx rewrite项目练习

Nginx rewrite练习 1、访问ip/xcz,返回400状态码,要求用rewrite匹配/xcz a、访问/xcz返回400 b、访问/hello时正常访问xcz.html页面server {listen 192.168.99.137:80;server_name 192.168.99.137;charset utf-8;root /var/www/html;location / {root …

深度学习论文: LightGlue: Local Feature Matching at Light Speed

深度学习论文: LightGlue: Local Feature Matching at Light Speed LightGlue: Local Feature Matching at Light Speed PDF: https://arxiv.org/pdf/2306.13643 PyTorch代码: https://github.com/shanglianlm0525/CvPytorch PyTorch代码: https://github.com/shanglianlm0525/…

202466读书笔记|《一天一首古诗词》——借问梅花何处落,风吹一夜满关山

202466读书笔记|《一天一首古诗词》——借问梅花何处落,风吹一夜满关山 上册下册 《一天一首古诗词》作者李锡琴,蛮早前加入书架的已购买书籍,这次刚好有点时间,利用起来读完。 赏析没有细看,只读了诗词部分&#xff0…

YOLOv5改进 | 注意力机制 | 理解全局和局部信息的SE注意力机制

在深度学习目标检测领域,YOLOv5成为了备受关注的模型之一。本文给大家带来的是能够理解全局和局部信息的SE注意力机制。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方…

多模态模型Mini-Gemini:代码模型数据均开源,MiniCPM小钢炮2.0全家桶四连发,可以在Android 手机端上运行的大模型,效果还不错

多模态模型Mini-Gemini:代码模型数据均开源,MiniCPM小钢炮2.0全家桶四连发,可以在Android 手机端上运行的大模型,效果还不错。 多模态模型Mini-Gemini:代码模型数据均开源 香港中文大学终身教授贾佳亚团队提出多模态模…

印象笔记使用技巧

印象笔记使用技巧 印象笔记(Evernote)是一款非常流行的笔记软件,它为用户提供了一个方便的平台来记录、整理和管理各种信息。无论是个人生活还是工作场景,印象笔记都可以帮助用户提高效率、整理思绪、轻松查找信息。下面是一些印象…

gpustat 不能使用问题

突然间就不能用了,可能是环境出了问题,如果GPU没问题的话,那么换个环境重新安装试一下(pip install gpustat),目前是换个环境就可以了(做个笔记)

Mapreduce | 案例

根据提供的数据文件【test.log】 数据文件格式:姓名,语文成绩,数学成绩,英语成绩 完成如下2个案例: (1)求每个学科的平均成绩 (2)将三门课程中任意一门不及格的学生过滤出来 (1)求每…

DVWS靶场全总结(详细)--主要用来复习(暂未完善,累了大体框架已成)

目录 一、环境安装 二、开始闯关 2.1暴力破解 2.1.1 low: 2.1.2 medium: 2.2命令注入 2.2.1 low: ​编辑​编辑 2.2.2 medium: 2.3跨站请求伪造(CSRF) 2.3.1 low: 2.3.2 medium: 2.4文件包含漏洞 2.4.1 low: 2.4.2 medium: 2.…

暴力数据结构之栈与队列(队列详解)

1.队列的定义 队列是一种特殊的线性表,它遵循先进先出(FIFO)的原则。在队列中,只允许在表的一端进行插入操作(队尾),而在另一端进行删除操作(队头)。这种数据结构确保了最…

【栈】Leetcode 比较含退格的字符串

题目讲解 844. 比较含退格的字符串 算法讲解 使用栈模拟,但遇到#字符就让栈顶元素出栈,但是在写的过程中有两点需要注意:当#出现在第一个位置,需要特殊处理一下;当栈为空的时候,还出现#字符需要特殊处理…

普通人可以抓住黄金价格大涨的投资机会吗?

黄金价格的波动对于投资者来说,总是充满了诱惑和挑战。近期,全球经济形势变化多端,地缘政治冲突频发,这些因素无不对黄金市场造成影响,使得黄金价格出现大幅波动。那么,作为普通人,能否抓住黄金…