目录
1. 从感知机到神经网络
2. 最简单的神经网络
3. 激活函数的引入
1. 从感知机到神经网络
之前章节我们了解了感知机,感知机可以处理与门、非与门、或门、异或门等逻辑运算;不过在感知机中设定权重的工作是由人工来做的,而设定合适的,符合预期的输入与输出的权重,是一项非常繁重的工作。神经网络就是为了实现这一工作,它的一个重要性质就是可以自动的从数据中学到合适的权重参数。
神经网络又叫人工神经网络(Artificial Neural Network,即ANN ),是20世纪80 年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象, 建立某种简单模型,按不同的连接方式组成不同的网络。
2. 最简单的神经网络
从下图可以看到,最左边的即输入层, 0 层;最右边的即输出层,2 层;中间的即中间层,中间层又叫隐藏层,1 层。其中只有输入层、中间层具有权重,可以称之为 2 层网络,也可以按照网络的级数称之为 3 层网络。这个图看起来和感知机没啥区别。
我们回想一下感知机:
可以用数学式来表示上图的感知机
这个数学式可以进行改写,
把输入信号的总和 (b+w1*x1+w2*x2) 设置为 x,则相当于
此时 h(x) 函数会将输入信号的总和转换为输出信号,这种函数就称之为激活函数(activation function)。
3. 激活函数的引入
有了激活函数的引入,原来的感知机图,就可以转换为神经元图。激活函数是连接感知机和神经网络的桥梁。
请注意,此处激活函数以阈值为界,一旦输入超过阈值,就切换输出,这样的函数称之为“阶跃函数”。感知机是选择了阶跃函数,如果感知机选择了其他函数作为激活函数,那么就进入了神经网络的世界了!
请大家注意,激活函数的不同,是感知机和神经网络的根本差异。