2024数维杯B题详细思路代码数学建模高质量保姆级

news2024/11/25 18:52:00

2024年第九届数维杯大学生数学建模挑战赛题目

B 题 生物质和煤共热解问题的研究

(1)基于附件一,请分析正己烷不溶物(INS)对热解产率(主要
考虑焦油产率、水产率、焦渣产率)是否产生显著影响?并利用图像 加以解释。

我们可以首先计算各样品的平均焦油产率、水产率和焦渣产率,然后对比含有和不含有INS的样品之间的差异。我们将焦油产率、水产率和焦渣产率的平均值绘制成柱状图,以图像的形式展示正己烷不溶物对这些产率的影响。
首先,我们需要计算各样品的焦油产率、水产率和焦渣产率。在附件一中,每个样品有多个试验数据,我们需要计算每个样品的平均值。
然后,我们可以比较含有和不含有INS的样品的平均值,并绘制成柱状图,以展示正己烷不溶物对热解产率的影响。
在这里插入图片描述

要体现正己烷不溶物(INS)对热解产率的显著影响,可以使用统计学中的假设检验方法。常见的假设检验方法包括 t 检验和方差分析(ANOVA)。在这种情况下,我们可以使用方差分析来比较不同正己烷不溶物含量下的热解产率是否存在显著差异。
具体步骤如下:

提出假设:

零假设(H0):不同正己烷不溶物含量下的热解产率均值相等。
备择假设(H1):不同正己烷不溶物含量下的热解产率均值不全相等。

进行方差分析:

计算组间平方和(SSB)和组内平方和(SSW)。
计算均方(MSB 和 MSW)。
计算 F 统计量:F = MSB / MSW。

判断显著性:

根据自由度和显著水平查找 F 分布表,找到临界 F 值。
如果计算得到的 F 统计量大于临界 F 值,则拒绝零假设,认为不同正己烷不溶物含量下的热解产率均值存在显著差异。
在进行方差分析之前,需要对数据进行一些前提检验,如正态性检验和方差齐性检验,以确保方差分析结果的可靠性。

在这里插入图片描述

(2)热解实验中,正己烷不溶物(INS)和混合比例是否存在交互
效应,对热解产物产量产生重要影响?若存在交互效应,在哪些具体
的热解产物上样品重量和混合比例的交互效应最为明显?

要分析正己烷不溶物(INS)和混合比例是否存在交互效应,可以使用二因素方差分析(Two-way ANOVA)来进行。二因素方差分析可以同时考虑两个因素(正己烷不溶物和混合比例)及其交互效应对因变量(热解产物产量)的影响。
具体步骤如下:

提出假设:

零假设(H0):正己烷不溶物、混合比例以及它们的交互效应对热解产物产量没有显著影响。
备择假设(H1):正己烷不溶物、混合比例或它们的交互效应对热解产物产量有显著影响。

进行二因素方差分析:

计算组间平方和(SSB1、SSB2、SSB12)和组内平方和(SSW)。
计算均方(MSB1、MSB2、MSB12、MSW)。
计算 F 统计量:F1 = MSB1 / MSW,F2 = MSB2 / MSW,F12 = MSB12 / MSW。

判断显著性:

根据自由度和显著水平查找 F 分布表,找到临界 F 值。
如果计算得到的 F 统计量大于临界 F 值,则拒绝零假设,认为正己烷不溶物、混合比例或它们的交互效应对热解产物产量有显著影响。

在具体分析交互效应的时候,可以通过检查交互作用的 P 值来确定哪些交互效应是显著的。如果交互作用显著,可以进一步分析各水平组合下的热解产物产量,以确定哪些组合对产量影响最为明显。

(3)根据附件一,基于共热解产物的特性和组成,请建立模型
优化共解热混合比例,以提高产物利用率和能源转化效率

要建立模型优化共热解混合比例,以提高产物利用率和能源转化效率,首先需要确定一个目标函数,该函数应考虑热解产物的利用率和能源转化效率。一种可能的目标函数是最大化焦油产率和水产率的总和,同时最小化焦渣产率。同时,也可以考虑最大化正己烷可溶物产率作为另一个目标。
然后,可以使用数学优化方法,如线性规划、非线性规划或进化算法等,来求解最优的混合比例。在这个过程中,需要考虑混合比例的约束条件,如混合比例之和为100等。
具体步骤如下:

确定目标函数:

目标函数1:最大化焦油产率和水产率的总和,同时最小化焦渣产率。
、目标函数1=焦油产率+水产率−焦渣产率目标函数1=焦油产率+水产率−焦渣产率

目标函数2:最大化正己烷可溶物产率。

目标函数2=正己烷可溶物产率目标函数2=正己烷可溶物产率

确定约束条件:

混合比例之和为100。

使用数学优化方法求解最优混合比例。

(4)根据附件二,请分析每种共热解组合的产物收率实验值与
理论计算值是否存在显著性差异?若存在差异,请通过对不同共热解
组合的数据进行子组分析,确定实验值与理论计算值之间的差异在哪
些混合比例上体现?

要分析每种共热解组合的产物收率实验值与理论计算值是否存在显著性差异,可以使用假设检验方法,比如 t 检验。首先,对每种组合进行 t 检验,检验实验值与理论计算值之间的差异是否显著。然后,可以对不同混合比例进行子组分析,确定实验值与理论计算值之间的差异在哪些混合比例上体现。
具体步骤如下:

对每种共热解组合进行 t 检验:

假设零假设(H0):实验值与理论计算值之间的差异不显著。
假设备择假设(H1):实验值与理论计算值之间的差异显著。

对于显著的组合,进行子组分析:

对每个混合比例进行 t 检验,检验实验值与理论计算值之间的差异是否显著。

(5)基于实验数据,请建立相应的模型,对热解产物产率进行
预测

要建立对热解产物产率进行预测的模型,可以使用回归分析。回归分析可以帮助我们理解自变量(例如混合比例)与因变量(例如焦油产率、水产率、焦渣产率等)之间的关系,并用于预测因变量的取值。
具体步骤如下:

确定因变量和自变量:

因变量:焦油产率、水产率、焦渣产率等。
自变量:混合比例等。

收集和整理实验数据,构建数据集。

选择合适的回归模型:

线性回归:假设因变量和自变量之间存在线性关系。
多项式回归:假设因变量和自变量之间存在高阶关系。
其他回归模型:根据数据特点选择适当的回归模型。

拟合回归模型:

使用数据拟合回归模型,得到模型参数。

模型评估:

分析模型的拟合程度,评估模型的准确性和可靠性。

进行预测:

使用建立的回归模型对新数据进行预测,得到热解产物的产率预测值。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1660208.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Spring如何控制Bean的加载顺序

前言 正常情况下,Spring 容器加载 Bean 的顺序是不确定的,那么我们如果需要按顺序加载 Bean 时应如何操作?本文将详细讲述我们如何才能控制 Bean 的加载顺序。 场景 我创建了 4 个 Class 文件,分别命名为 FirstInitialization Se…

2024年文化交流与综合艺术国际学术会议(ICCECA 2024)

2024年文化交流与综合艺术国际学术会议(ICCECA 2024) 2024 International Conference on Cultural Exchange and Comprehensive Art 一、【会议简介】 22024年文化交流与综合艺术国际学术会议,将汇集全球的艺术家和学者。 在这个盛大的学术会议上,来自世…

SQLServer数据库还原重命名

将备份的数据还原,因为数据库名冲突,需要将还原的数据库重命名 1.新建数据库,例如Test1 2.右键数据库-》任务-》还原,进入还原数据库界面 选择设备,然后找到还原数据库备份文件 3.点击文件选项,选中‘将所…

论文阅读:《Sequence can Secretly Tell You What to Discard》,减少推理阶段的 kv cache

目前各类大模型都支持长文本,例如 kimi chat 以及 gemini pro,都支持 100K 以及更高的上下文长度。但越长的上下文,在推理过程中需要存储的 kv cache 也越多。假设,数据的批次用 b 表示,输入序列的长度仍然用 s 表示&a…

Python专题:六、循环语句(1)

补充知识 代码的注释 #描述性文字 阅读代码的人更好的理解代码 while循环语句 x<100条件控制语句&#xff0c;Totalx,Total自增加x&#xff0c;x1&#xff0c;x自增加1&#xff0c;x<100此条件满足时&#xff0c;执行while循环&#xff0c;当x101时&#xff0c;x101条…

开源教程「动手学大模型应用开发」,从零基础到掌握大模型开发的关键技能!

LLM 正逐步成为信息世界的新革命力量&#xff0c;其通过强大的自然语言理解、自然语言生成能力&#xff0c;为开发者提供了新的、更强大的应用开发选择。随着国内外井喷式的 LLM API 服务开放&#xff0c;如何基于 LLM API 快速、便捷地开发具备更强能力、集成 LLM 的应用&…

JAVA文件的简单操作

文件IO&#xff08;Input和Output&#xff09; 文件的输入和输出是人为规定的&#xff0c;那么什么是输入&#xff1f;什么是输出捏&#xff1f;在这里统一已CPU为基准 例如&#xff1a;将文件由内存写入硬盘就是输出&#xff0c;有硬盘写入内存就是输入。可以总结为&#xff…

Mybatis-Plus常用的增删改查坑

添加依赖 <!--实体类上加上Data注解就不用写get&#xff0c;set&#xff0c;toString&#xff0c;equals等方法了--><dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId><optional>true</optional…

机器学习算法应用——K近邻分类器(KNN)

K近邻分类器&#xff08;KNN&#xff09;&#xff08;4-2&#xff09; K近邻分类器&#xff08;K-Nearest Neighbor&#xff0c;简称KNN&#xff09;是一种基本的机器学习分类算法。它的工作原理是&#xff1a;在特征空间中&#xff0c;如果一个样本在特征空间中的K个最相邻的样…

docker端口映射成功,docker端口不生效的问题解决,外界无法访问docker映射端口

docker端口映射不生效的问题解决 问题 使用docker run -p 88848:8848后&#xff0c;显示容器启动正常&#xff0c;并且使用docker logs –f xxx能够看到容器可以正常启用&#xff0c;docker ps 可以看到容器启动成功&#xff0c;并且端口已经映射,但是在浏览器访问相关地址&am…

05_SpringCloud

文章目录 SpringCloud服务调用的负载均衡Ribbon负载均衡 面向接口的服务调用OpenFeign 客户端FeignClient日志输出服务调用的超时设置 配置中心Nacos配置中心Nacos配置中心的使用Nacos配置的持久化 SpringCloud 服务调用的负载均衡 问题引出 // 服务发现List<ServiceInstan…

第十二届蓝桥杯省赛真题 Java C 组【原卷】

文章目录 发现宝藏【考生须知】试题 A: ASC试题 B: 空间试题 C: 卡片试题 D: 相乘试题 E: 路径试题 F: 时间显示试题 G: 最少砝码试题 H : \mathrm{H}: H: 杨辉三角形试题 I: 左孩子右兄弟试题 J : \mathrm{J}: J: 双向排序 发现宝藏 前些天发现了一个巨牛的人工智能学习网站…

【SpringBoot篇】基于Redis分布式锁的 误删问题 和 原子性问题

文章目录 &#x1f354;Redis的分布式锁&#x1f6f8;误删问题&#x1f388;解决方法&#x1f50e;代码实现 &#x1f6f8;原子性问题&#x1f339;Lua脚本 ⭐利用Java代码调用Lua脚本改造分布式锁&#x1f50e;代码实现 &#x1f354;Redis的分布式锁 Redis的分布式锁是通过利…

傻傻分不清楚:JDK/JRE/JVM的区别和联系

在Java开发的世界里&#xff0c;JDK、JRE和JVM是三个经常听到的术语。 对于初学者来说&#xff0c;它们的概念和区别可能会让人感到困惑。 这篇文章详细解释下三个组件的含义、它们之间的区别和联系。 一&#xff0c;JDK&#xff1a;Java Development Kit JDK是Java开发工具…

umi6.x + react + antd的项目增加403(无权限页面拦截),404,错误处理页面

首先在src/pages下创建403&#xff0c;404&#xff0c;ErrorBoundary 403 import { Button, Result } from antd; import { history } from umijs/max;const UnAccessible () > (<Resultstatus"403"title"403"subTitle"抱歉&#xff0c;您无权…

shell-for循环语句练习题

1.计算从1到100所有整数的和 [rootlocalhost ~]# vim 1.sh #!/bin/bash sum0 #定义变量sum初始值为0 for i in {1..100} #for循环 i取值从1到100 do sum$[ isum ] #在每次循环中&#xff0c;变量i的值会依次取1到100的整数值。 #sum是一个累加器&#xff0c;初始值…

2024数维杯C题24页完整解题思路+1-4问代码解题+运行高清结果图

C题天然水合物资源量评价 点击链接加入群聊【2024数维杯数学建模ABC题资料汇总】&#xff1a; 2024数维杯C题完整思路24页配套代码1-4问后续参考论文https://www.jdmm.cc/file/2710638 下面内容是持续更新的 根据勘探数据确定天然气水合物资源的分布范围。 假设勘探区域内的…

Python深度学习基于Tensorflow(4)Tensorflow 数据处理和数据可视化

文章目录 构建Tensorflow.data数据集TFRecord数据底层生成TFRecord文件数据读取TFRecord文件数据图像增强 数据可视化 构建Tensorflow.data数据集 tf.data.Dataset表示一串元素&#xff08;element&#xff09;&#xff0c;其中每个元素包含一个或多个Tensor对象。例如&#xf…

【SVN-TortoiseSVN】SVN 的简介与TortoiseSVN 安装使用教程

目录 &#x1f31e;前言 &#x1f30a;1. SVN 的简介 &#x1f30d;1.1 SVN是什么 &#x1f30d;1.2 SVN 工作原理 &#x1f30d;1.3 TortoiseSVN 术语及定义 &#x1f30a;2. TortoiseSVN 安装与汉化 &#x1f30a;3. SVN 基本操作-TortoiseSVN &#x1f30d;3.1 浏览…

35个矩阵账号,如何通过小魔推打造2704万+视频曝光?

在如今的短视频时代&#xff0c;矩阵发布的作用被发挥到极致&#xff0c;通过各个短视频平台的流量分发&#xff0c;虽然视频质量不如那些头部的IP&#xff0c;但是在视频数量上却能做到轻松碾压&#xff0c;让自己的品牌与门店有更多的声量&#xff0c;这就是如今短视频平台对…