Anaconda安装和深度学习环境的安装(TensorFlow、Pytorch)

news2025/1/23 13:16:53

换了新电脑,重新装一下anaconda这些编程环境。好久没装过了,自己也需要查查资料,然后记录一下,分享给别人。

目标,三个环境:1.anaconda基础环境(包含xgboost和lightgbm),2.TensorFlow环境,3.Pytorch环境(能用GPU加速的那种。)


Anaconda安装

这个装了太多次了,很简单,选一个自己喜欢的版本下载就行。一般没什么特殊要求就直接开官网下载就行:Distribution | Anaconda

之前是打开直接点下载,现在还需要你填邮件,当然也可以点击跳过。然后找自己对应的电脑系统安装就行。

我看了一下,这个Windows版本是py3.11,我觉得太高了,就去以往的列表找一下之前的版本的安装包。Index of / (anaconda.com)

我看这个2023年的7月感觉不错,我就下载这个版本安装了。


下载好的exe文件直接双击运行: 

点击下一步,我同意,然后这里可以选自己用,也可以选所有人用:

选择安装路径

这个选前2个就行:

 第三个是清除安装包,我觉得没必要。

然后等待安装完成:

一直点击继续,到最后这两个去掉勾选就行了。

点击完成!基础的环境就安装好了。


环境变量

查看一下anaconda路径有没有在环境变量里面,其实不在环境变量里面也不影响运行,但是在的话更好,这与会避免后面可能的报错。

在查找里面搜索如下的 编辑系统环境变量,

点击环境变量 

在用户变量里面找到Path这一列,双击

 

 我里面没得环境变量,按道理来说安装的时候会让你勾选的。我这个安装包没看见,所以我自己手动把anaconda,还有里面的带bin 和scripts的这些路径都添加到环境变量了。同学可以模仿这个路径复制进去就行。

设置好之后点确定确定。

然后win+r,输入cmd,打开

输入下面红色框框的东西,出现了信息就说明安装好了,环境变量也成功了。

安装xgboost和lightgbm

这两个包时做表格数据的机器学习效果最好的模型。若是不需要的同学,只做深度学习的话就可以跳过。

在菜单键的所有应用中,打开anaconda的命令提示符,

输入:

pip install xgboost

等待安装好就行。

若出现一屏幕的红色字体报错的话:

不要慌,你看见time out就表示是超时了,我们只需要再输入一遍回车等待就行。还超时的话就不停地输入这个安装命令和回车。。装好为止。

lightgbm也是一样的

pip install lightgbm

等待安装好就行。


测试

装好了,当然要看看能不能正常运行了。我们首先打开jupyter notebook(现在实习的公司用的是jupyter lab,都可以,我比较喜欢notebook)

还是打开conda的命令提示符:

 切换到D盘(因为我代码放在D盘的),然后输入jupyter notebook

等待一下,就能看到下面的网址了

按道理来说,一个会自动跳转到默认的浏览器打开他们的,但是我新电脑没有跳转。。算了,无伤大雅,我手动复制到浏览器打开,然后沿着代码文件的路径进去打开要运行的代码文件:

 直接重启运行全部代码

OK完美运行,速度很快(毕竟是新电脑)

测试完成!基础环境就已经装好了,下面来装TensorFlow。


TensorFlow安装

选择版本

深度学习首先得问题就是用CPU跑,还是GPU跑。。我当然想用GPU跑,不然买新电脑是做啥、、GPU跑得多块,一下就训练完了。然后库的版本,我其实也想装个比较新的版本,但是TensorFlow的环境这几年真的不太行了,毕竟谷歌自己都不怎么用了,现在都去弄pytorch了。

然后我自己去官网看了看:

Build from source on Windows  |  TensorFlow (google.cn)

发现他们从2.10版本之后的版本,win系统都不支持cuda了,见鬼,看来我想装2.11版本以上的TensorFlow 这英伟达显卡起不来作用了,那就老老实实装CPU版本吧。

看看CPU版本的对照型号:

我还是感觉太新的版本不好,咋们就来个python3.11,TensorFlow2.15的吧。


虚拟环境安装

为什么要创建虚拟环境呢?就是防止版本冲突,深度学习依赖的库太多,要是你在基础环境里面哪天不小心升级了一个包,然后整个深度学习框架不能用了就会很尴尬。。

所以我们先要创建一个虚拟环境,然后在里面安装TensorFlow。

 还是打开命令提示符,输入下面的代码

conda create --name tensorflow_env python=3.11 anaconda

 这一行的功能是创建一个名称为:“tensorflow_env”的虚拟环境,安装py3.11的内核,我后面带了一个anaconda是因为我喜欢在这个TensorFlow环境里面把所有的anaconda组件都带上,免得如果只装py的话,后面还需要安装一堆常用的包(pandas,numpy,seaborn)等。。。

然后会跳出来一堆包的名称,输入y,同意安装

安装好了上面会提示你怎么激活环境,怎么退出环境:

输入“conda activate tensorflow_env”激活虚拟环境后,还可以在里面“conda --version”,查看版本信息,‘conda info’,还可以看看里面有哪些库:“pip list”

然后就是安装TensorFlow了。很简单其实,就是pip就行了。我还作死看了一下他默认给我装的3.11是3.11几,一看好家伙,是3.11.9,这无线接近3.12的版本的py能上TensorFlow2.15吗,我只能先试试了。

输入:

pip install tensorflow==2.15.0

然后等待安装

仔细一看他装的包,keras就在里面,不用额外装了。

感觉可以用了,我去跑个代码试试:

可以没问题是能运行的,但是好像keras库里面发出来警告,keras里面的TensorFlow的api没有更新,虽然能用。。但是好像也不长久了。。没事,反正后面keras也可以用pytorch的框架了,想这样过渡凑合着用吧。

(ps,不想这样被警告的同学,可以换TensorFlow2.14版本试一下,说不定就还好。)

TensorFlow安装完成!虽然用不了GPU加速,但是也还不错了,也是没办法的事情官网都不支持cuda了。

下面去安装pytorch 的环境。pytorch就可以用gpu了。


Pytorch安装

版本选择

pytorch的安装就有点讲究了,除了前面说的虚拟环境外,torch包的版本,py 的版本,还有cuda 的版本要都对应上。

(不过现在的pytorch安装是不需要装什么cuda驱动的,只要版本是对的,就一行命令就安装好了)

首先在英伟达的控制面板里面去找自己显卡的的CUDA Toolkit的版本

没这个就在搜索里面搜

可以看到我的CUDA Toolkit是12.2.146的版本,也就是说CUDA 12.2以下的版本应该都是支持的。

怎么查看cuda和pytorch版本的关系呢?,可以查看官网的安装命令:

Previous PyTorch Versions | PyTorch

上面会有每个torch版本的对应的cuda的版本命令:

例如这里的2.2.2就支持cuda11.8和12.2的版本。

那我们12.2的cuda就都可以选了,无所谓,那就来最新版本的pytorch2.3吧!

我就准备用这个命令安装了。 

cuda和pytorch版本对应了后,去找python 的版本。

然后去官网查看py和pytorch的版本对应关系:
GitHub - pytorch/vision: Datasets, Transforms and Models specific to Computer Vision

其实基本上3.8-3.11这个版本的python都是支持2.0以上版本的 torch 的。

那我们还是弄一个3.11版本的py吧。

开始安装!


虚拟环境安装

所以我们先要创建一个虚拟环境,然后在里面安装pytorch。

 还是打开命令提示符,输入下面的代码

conda create --name pytorch_env python=3.11

 这一行的功能是创建一个名称为:“pytorch_env”的虚拟环境,安装py3.11的内核,这次后面没有带anaconda,所以这个环境后面还需要安装一堆常用的数据科学的包(pandas,numpy,seaborn)等。。。

然后还是会跳出来一堆包的名称,但是明显少一些,都是很基础的包。输入y,同意安装

安装好了上面会提示你怎么激活环境,怎么退出环境:

同样我们激活这个虚拟环境

conda activate pytorch_env

然后我从官网上掏出了最新的安装命令:Start Locally | PyTorch

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121

我是cuda是最新的12.2才敢这样做的,其他同学的版本不一样的可不要学我,要去查找对应cuda 的torch版本的安装命令。

等待安装,包还挺大。

(等待安装的时候我就在想,这个torch环境在anaconda里面,所以我外面要装stable diffusion的时候还要装一下torch环境,不过这样也好,隔开的,一个科研跑数据,一个画画,挺好的。)

安装过程可能会提示你什么什么包没有,装一下就好了。然后还可以反复运行上面pytorch 的安装代码,没事,就反复运行尝试就行。

还可以参考李沐老师的这本书的教程,b站也有网课。

安装 — 动手学深度学习 2.0.0 documentation (d2l.ai)

pytorch 的生态和环境还是很丰富,啥问题都可以上网找得到的。

安装完了, 我在这个虚拟环境下输入python,进入py 的环境,然后输入下面的py代码测试是不是能用到cuda显卡:

import torch
torch.cuda.is_available()

好耶,是可以的。看来现在的pytorch安装是不需要装什么cuda驱动的。

安装完了,我去跑个代码试试,找了个vgg,还有点大的神经网络。

完全能运行,一点问题都没有。我显卡被狂用。。温度上升。。

大功告成!机器学习和深度学习的环境都装备好了! 后面就轻松愉快的写代码了


(创作不易,各位看官觉得还不错能帮到你们就点个赞和收藏吧)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1658209.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

地图位置的二维码怎么做?在线制作地图二维码的方法

怎么定位一个位置做成二维码呢?随着互联网的不断发展,现在通过扫描二维码来获取导航位置的方式有很多的场景都在应用。这种方式的好处在于其他人都可以通过这个二维码来获取位置,有利于分享。 导航地图二维码可以在电脑的二维码生成器上快速…

springboot3项目练习详细步骤(第一部分:用户业务模块)

目录 环境准备 用户模块 注册 注册接口文档 ​编辑 实现结构 Spring Validation 登录 登录的接口文档 实现登录逻辑 JWT令牌 完善登录认证 拦截器 获取用户详细信息 接口文档 Usercontroller类中编写方法接口 忽略属性返回 优化代码ThreadLocal 更新用户基本信…

win11 安装oracle11g详细流程及问题总结

1.安装包下载地址 本案例操作系统, Oracle 11g下载-Oracle 11g 64位/32位下载官方版(附详细的安装图解教程) - 多多软件站多多为大家免费提供Oracle 11g下载,包含64位/32位官方版本,并附详细的Oracle 11g安装图解教程,同时希望能…

全网最详细的Python自动化测试(unittest框架)

🔥 交流讨论:欢迎加入我们一起学习! 🔥 资源分享:耗时200小时精选的「软件测试」资料包 🔥 教程推荐:火遍全网的《软件测试》教程 📢欢迎点赞 👍 收藏 ⭐留言 &#x1…

【AIGC】深入探索AIGC技术在文本生成与音频生成领域的应用

🚀文章标题 🚀AIGC之文本生成🚀应用型文本生成🚀创作型文本生成🚀文本辅助生成🚀重点关注场景 🚀音频及文字—音频生成🚀TTS(Text-to-speech)场景🚀乐曲/歌曲生成&#x…

鸿蒙开发-ArkTS语言-容器-非线性容器

鸿蒙开发-UI-web 鸿蒙开发-UI-web-页面 鸿蒙开发-ArkTS语言-基础类库 鸿蒙开发-ArkTS语言-并发 鸿蒙开发-ArkTS语言-并发-案例 鸿蒙开发-ArkTS语言-容器 文章目录 前言 一、非线性容器 1.HashMap 2.HashSet 3.TreeMap 4.TreeSet 5.LightWeightMap 6.LightWeightSet 7.P…

【qt】QString字符串

前言: 这节很轻松,大家可以放心食用 ♪(・ω・)ノ QString目录 一.与cString的区别二.隐式共享三.初始化四.判断是否为空串五.字符串的长度六.添加字符串1.尾加2.任意位置加 七.替换字符串八.修改字符串九.删除字符串1.清…

《吸血鬼崛起》大剑技能是什么 大剑武器连招教学

V Rising《吸血鬼崛起》是一款热门游戏,在STEAM刚刚推出了正式版,而在游戏中如何利用武器连招输出高是新手玩家常常困扰的问题。如果你还不太清楚,那么一起来看看V Rising中的武器连招推荐吧。 在V Rising中,你可以在数字栏里装备…

物联网实战--平台篇之(五)账户界面

目录 一、界面框架 二、首页(未登录) 三、验证码登录 四、密码登录 五、帐号注册 六、忘记密码 本项目的交流QQ群:701889554 物联网实战--入门篇https://blog.csdn.net/ypp240124016/category_12609773.html 物联网实战--驱动篇https://blog.csdn.net/ypp240124016/cat…

压缩归档库-Snappy介绍

1.简介 Snappy 是一个 C 编写的压缩和解压缩库,由 Google 开发。它专为速度而设计,而不是最大压缩率或与其他压缩库的兼容性。 Snappy 通常用于需要快速压缩和解压缩的场景。 Snappy具有以下属性: 快速:压缩速度达到250 MB/秒及…

AMCA乙二胺,可发出蓝色荧光具有较好的反应活性和稳定性

基本信息: 中文名:AMCA乙二胺 英文名:AMCA Ethylenediamine 分子量:503.35 外观:无色至浅黄色固体/粉末 规格:10mg、25mg、50mg(同时可提供mg级以及kg级的产品开发服务) 纯度&…

数智结合,智慧合同让法务管理发挥内在价值

在当今这个信息化、数字化飞速发展的时代,数据已成为企业重要的战略资源。法务管理作为企业内部控制和风险防范的重要环节,其重要性不言而喻。然而,传统的法务管理模式往往存在效率低下、信息孤岛、反应迟缓等问题。在这样的背景下&#xff0…

在Ubuntu安装RPM文件

Ubuntu软件源包含数千个deb软件包,可以从Ubuntu软件中心或使用apt命令行安装。 Deb是所有基于Debian的Linux发行版,例如包括Ubuntu,Linux mint等发行版使用的安装包格式。 如果某些软件在Ubuntu软件源中不可用,可以通过启用适当的…

为什么智慧校园是校园信息化发展的必然趋势

怎么从数字化学校的服务形式和运维办理上进行建造,如何为高校供给快捷、高效、有用的运维服务是数字化学校完成“才智”的重要目标,也是学校提高教育的必然趋势。 首先,智能可视化办理,可视化是数字化学校发展的必然趋势。可视化即…

软件系统工程建设全套资料(交付清单)

软件全套精华资料包清单部分文件列表: 工作安排任务书,可行性分析报告,立项申请审批表,产品需求规格说明书,需求调研计划,用户需求调查单,用户需求说明书,概要设计说明书&#xff0c…

子查询之一(单行子查询, 多行子查询)

1. 子查询 子查询是指一个查询语句嵌套在另一个查询语句内部的查询.这个特性在MySQL4.1开始引入. SQL中子查询的使用大大增强了SELECT查询的能力.因为很多时候查询需要从结果集中获取数据,或者需要从同一个表中先计算得到一个数据结果,然后与这个数据结…

基于51单片机锅炉水位-温度-压力检测控制系统proteus仿真设计

基于51单片机锅炉监控系统仿真设计( proteus仿真程序原理图报告讲解视频) 仿真图proteus7.8及以上 程序编译器:keil 4/keil 5 编程语言:C语言 设计编号:S0056 1.主要功能: 基于51单片机AT89C51/52(与…

ESP-WROOM-32配置Arduino IDE开发环境

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、下载Arduino IDE二、安装工具集三、测试样例1.选则开发板2.连接开发板3.示例程序 四、使用官方示例程序总结 前言 之前用了很多注入STM32、树莓派Pico和Ar…

车载测试系列:车载测试流程

车载测试流程是保证软件质量的重要支撑,优秀的团队都必须拥有规范的流程体系支撑,它能够约束测试人员的测试行为,约束测试环境的测试精度,提升测试的覆盖度,保证团队成员工作的协调性。 该测试流程建立的依据&#xf…

三.Django--ORM(操作数据库)

目录 1 什么是ORM 1.1 ORM优势 1.2ORM 劣势 1.3 ORM与数据库的关系 2 ORM 2.1 作用 2.2 连接数据库 2.3 表操作--设置字段 2.4 数据库的迁移 写路由增删改查操作 项目里的urls.py: app里的views.py: 注意点: 1 什么是ORM ORM中文---对象-关系映射 在MTV,MVC设计…