Android GPU渲染屏幕绘制显示基础概念(1)

news2024/11/19 20:30:09

Android GPU渲染屏幕绘制显示基础概念(1)

 

Android中的图像生产者OpenGL,Skia,Vulkan将绘制的数据存放在图像缓冲区中,Android中的图像消费SurfaceFlinger从图像缓冲区将数据取出,进行加工及合成。

SurfaceFlinger是Android最重要的图像消费者,Activity绘制的界面,都会传递到SurfaceFlinger,SurfaceFlinger的作用是接收图像缓冲区数据,然后交给HWComposer或者OpenGL做合成。

SurfaceFlinger是如何接收图像缓冲区的数据呢?先了解Layer(层)概念,一个Layer包含一个Surface,一个Surface对应一块图形缓冲区,而一个界面是由多个Surface组成的,所以它们会一一对应到SurfaceFlinger的Layer中。SurfaceFlinger通过读取Layer的缓冲数据,就相当于读取界面上Surface的图像数据。

f6311d4ad8a746239681165015c398af.webp

图像数据→CPU→显卡驱动→显卡(GPU)→显存(帧缓冲)→显示器

App绘制及SF的合成分别由对应的软件VSYNC驱动:VSYNC-app驱动App绘制;VSYNC-sf驱动SF进行合成。
VSYNC-app与VSYNC-sf按需发射,如果App要更新界面,它申请VSYNC-app,如果没有App申请VSYNC-app,那么VSYNC-app不发射。同样,当App更新界面,它会把对应的Graphic Buffer放到Buffer Queue中。Buffer Queue通知SF进行合成,此时SF申请VSYNC-sf。如果SF不申请VSYNC-sf,VSYNC-sf将不再发射。如果App持续不断的更新,它就得不断申请VSYNC-app;而对SF来说,只要有合成任务,它就得再去申请VSYNC-sf。Choreographer 可以接收系统的 VSYNC 信号,统一管理应用的输入、动画和绘制等任务的执行时机

VSYNC-app与VSYNC-sf相互独立。VSYNC-app触发App绘制,Vsync-sf触发SF合成。App绘制与SF合成都会加大CPU负载,为避免绘制与合成造成性能问题,VSYNC-app可与VSYNC-sf稍微错开。

  • Vsync offset机制: Vsync-app、Vsync-sf并不是同时通知的,Vsync-sf相对晚些,但对于App来说,可认为大约同时发生。

硬件VSYNC同步信号发送周期是固定的,既然都相互独立在自己进程里等待VSync信号到来,然后各司其职做自己的工作,那通过更改偏移量的方式把“APP进程”和“sf进程”接收到VSync信号的时间错开就可以实现:在一个硬件VSync信号周期内完成“渲染”和“合成”两件事,具体方案如下:

VSyncPhaseOffsetNs = 0,硬件VSync发生后,直接转发给app进程,让它开始绘制;
sfVSyncPhaseOffsetNs ≥1,硬件VSync发生后,延迟几毫秒再转发给sf进程,因为app已经渲染完成,sf合成刚刚渲染的图层;
好了,在一个硬件VSync周期(如熟知的16ms)内“渲染”和“合成”的工作都已经完成了,并且由于GPU性能过于快速,距离下次硬件VSync信号发送甚至还有14ms...等下一次硬件VSync信号到来时,显示框架完成,画面切换,和之前的方案比,同样是60HZ的屏幕,用户从按下按钮到看到画面更新,只需要等待1个VSync信号周期,也就是约16ms。

6f47c5129abf4a298fafadd2849a4ed9.png

SF合成的是App的上一帧,而App当前正在绘制的那一帧,要等到下一个VSYNC-sf来临再进行合成。Choreographer用于实现CPU/GPU的绘制是在VSYNC到来时开始。

GPU(Graphics Processin Unit,图形处理器),是一种专门用于图像运算的处理器,在计算机系统中通常被称为 "显卡"的核心部件就是 GPU。

2653b93885ae4a43a90f4d1569bb94d6.webp

 

UI 组件在绘制到屏幕之前,都需要经过 Rasterization(栅格化)操作,而栅格化又是一个非常耗时的操作。Rasterization 栅格化是绘制那些 Button、Shape、Path、String、Bitmap 等显示组件最基础的操作。栅格化将这些 UI 组件拆分到显示器的不同像素上进行显示。这是一个非常耗时的操作,GPU 的引入就是为了加快栅格化。

Android APP而言,GPU硬件加速绘制可以分为:

第一阶段:APP在UI线程构建渲染的命令及数据.
第二阶段:CPU将数据上传(共享或者拷贝)给GPU,PC一般有显存,但ARM嵌入式设备内存一般是GPU-CPU共享内存.
第三阶段:通知GPU渲染,CPU一般不会阻塞等待GPU渲染结束,效率低,CPU通知结束后就返回继续执行其他任务,Fence辅助GPU CPU同步.
第四阶段:swapBuffers,通知SurfaceFlinger图层合成.
第五阶段:SurfaceFlinger合成图层,如果之前提交的GPU渲染任务没结束,则等待GPU渲染完成,再合成(Fence机制),合成依然是依赖GPU,不过这作为下一个任务.

第一阶段主要是CPU工作,这个阶段前期运行在UI线程,后期部分运行在RenderThread(渲染线程),第二个阶段主要运行在渲染线程,CPU将数据同步(共享)给GPU,之后,GPU进行渲染,CPU一般不会阻塞等待GPU渲染完毕,而是通知结束后就返回。CPU返回后,会直接将GraphicBuffer提交给SurfaceFlinger,告诉SurfaceFlinger进行合成,但是这个时候GPU可能并未完成之前的图像渲染,这时候就牵扯到一个同步,Android中,用的是Fence机制,SurfaceFlinger合成前会查询Fence,如果GPU渲染没有结束,则等待GPU渲染结束,GPU结束后,会通知SurfaceFlinger进行合成,SF合成后,提交显示,最终完成图像的渲染显示。

a73dbc500b5b47a9a725f331471a47e3.webp

GraphicBuffer是整个图形系统的核心,渲染操作都将在此对象上进行,包括同步给GPU和HWC,每当应用有显示需求时,应用会向系统申请一块GraphicBuffer内存,这块内存将会共享给GPU用于渲染工作,接着会同步给HWC用于合成和显示,可以把每一个GraphicBuffer对象看做是一个个渲染完成的图层。

在Android里,GraphicBuffer的同步主要借助Fence同步机制,最大特点是能处理GPU、CPU、HWC的同步。GPU处理一般是异步的,CPU命令并不是即刻被GPU执行的,而是被缓存在缓冲区中,而CPU可能不知道执行时机,除非CPU阻塞等待,但毫无疑问会使CPU、GPU并行处理效率降低,至少,渲染线程是被阻塞,所以,CPU提交命令后就返回,不等待GPU处理。SurfaceFlinger图形合成,SurfaceFlinger需要知道什么时候GraphicBuffer被GPU处理填充完毕,这个时候就是Fence机制发挥作用的地方。

一个GraphicBuffer对象的生命周期:

渲染阶段:应用有绘图需求了,系统分配一块内存给应用,应用调用GPU执行绘图,此时使用者是GPU。
合成阶段:GPU渲染完成后将图层传递给sf进程,sf进程决定由谁来合成,hwc或者GPU,如果使用GPU合成,那么此时GraphicBuffer的使用者依旧是GPU,如果使用hwc合成,那么此时GraphicBuffer的使用者是hwc。
显示阶段:所有的GraphicBuffer在此阶段使用者都是hwc,因为hwc控制着显示芯片。
从生命周期可以看出GraphicBuffer对象在流转的过程中,会被GPU、CPU、DPU三个不同的硬件访问。如果同一块内存能够被多个硬件设备访问,就需要一个同步机制,Android图形系统中,Fence机制就是用来不同模块访问时的数据安全,Fence的逻辑实现可参考Java的synchronized互斥锁,可把Fence理解为一把硬件的互斥锁,每个需要访问GraphicBuffer的角色,在使用前都要检查这把锁是否unlock了才能进行操作,否则就要等待(waitForever)。

BufferQueue

它是一个封装了GraphicBuffer的队列,BufferQueue对外提供了GraphicBuffer对象出列/入列的接口。BufferQueue生产者/消费者模式,大多数情况,APP作为GraphicBuffer的生产者,sf进程作为GraphicBuffer的消费者,共同操作一个buffer队列。

生产者:APP进程

1、producer->dequeueBuffer()

​ 从队列取出一个状态为“FREE”的buffer,此时该buffer状态变化为:FREE->DEQUEUED

2、producer->queueBuffer()

​ 将渲染完成的buffer入列,此时该buffer状态变化为:DEQUEUED->QUEUED

消费者:sf进程

1、consumer->acquireBuffer()

​ 从队列中取出一个状态为“QUEUED”的渲染完的buffer准备去合成送显,此时该buffer的状态变化为:QUEUED->ACQUIRED

2、consumer->releaseBuffer()

​ buffer内容已经显示过了,可以重新入列给APP使用了,此时该buffer的状态变化为:ACQUIRED->FREE

每个Buffer的一生,就是在不断地循环FREE->DEQUEUED->QUEUED->ACQUIRED->FREE这个过程,这中间有任何一个环节出现延迟,反应到屏幕上就是应用出现了卡顿。

无论App使用哪种API进行图形开发绘制,在绘制流程结束后,APP作为图层的生产者总是会调用BufferQueue的queueBuffer()方法将GraphicBuffer入列,一旦有新的图层加入队列,就意味着作为图层消费者的SF进程可以开始工作了。

当APP端的Surface发生变化以后,Layer的onFrameAvailable()方法会被调用,经过层层转发,最终由MessageQueue#requestNextVSync()执行VSync信号的请求。
APP进程中的每一个Surface对象,对应SF进程当中的一个Layer对象,它俩共享一个BufferQueue,
Surface作为图层的生产者,封装了出列入列的操作,
Layer作为图层的消费者,封装了获取渲染图层和释放图层的操作。

 

一个APP完整的显示流程大致分为三个阶段
app-请求
APP页面元素一旦发生变化,调用invalidate()/requestLayout()方法请求下一次VSync信号,此时sf什么都不做。
app-VSync & sf-请求
app-VSync信号到来后,APP进程执行绘图三部曲,绘图流程结束后,sf收到onFrameAvailable(),sf进程请求VSync。
sf-VSync
sf-VSync信号到来,sf进程执行合成,接着将结果提交给hwc,等待下次硬件VSync信号发生,切换Framebuffer展示给用户。

 

 

 

 

Android性能:Double Buffer双缓冲/Triple Buffer三缓冲丢帧Jank与无丢帧No Jank-CSDN博客文章浏览阅读850次,点赞6次,收藏13次。Android ADB调试真机设备Android ADB(Andorid Debug Bridge),是Android开发中有用的测试和调试工具。使用Android ADB调试设备,直接在Windows的dos命令窗口输入命名adb即可,如图:为什么执行adb命令后是这样?_android 抓trace。三Buffer轮转情况下,基本不会有这种情况的发生,渲染线程一般在 dequeueBuffer 时,都可以顺利拿到可用的 Buffer (如果 dequeueBuffer 本身耗时那就也会拉长时间)。https://blog.csdn.net/zhangphil/article/details/138213964

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1657343.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Tensorflow2.0笔记 - 循环神经网络RNN做IMDB评价分析

本笔记记录使用SimpleRNNCell做一个IMDB评价系统情感二分类问题的例子。 import os import time import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras import datasets, layers, optimizers, Sequential, metrics, Inputos.envir…

模拟实现链表的功能

1.什么是链表? 链表是一种物理存储结构上非连续存储结构,数据元素的逻辑顺序是通过链表中的引用链接次序实现的 。 实际中链表的结构非常多样,以下情况组合起来就有8种链表结构: 单向或者双向 带头或者不带头 …

机器学习:基于线性回归、岭回归、xgboost回归、Lasso回归、随机森林回归预测卡路里消耗

前言 系列专栏:机器学习:高级应用与实践【项目实战100】【2024】✨︎ 在本专栏中不仅包含一些适合初学者的最新机器学习项目,每个项目都处理一组不同的问题,包括监督和无监督学习、分类、回归和聚类,而且涉及创建深度学…

小丑的身份证和复印件 (BFS + Floyd)

本题链接:登录—专业IT笔试面试备考平台_牛客网 题目: 样例: 输入 2 10 (JOKERjoke #####asdr) 输出 12 思路: 根据题意,要求最短时间,实际上也可以理解为最短距离。 所以应该联想到有关最短距离的算法&…

【图文教程】PyCharm安装配置PyQt5+QtDesigner+PyUic+PyRcc

这里写目录标题 PyQt5、Qt Designer、PyUic、PyRcc简介(1)下载安装PyQt5(2)打开designer.exe所在位置(3)在PyCharm中配置QtDesigner(4)验证QtDesigner是否配置成功(5&…

重学java 34.API 5.工具类

有失才有悟,崩塌后的重建只会更牢固 —— 24.5.9 一、System类 1.概述: 系统相关类,是一个工具类 2.特点: a.构造私有,不能利用构造方法new对象 b.方法都是静态的 3.使用: 类名直接调用 4.方法 方法 …

Linux系统入侵排查(二)

前言 为什么要做系统入侵排查 入侵排查1 1.排查历史命令记录 2.可疑端口排查 3.可疑进程排查 4.开机启动项 4.1系统运行级别示意图: 4.2查看运行级别命令 4.3系统默认允许级别 4.4.开机启动配置文件 入侵排查2: 1.启动项文件排查&#xff1…

Python从0到POC编写--实用小脚本

UrlCheck: 假设我们要对一份 url 列表进行访问是不是 200 , 量多的话肯定不能一个一个去点开看, 这个时候我们可以借助脚本去判断, 假如有一份这样的列表, 这份列表呢,奇奇怪怪,有些写错了…

基于Spring Boot的公司OA系统设计与实现

基于Spring Boot的银行OA系统设计与实现 开发语言:Java 框架:springboot JDK版本:JDK1.8 数据库工具:Navicat11 开发软件:eclipse/myeclipse/idea 系统部分展示 用户登录界面,在银行OA系统运行后&#x…

刷题第3天(中等题):LeetCode24--两两交换链表中的节点--递归法

LeetCode24: 给你一个链表,两两交换其中相邻的节点,并返回交换后链表的头节点。你必须在不修改节点内部的值的情况下完成本题(即,只能进行节点交换)。 示例 1: 输入:head [1,2,3,4…

FastDFS - 无法获取服务端连接资源:can‘t create connection to/xx.xx.xx.xx:0

问题描述 根据官方文档 安装完FastDFS服务器后, 服务正常启动,但是在 SpringBoot 项目使用 fastdfs-client 客户端报错无法获取服务端连接资源:cant create connection to/xx.xx.xx.xx:0, 一系列排查发现是获取到的 tracker 端口为 0 。 co…

Docx文件误删除如何恢复?别再花冤枉钱了,4个高效恢复软件!

不管是工作还是学习,总是会与各种各样的文件打交道。文件量越多就越容易出现文件丢失、文件误删的情况。遇到这些情况,失去的文件还能找回来吗?只要掌握了一些数据恢复方法,是很有机会恢复回来的,下面我会将这些方法分…

生信分析进阶2 - 利用GC含量的Loess回归矫正reads数量

在NGS数据比对后,需要矫正GC偏好引起的reads数量误差可用loess回归算法,使用R语言对封装的loess算法实现。 在NIPT中,GC矫正对检测结果准确性非常重要,具体研究参考以下文章。 Noninvasive Prenatal Diagnosis of Fetal Trisomy…

static静态成员变量和静态方法

当有new创建一个对象的,里面属性和方法,通过构造函数,能定义多个不同的对象,在我们做面向对象开发的时候,给一个场景,人在一个班级的时候,你的老师可能是固定的。 当我们用构造方法去构造的时候,每次都去传递一个固定的实参去定义个老师。 这样好会显得代码非常的…

DNS 解析在网络传输中有什么意义?

首先我们先说说什么是DNS解析? DNS解析是将域名解析为对应的IP地址的过程。DNS它作为将域名和IP地址相互映射的一个分布式数据库,能够使人更方便地访问互联网。DNS解析的过程就是寻找哪个IP地址对应你所输入的网址,然后将网页内容返回给用户…

常用的文件摆渡系统有哪些 | 好用的文件摆渡系统推荐

一、什么是文件摆渡系统 简单来说,文件摆渡系统是一种高效的、以文件为中心的文件管理系统,它的出现旨在解决企业在文件传输、共享和管理过程中的种种痛点。 更为值得一提的是,文件摆渡系统还具备强大的安全合规性,能够有效防止…

MultiBooth:文本驱动的多概念图像生成技术

在人工智能的领域,将文本描述转换为图像的技术正变得越来越先进。最近,一个由清华大学和Meta Reality Labs的研究人员组成的团队,提出了一种名为MultiBooth的新方法,它能够根据用户的文本提示,生成包含多个定制概念的图…

pytorch加载模型出现错误

大概的错误长下面这样: 问题出现的原因: ​很明显,我就是犯了第一种错误。 网上的修改方法: 我觉得按道理哈,确实,蓝色部分应该是可以把问题解决了的​。​但是我没有解决,因为我犯了另外一个错…

Django关于ORM的增删改查

Django中使用orm进行数据库的管理,主要包括以下步骤 1、创建model, 2、进行迁移 3、在视图函数中使用 以下的内容可以先从查询开始看,这样更容易理解后面删除部分代码 主要包括几下几种: 1、增 1)实例例化model,代…

struct和union大小计算规则

Union 一:联合类型的定义 联合也是一种特殊的自定义类型,这种类型定义的变量也包含一系列的成员,特征是这些成员公用同一块空间(所以联合也叫共用体) 比如:共用了 i 这个较大的空间 二: 联合的…