Densenet+SE

news2025/1/13 15:55:21
  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊# 前言

前言

这周开始学习关于经典模型的改进如加注意力机制,这周学习Densenet加通道注意力即SE注意力机制。

##SE注意力机制简介
SE(Squeeze-and-Excitation)注意力机制是一种用于增强卷积神经网络(CNN)性能的注意力机制,特别适用于图像分类任务。该机制由Jie Hu等人于2018年提出,旨在通过动态调整特征图中每个通道的权重,从而增强模型对重要特征的感知能力。

SE注意力机制的基本思想是利用全局信息来动态调整特征图中各个通道的重要性。具体来说,该机制包括两个关键步骤:Squeeze(压缩)和Excitation(激励)。

Squeeze(压缩):
在Squeeze阶段,通过全局池化操作(通常是全局平均池化)来压缩特征图在空间维度上的信息,将每个通道的特征图转换为单个数字。
假设输入特征图的尺寸为 𝐻×𝑊×𝐶其中 𝐻和 𝑊 分别是特征图的高度和宽度,𝐶是通道数。通过全局平均池化操作,将每个通道的特征图转换为长度为 𝐶的向量,表示每个通道的全局重要性。
Excitation(激励):
在Excitation阶段,利用一个小型的全连接(或者称为多层感知机)网络来学习每个通道的激励权重。将Squeeze阶段得到的长度为 𝐶 的向量输入到一个两层的全连接网络中。通过激活函数(如ReLU)和sigmoid函数,输出每个通道的激励权重(或者称为通道注意力权重)。这些权重用于对原始特征图进行加权,从而增强对重要特征的感知能力。

在这里插入图片描述

神经网络插入注意力机制

以resnet为例
在这里插入图片描述

SE插入Densenet

from collections import OrderedDict
import torch.utils.checkpoint as cp
import torch
import torch.nn as nn
import torch.nn.functional as F

def _bn_function_factory(norm, relu, conv):
    def bn_function(*inputs):
        concated_features = torch.cat(inputs, 1)
        bottleneck_output = conv(relu(norm(concated_features)))
        return bottleneck_output

    return bn_function


class _DenseLayer(nn.Module):
    def __init__(self, num_input_features, growth_rate, bn_size, drop_rate, efficient=False):
        super(_DenseLayer, self).__init__()
        self.add_module('norm1', nn.BatchNorm2d(num_input_features)),
        self.add_module('relu1', nn.ReLU(inplace=True)),
        self.add_module('conv1', nn.Conv2d(num_input_features, bn_size * growth_rate,
                                           kernel_size=1, stride=1, bias=False)),
        self.add_module('norm2', nn.BatchNorm2d(bn_size * growth_rate)),
        self.add_module('relu2', nn.ReLU(inplace=True)),
        self.add_module('conv2', nn.Conv2d(bn_size * growth_rate, growth_rate,
                                           kernel_size=3, stride=1, padding=1, bias=False)),

        self.add_module('SE_Block', SE_Block(growth_rate, reduction=16))
        self.drop_rate = drop_rate
        self.efficient = efficient

    def forward(self, *prev_features):
        bn_function = _bn_function_factory(self.norm1, self.relu1, self.conv1)
        if self.efficient and any(prev_feature.requires_grad for prev_feature in prev_features):
            bottleneck_output = cp.checkpoint(bn_function, *prev_features)
        else:
            bottleneck_output = bn_function(*prev_features)
        new_features = self.SE_Block(self.conv2(self.relu2(self.norm2(bottleneck_output))))
        if self.drop_rate > 0:
            new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)
        return new_features


class _Transition(nn.Sequential):
    def __init__(self, num_input_features, num_output_features):
        super(_Transition, self).__init__()
        self.add_module('norm', nn.BatchNorm2d(num_input_features))
        self.add_module('relu', nn.ReLU(inplace=True))
        self.add_module('conv', nn.Conv2d(num_input_features, num_output_features,
                                          kernel_size=1, stride=1, bias=False))
        self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2))


class _DenseBlock(nn.Module):
    def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate, efficient=False):
        super(_DenseBlock, self).__init__()
        for i in range(num_layers):
            layer = _DenseLayer(
                num_input_features + i * growth_rate,
                growth_rate=growth_rate,
                bn_size=bn_size,
                drop_rate=drop_rate,
                efficient=efficient,
            )
            self.add_module('denselayer%d' % (i + 1), layer)

    def forward(self, init_features):
        features = [init_features]
        for name, layer in self.named_children():
            new_features = layer(*features)
            features.append(new_features)
        return torch.cat(features, 1)


class SE_Block(nn.Module):
    def __init__(self, ch_in, reduction=16):
        super(SE_Block, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)  # 全局自适应池化
        self.fc = nn.Sequential(
            nn.Linear(ch_in, ch_in // reduction, bias=False),
            nn.ReLU(inplace=True),
            nn.Linear(ch_in // reduction, ch_in, bias=False),
            nn.Sigmoid()
        )

    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avg_pool(x).view(b, c)  # squeeze操作
        y = self.fc(y).view(b, c, 1, 1)  # FC获取通道注意力权重,是具有全局信息的
        return x * y.expand_as(x)  # 注意力作用每一个通道上


class DenseNet(nn.Module):
    def __init__(self, growth_rate, block_config, num_init_features=24, compression=0.5, bn_size=4, drop_rate=0,
                 num_classes=10, small_inputs=True, efficient=False):

        super(DenseNet, self).__init__()
        assert 0 < compression <= 1, 'compression of densenet should be between 0 and 1'

        # First convolution
        if small_inputs:
            self.features = nn.Sequential(OrderedDict([
                ('conv0', nn.Conv2d(3, num_init_features, kernel_size=3, stride=1, padding=1, bias=False)),
            ]))
        else:
            self.features = nn.Sequential(OrderedDict([
                ('conv0', nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)),
            ]))
            self.features.add_module('norm0', nn.BatchNorm2d(num_init_features))
            self.features.add_module('relu0', nn.ReLU(inplace=True))
            self.features.add_module('pool0', nn.MaxPool2d(kernel_size=3, stride=2, padding=1,
                                                           ceil_mode=False))

        # Each denseblock
        num_features = num_init_features
        for i, num_layers in enumerate(block_config):
            block = _DenseBlock(
                num_layers=num_layers,
                num_input_features=num_features,
                bn_size=bn_size,
                growth_rate=growth_rate,
                drop_rate=drop_rate,
                efficient=efficient,
            )
            self.features.add_module('denseblock%d' % (i + 1), block)
            num_features = num_features + num_layers * growth_rate
            if i != len(block_config) - 1:
                trans = _Transition(num_input_features=num_features,
                                    num_output_features=int(num_features * compression))
                self.features.add_module('transition%d' % (i + 1), trans)
                num_features = int(num_features * compression)
            # self.features.add_module('SE_Block%d' % (i + 1),SE_Block(num_features, reduction=16))

        # Final batch norm
        self.features.add_module('norm_final', nn.BatchNorm2d(num_features))

        # Linear layer
        self.classifier = nn.Linear(num_features, num_classes)

    def forward(self, x):
        features = self.features(x)
        out = F.relu(features, inplace=True)
        out = F.adaptive_avg_pool2d(out, (1, 1))
        out = torch.flatten(out, 1)
        out = self.classifier(out)
        return out

验证效果

以猴痘病识别为例
在这里插入图片描述
在这里插入图片描述

总结

SE注意力机制的优点在于它能够有效地捕捉不同特征通道之间的关系,并且只引入了少量的额外参数和计算成本。通过引入SE模块,可以显著提升CNN模型在图像分类等任务上的性能,使其更加关注重要的特征,从而提高模型的泛化能力和准确性。SE后面还有许多注意力机制如将通道和空间注意机制结合的CBAM注意力机制,SE的改进ECA注意力机制等,后续将继续深入学习。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1654118.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Flutter笔记:手动配置VSCode中Dart代码自动格式化

Flutter笔记 手动配置VSCode中Dart代码自动格式化 - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite&#xff1a;http://thispage.tech/Email: 291148484163.com. Shenzhen ChinaAddress of this article:https://blog.csd…

景源畅信电商:抖音小店需要请专业人员装修店铺吗?

在数字营销的海洋中&#xff0c;抖音小店如一艘航船&#xff0c;装修得当才能吸引顾客登船。那么&#xff0c;小店是否需要请专业人员来装修呢?答案是肯定的。 一、视觉冲击力是关键 专业设计师擅长运用色彩、布局与图像创造出强烈的视觉冲击力&#xff0c;这对于抓住用户的注…

亲测快捷高效的编写测试用例方法

前言 测试用例是任何测试周期的第一步&#xff0c;对任何项目都非常重要。如果在此步骤中出现任何问题&#xff0c;则在整个软件测试过程中都会扩大影响。如果测试人员在创建测试用例模板时使用正确的过程和准则&#xff0c;则可以避免这种情况。 在本篇文章中将分享一些简单而…

stack的使用

1.栈的定义 我们可以看到模板参数里面有一个容器适配器 &#xff0c;什么是适配器&#xff1f;比如充电器就叫做电源适配器&#xff0c;用在做转换&#xff0c;对电压进行相关的转换适配我们的设备。栈&#xff0c;队列不是自己直接管理数据&#xff0c;是让其他容器管理数据&a…

MVC与MVVM架构模式

1、MVC MVC&#xff1a;Model-View-Controller&#xff0c;即模型-视图-控制器 MVC模式是一种非常经典的软件架构模式。从设计模式的角度来看&#xff0c;MVC模式是一种复合模式&#xff0c;它将多个设计模式结合在一种解决方案中&#xff0c;从而可以解决许多设计问题。 MV…

【Linux】线程的内核级理解详谈页表以及虚拟地址到物理地址之间的转化

一、线程的概念 对于进程来说&#xff0c;进程创建时间和空间成本较高&#xff0c;因为进程是承担分配系统资源的基本实体&#xff0c;所以线程的出现就成为了必然。Linux线程与进程非常相似&#xff0c;Linux设计者在设计之初觉得如果再为线程设计数据结构和调度算法就会使整个…

JUC下的ScheduledThreadPoolExecutor详解

ScheduledThreadPoolExecutor是Java并发编程框架中一个强大且灵活的线程池实现&#xff0c;专为定时与周期性任务而设计。作为ThreadPoolExecutor的子类&#xff0c;它不仅继承了线程池管理的高效与灵活性&#xff0c;还内置了基于优先级队列的延迟任务调度机制&#xff0c;支持…

【stm-4】PWM驱动LED呼吸灯 PWM驱动舵机PWM驱动直流电机

1.PWM驱动LED呼吸灯 void TIM_OC1Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct); //结构体初始化输出比较单元 void TIM_OC2Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct); void TIM_OC3Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef*…

智能家居4 -- 添加接收消息的初步处理

这一模块的思路和前面的语言控制模块很相似&#xff0c;差别只是调用TCP 去控制 废话少说&#xff0c;放码过来 增添/修改代码 receive_interface.c #include <pthread.h> #include <mqueue.h> #include <string.h> #include <errno.h> #include <…

算法学习(6)-最短路径

目录 Floyd-Warshall算法 Dijkstra算法 Bellman-Ford算法 Bellman-Ford的队列优化 最短路径算法对比分析 Floyd-Warshall算法 现在回到问题&#xff1a;如何求任意两点之间的最短路径呢&#xff1f; 通过之前的学习&#xff0c; 我们知道通过深度或广度优先搜索可以求出两…

学习记录:AUTOSAR R20-11的阅读记录(五)【CP(5.11-5.19)】完

接上回&#xff1a;学习记录&#xff1a;AUTOSAR R20-11的阅读记录&#xff08;四&#xff09;【CP&#xff08;5.6-5.10&#xff09;】 五、CP 11、General&#xff08;4个&#xff09; 5.11 File Name 说明 1 AUTOSAR_EXP_ LayeredSoftwareArchitecture.pdf 描述了AUTO…

多模态大模型MLLM VIT CLIP BLIP

一、Vit模型介绍 Vit&#xff08;Vision Transformer&#xff09;即将Transformer应用于视觉领域。 Transformer输入输出都是一个序列&#xff0c;若需要应用于视觉领域&#xff0c;则需要考虑如何将一个2d图片转化为一个1d的序列&#xff0c;最直观的想法将图片中的像素点输…

merge函数占用内存过大

&#x1f3c6;本文收录于「Bug调优」专栏&#xff0c;主要记录项目实战过程中的Bug之前因后果及提供真实有效的解决方案&#xff0c;希望能够助你一臂之力&#xff0c;帮你早日登顶实现财富自由&#x1f680;&#xff1b;同时&#xff0c;欢迎大家关注&&收藏&&…

使用python将`.mat`文件转换成`.xlsx`格式的Excel文件!!

要将.mat文件转换成.xlsx格式的Excel文件 第一步&#xff1a;导入必要的库第二步&#xff1a;定义函数来转换.mat文件第三步&#xff1a;调用函数注意事项 要将.mat文件转换成.xlsx格式的Excel文件&#xff0c;并保持文件名一致&#xff0c;你可以使用scipy.io.loadmat来读取.m…

历代著名画家作品赏析-东晋顾恺之

中国历史朝代顺序为&#xff1a;夏朝、商朝、西周、东周、秦朝、西楚、西汉、新朝、玄汉、东汉、三国、曹魏、蜀汉、孙吴、西晋、东晋、十六国、南朝、刘宋、南齐、南梁、南陈、北朝、北魏、东魏、北齐、西魏、北周、隋&#xff0c;唐宋元明清&#xff0c;近代。 一、东晋著名…

92、动态规划-最小路径和

思路&#xff1a; 还是一样&#xff0c;先使用递归来接&#xff0c;无非是向右和向下&#xff0c;然后得到两种方式进行比较&#xff0c;代码如下&#xff1a; public int minPathSum(int[][] grid) {return calculate(grid, 0, 0);}private int calculate(int[][] grid, int …

全栈开发之路——前端篇(5)组件间通讯和接口等知识补充

全栈开发一条龙——前端篇 第一篇&#xff1a;框架确定、ide设置与项目创建 第二篇&#xff1a;介绍项目文件意义、组件结构与导入以及setup的引入。 第三篇&#xff1a;setup语法&#xff0c;设置响应式数据。 第四篇&#xff1a;数据绑定、计算属性和watch监视 辅助文档&…

502页 | 2024年人工智能指数报告-英文版(免费下载)

【1】关注本公众号&#xff0c;转发当前文章到微信朋友圈 【2】私信发送 【2024年人工智能指数报告】 【3】获取本方案PDF下载链接&#xff0c;直接下载即可。 如需下载本方案PPT原格式&#xff0c;请加入微信扫描以下方案驿站知识星球&#xff0c;获取上万份PPT解决方案&…

JavaScript快速入门系列-1(JavaScript简介)

第一章:JavaScript简介 1. JavaScript简介1.1 什么是JavaScript1.2 JavaScript的历史与应用1.3 环境搭建:浏览器与Node.js2. JavaScript语言基础2.1 变量声明:let, const, var2.2 数据类型:字符串、数字、布尔值、对象、数组、null与undefined2.3 运算符:算术、比较、逻辑…

html的标签

基础标签 标签描述<h1>-<h6>定义标题&#xff0c;h1最大&#xff0c;h6最小<font>定义文本的字体&#xff0c;字体尺寸&#xff0c;字体颜色<b>定义粗体文本<i>定义斜体文本<u>定义文本下划线<center>定义文本居中<p>定义段落…