情感分类学习笔记(1)

news2025/1/16 7:58:09

文本情感分类(二):深度学习模型 - 科学空间|Scientific Spaces

一、代码理解

cw = lambda x: list(jieba.cut(x)) #定义分词函数

您给出的代码定义了一个使用 jieba 分词库的分词函数。jieba 是一个用于中文分词的 Python 库。该函数 cw 是一个 lambda 函数,它接受一个字符串 x 作为输入,然后使用 jieba.cut(x) 方法对字符串进行分词,并返回一个分词后的列表。

这里是该代码的一个简单解释和如何使用它的例子:

首先,确保您已经安装了 jieba 库。如果没有,您可以使用 pip 来安装它:

bash复制代码

pip install jieba

然后,您可以使用您定义的 cw 函数来对中文文本进行分词:

python复制代码

import jieba
# 定义分词函数
cw = lambda x: list(jieba.cut(x))
# 使用分词函数
text = "我来到北京清华大学"
words = cw(text)
print(words) # 输出: ['我', '来到', '北京', '清华大学']

在上面的例子中,文本 "我来到北京清华大学" 被分词成了 ['我', '来到', '北京', '清华大学']。

lambda 函数在这里是一个简单的函数定义方式,对于简单的函数,使用 lambda 可以使代码更简洁。但是,如果函数变得更加复杂,使用常规的 def 语句来定义函数会更清晰和易于阅读。例如:

 

python复制代码

def cut_words(x):
return list(jieba.cut(x))
# 使用该函数
words = cut_words(text)
print(words) # 输出: ['我', '来到', '北京', '清华大学']

这两种定义方式(使用 lambda 和使用 def)在功能上是等效的。

2.

pn['words'] = pn[0].apply(cw)后pn的内容

3.

comment = comment[comment['rateContent'].notnull()]

DataFrame 是 Pandas 库中用于处理表格型数据的核心数据结构。以下是一些常用的 DataFrame 操作:

  1. 创建 DataFrame

使用 pd.DataFrame() 从字典、列表、Series、其他 DataFrame 或其他数据源创建 DataFrame。

 

python复制代码

import pandas as pd
data = {'A': [1, 2, 3], 'B': [4, 5, 6]}
df = pd.DataFrame(data)
  1. 查看 DataFrame

使用 head()tail()info()describe()shape 等方法查看 DataFrame 的内容、结构或统计信息。

 

python复制代码

print(df.head()) # 显示前几行
print(df.info()) # 显示摘要信息,包括列名、数据类型和非空值计数
print(df.describe()) # 显示数值列的统计信息
print(df.shape) # 显示行数和列数
  1. 选择数据

使用列名、行标签、条件表达式、布尔索引等选择数据。

 

python复制代码

print(df['A']) # 选择列 A
print(df.iloc[0]) # 选择第一行(基于整数位置)
print(df.loc[0]) # 选择第一行(基于标签)
print(df[df['A'] > 1]) # 选择 A 列大于 1 的行
  1. 设置和修改数据

使用列名、行标签或条件表达式设置或修改 DataFrame 中的值。

 

python复制代码

df['C'] = df['A'] + df['B'] # 添加新列 C,其值为 A 和 B 列的和
df.at[0, 'A'] = 10 # 修改第一行 A 列的值为 10
df.loc[df['A'] > 1, 'B'] = 0 # 将 A 列大于 1 的行对应的 B 列值设置为 0
  1. 排序数据

使用 sort_values() 方法按列值对 DataFrame 进行排序。

 

python复制代码

df_sorted = df.sort_values(by='A') # 按列 A 的值排序
  1. 数据分组和聚合

使用 groupby() 方法对数据进行分组,并使用聚合函数(如 sum()mean()count() 等)对每个组进行计算。

 

python复制代码

grouped = df.groupby('A').sum() # 按列 A 分组并计算每组的和
  1. 缺失值处理

使用 dropna()fillna()interpolate() 等方法处理缺失值。

 

python复制代码

df_cleaned = df.dropna() # 删除包含缺失值的行
df_filled = df.fillna(0) # 将缺失值替换为 0
  1. 合并和连接

使用 merge()concat()join() 等方法合并或连接多个 DataFrame。

 

python复制代码

df1 = pd.DataFrame({'key': ['A', 'B', 'A', 'B', 'A', 'B', 'A', 'B'], 'value': range(8)})
df2 = pd.DataFrame({'key': ['B', 'B', 'A', 'A', 'B', 'A'], 'value2': range(6)})
merged = pd.merge(df1, df2, on='key') # 基于 key 列合并 df1 和 df2
  1. 数据导出

使用 to_csv()to_excel()to_sql() 等方法将 DataFrame 导出到 CSV 文件、Excel 文件、数据库等。

 

python复制代码

df.to_csv('output.csv', index=False) # 将 DataFrame 导出到 CSV 文件,不包含索引列
  1. 其他常用操作
  • 重命名列:df.rename(columns={'old_name': 'new_name'})
  • 删除列:del df['column_name'] 或 df.drop(columns=['column_name'])
  • 删除行:df.drop(index=labels_to_drop)
  • 转换数据类型:df['column_name'] = df['column_name'].astype(new_type)
  • 排序索引:df.sort_index()
  • 重置索引:df.reset_index()
  • 转换日期和时间数据:pd.to_datetime()
  • 等等...

这句话的意思就是选取comment 里面rateContent列里面非空的数据重新赋值给comment

4.d2v_train = pd.concat([pn['words'], comment['words']], ignore_index = True)

pd.concat 是 Pandas 库中的一个函数,用于沿一条轴将多个 pandas 对象(如 Series、DataFrame)连接在一起。这个函数在处理多个 DataFrame 或 Series 时非常有用,尤其是当你需要将它们合并成一个更大的数据集时。

基本用法

  1. 连接 Series

假设你有两个 Series:

 

python复制代码

import pandas as pd
s1 = pd.Series(['A', 'B', 'C'])
s2 = pd.Series(['D', 'E', 'F'])
result = pd.concat([s1, s2])

这将把 s2 连接到 s1 的后面。

  1. 连接 DataFrame

你可以沿行(axis=0)或列(axis=1)连接 DataFrame。

沿行连接:

 

python复制代码

df1 = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})
df2 = pd.DataFrame({'A': [5, 6], 'B': [7, 8]})
result = pd.concat([df1, df2], ignore_index=True)

沿列连接:

 

python复制代码

df3 = pd.DataFrame({'C': [9, 10], 'D': [11, 12]})
result = pd.concat([df1, df3], axis=1)

参数

  • objs:要连接的 pandas 对象列表或字典。
  • axis:默认为 0,表示沿行连接。如果为 1,则沿列连接。
  • join:默认为 'outer',表示连接操作。对于 DataFrame,这可以是 'inner'(交集)或 'outer'(并集)。
  • ignore_index:默认为 False。如果为 True,则忽略原始索引并生成一个新的整数索引。
  • keys:对于分层索引,可以提供一个列表或数组作为连接键。
  • ...:还有其他参数,但上述是最常用的。

注意事项

  • 当连接 DataFrame 时,确保列名匹配(除非你使用 join='outer' 并希望保留不匹配的列)。
  • 如果 DataFrame 的索引不同,但在连接时你想忽略它们并生成一个新的整数索引,请使用 ignore_index=True
  • 你可以使用字典来连接 DataFrame,其中字典的键将用作新的列级索引。例如:pd.concat({'key1': df1, 'key2': df2}, axis=1)

5.dict = pd.DataFrame(pd.Series(w).value_counts())

步骤分解:

  1. pd.Series(w): 这里假设 w 是一个可迭代的对象(如列表),您正在将其转换为一个 Pandas Series。如果 w 已经是一个 Series,则这一步是多余的。

  2. .value_counts(): 对 Series 对象调用 value_counts() 方法会计算每个唯一值出现的次数,并返回一个 Series,其中索引是唯一值,值是它们出现的次数。

  3. pd.DataFrame(...): 接下来,您尝试将这个 Series 转换为一个 DataFrame。虽然这是技术上可行的,但通常当您只处理一个 Series(即一列数据)时,没有必要将其转换为 DataFrame。

6.dict['id']=list(range(1,len(dict)+1))

7.

pn['sent'] = pn['words'].apply(get_sent) #速度太慢

8.

x = np.array(list(pn['sent']))[::2] #训练集

在您提供的代码 x = np.array(list(pn['sent']))[::2] 中,您正在对 pn['sent'](假定它是一个Pandas Series、列表或其他可迭代对象)执行几个操作。下面是对这些操作的详细解释:

  1. pn['sent']:这部分代码假定 pn 是一个Pandas DataFrame,并且 'sent' 是其中的一个列名。这个列可能包含文本数据、数字或其他任何类型的可迭代数据。
  2. list(pn['sent']):这里,您正在将 pn['sent'] 列转换为Python列表。这通常是因为Pandas Series对象虽然可以像列表一样迭代,但有时为了与其他Python库或功能一起使用,您可能需要将其转换为列表。
  3. np.array(...):使用NumPy库的 array 函数将列表转换为一个NumPy数组。NumPy数组是优化过的数据结构,用于存储大量同类型数据,并提供高效的数值计算功能。
  4. [::2]:这是一个切片操作,用于从NumPy数组中选取元素。具体来说,[::2] 意味着从数组的开始到结束,每隔一个元素取一个。因此,如果原始数组是 [a, b, c, d, e],那么切片后的数组将是 [a, c, e]

最终,x 将是一个NumPy数组,其中包含 pn['sent'] 列中每隔一个元素的值。

注意:这里有一个潜在的陷阱。如果 pn['sent'] 列中的元素是字符串(例如文本数据),那么将它们转换为NumPy数组可能不会提供您期望的功能或性能优势,因为NumPy主要用于数值计算,而不是字符串处理。如果您的目标是处理文本数据,那么使用Pandas的字符串方法或Python的内置字符串功能可能更为合适。

总结:

苏大神的思路是用jieba分词,将词汇分出。然后通过词频统计对分过的词进行数字映射。然后这样每一个句子就变成了一个长短不一的向量,再将向量裁切或增加为规定大小的长度。之后将裁切的向量与对于的二分类的标签送入构造的网络中训练。训练后统计准确度。

网络第一层用embedding层来生成语义向量,向量长度为256维。第二层为LSTM层,第三层为Dropout层,第四层为Dense全连接层,第五层为激活层,激活函数为sigmoid二分类激活函数。

思考能否实现多分类细腻情感?喜怒哀乐?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1653800.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

二重积分(深度解析)

二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向…

Kafka 业务日志采集最佳实践

简介 Apache Kafka 是一个分布式流处理平台,主要用于构建实时数据流管道和应用程序。在收集业务日志的场景中,Kafka 可以作为一个消息中间件,用于接收、存储和转发大量的日志数据。将 Kafka 与其他系统(如 Elasticsearch、Flume、…

steam_api64.dll是什么东西?steam_api64.dll缺失的多个详细解决方法

在现代PC游戏领域,Steam无疑是最具影响力的游戏分发和社交平台之一。它不仅提供了一个庞大的游戏市场,还集成了好友系统、成就系统、云存储等多种功能,为数百万玩家提供了便捷的游戏体验。在这庞大的生态系统中,steam_api64.dll作…

vue3 依赖-组件tablepage-vue3版本1.0.3更新内容

github求⭐ 可通过github 地址和npm 地址查看全部内容 vue3 依赖-组件tablepage-vue3说明文档,列表页快速开发,使用思路及范例-汇总 vue3 依赖-组件tablepage-vue3说明文档,列表页快速开发,使用思路及范例(Ⅰ&#…

DDPM与扩散模型

很早之前就新建了一个专栏从0开始弃坑扩散模型 ,但发了一篇文章就没有继续这一系列,在这个AIGC的时代,于是我准备重启这个专栏。 整个专栏的学习顺序可以见这篇汇总文章 这是本专栏的第一章 目录 引言生成模型的发展历程 引言 扩散模型( Diffusion Mode…

C数据结构:栈

目录 栈的作用 栈的实现 栈的数据结构 栈的初始化 栈的销毁 栈的插入 栈的删除 获得栈顶元素 获得栈有效元素个数 判断栈是否为空 栈的使用 完整代码 栈是一种特殊结构的线性表 先来看看栈的图 之所以说它特殊,是因为它的插入删除功能比较特殊 栈的插…

DBdoctor产品介绍

基本信息 DBdoctor是聚好看科技股份有限公司自主研发的一款数据库内核级性能诊断工具,首次将eBPF技术聚焦在了数据库领域,一分钟内定位数据库性能问题并给出优化建议,实现数据库性能诊断百倍提效。 免费下载 请在PC端打开以下链接&#x…

Burp Suite抓取明文

目录 Burp Suite代理 正常的通信模式 Burp Suite代理后通信模式 设置代理 安装证书 导出证书 Burp Suite导入 浏览器下载证书 安装证书 管理证书 导入证书 下一步 导入证书 下一步 完成 抓明文的例子 1、修改浏览器代理 ​编辑2、开启拦截​编辑 3、查看抓取历…

NSS题目练习

[SWPUCTF 2021 新生赛]gift_F12 通过题目提示可以知道flag应该可以在源代码中找到 查看源代码,直接用 ctrlf 搜索flag即可 [SWPUCTF 2021 新生赛]jicao 题目打开后能看到一串php代码,要求是用post传参传入idwllmNB以及用get传参传入json[x]"wllm&q…

YoloV5的学习与使用

前言 Yolo算法简介 YOLO (You Only Look Once) 是一种用于目标检测的深度学习算法,由 Joseph Redmon、Santosh Divvala、Ross Girshick 和 Ali Farhadi 在 2015 年提出。YOLO 是一种端到端的算法,它将目标检测任务视为一个单一的回归问题,从…

Web3钱包开发获取测试币-OKB X1Testnet(三)

Web3钱包开发获取测试币-OKB X1Testnet(三) 基于以上两篇 Web3钱包开发获取测试币-Polygon Mumbai(一) :https://suwu150.blog.csdn.net/article/details/137949473Web3钱包开发获取测试币-Base Sepolia(二):https://suwu150.blog.csdn.net/article/det…

【HTTP下】总结{重定向/cookie/setsockopt/流操作/访问网页/总结}

文章目录 1.请求头2.cookie理解 3.vim跳转/搜索4.setsockopt被重用的意思 5.流操作5.1定位读取指针5.2ifstram::read() 6.总结6.1 百度搜索框搜索功能字符6.2请求uri请求和响应的第一行都有http版本请求内容里有GET /favicon.ico HTTP/1.1 6.3访问网页Fiddler抓包原理&#xff…

从零开始的软件测试学习之旅(九)jmeter直连数据库及jmeter断言,关联

jmeter直连数据库及断言,关联 jmeter直连数据库步骤jmeter断言jmeter逻辑控制器if控制器ForEach控制器循环控制器 Jmeter关联Jmeter关联XPath提取器Jmeter关联正则表达式提取器二者比较跨线程组关联 每日复习 jmeter直连数据库 概念 这不叫直连:Jmeter -> java/python 提供的…

W801学习笔记二十四:NES模拟器游戏

之前已经实现了NES模拟器玩游戏。W801学习笔记九:HLK-W801制作学习机/NES游戏机(模拟器) 现在要在新版本掌机中移植过来。 1、把NES文件都拷贝到SD卡中。 这回不会受内存大小限制了。我这里拷贝了4个,还可以拷贝更多。 2、应用初始化中,加载…

Spring:OAuth2.0

文章目录 一、认证与授权二、OAuth2.0介绍 一、认证与授权 认证(Authentication)与授权(Authorization)在网络安全和系统管理中是两个重要的概念,它们各自有不同的作用和目标。 认证是验证确认身份以授予对系统的访问…

编辑员工信息——后端

需求: 在员工管理列表页面点击编辑按钮,跳转到编辑页面,在编辑页面回显员工信息并进行修改,最后点击保存按钮完成编辑操作。 代码开发流程: 点击编辑按钮,页面跳转到add.html,并在url中携带参…

高精度数学计算的瑞士军刀,mpmath库详解与应用示例

写在前言 hello,大家好,我是一点,专注于Python编程,如果你也对感Python感兴趣,欢迎关注交流。 做为一个一只脚已经踏进35岁大关的程序员,对于职场,几乎向上无望,已经没有太多的期待…

面向侧扫声纳目标检测的YOLOX-ViT知识精馏

面向侧扫声纳目标检测的YOLOX-ViT知识精馏 摘要IntroductionRelated WorkYOLOv-ViTKnowledge DistillationExperimental Evaluation Knowledge Distillation in YOLOX-ViT for Side-Scan Sonar Object Detection 摘要 在本文中,作者提出了YOLOX-ViT这一新型目标检测…

Springboot+vue项目零食销售商城

摘要 随着科学技术的飞速发展,社会的方方面面、各行各业都在努力与现代的先进技术接轨,通过科技手段来提高自身的优势,零食销售商城当然也不能排除在外。零食销售商城是以实际运用为开发背景,运用软件工程原理和开发方法&#xff…

Yolov8实现loopy视频识别

1、前言 loopy是一个非常可爱的动漫角色(可爱粉色淀粉肠),闲来无事,打算用yolov8训练一个模型对loopy进行识别。 2、准备工作 先在网络上搜寻很多loopy的图片,然后将图片导入Lablel Studio软件进行标注,并…