Prompt提示词教程 | 提示工程指南 | 提示词示例 入门篇

news2024/11/26 20:41:33

在上一节中,我们介绍并给出了如何赋能大语言模型的基本示例。如果还没看而且是刚入门的同学建议看下,有个基本概念。

Prompt提示词教程 | 提示工程指南 | 提示工程简介icon-default.png?t=N7T8https://blog.csdn.net/HRG520JN/article/details/138523705在本节中,我们会提供更多示例,介绍如何使用提示词来完成不同的任务,并介绍其中涉及的重要概念。通常,学习概念的最佳方法是通过示例进行学习。下面,我们将通过示例介绍说明如何使用精细的提示词来执行不同类型的任务。​​​​​

1、文本概括

自然语言生成的标准任务之一是文本概括。文本概括可能涉及到不同的风格和领域。事实上,语言模型最前景的应用场景之一就是能够快速概括出易于理解的文章大意和相关概念。 我们可以使用提示词尝试一个简单的概括任务。

假设我想了解抗生素的相关信息,我可以给出这样的提示:

提示词

Explain antibiotics
A:

输出结果

Antibiotics are a type of medication used to treat bacterial infections. They work by either killing the bacteria or preventing them from reproducing, allowing the body’s immune system to fight off the infection. Antibiotics are usually taken orally in the form of pills, capsules, or liquid solutions, or sometimes administered intravenously. They are not effective against viral infections, and using them inappropriately can lead to antibiotic resistance.

在问答形式中,“A:” 是一种明确的提示格式。 在这个示例中,我用它去提示模型,我想要该概念的进一步解释。 在这个例子中,我们可能还不清楚使用它是否有用,我们会在之后的示例中探讨这一点。 现在假设我们感觉模型给了太多的信息,想要进一步提炼它。 我们可以指导模型帮我们用一句话总结相关内容:

提示词

Antibiotics are a type of medication used to treat bacterial infections. They work by either killing the bacteria or preventing them from reproducing, allowing the body’s immune system to fight off the infection. Antibiotics are usually taken orally in the form of pills, capsules, or liquid solutions, or sometimes administered intravenously. They are not effective against viral infections, and using them inappropriately can lead to antibiotic resistance.Explain the above in one sentence: // 用一句话解释上面的信息:

输出结果

Antibiotics are medications used to treat bacterial infections by either killing the bacteria or stopping them from reproducing, but they are not effective against viruses and overuse can lead to antibiotic resistance.

本示例是模型在没有过多关注上文输出内容的准确性的情况下,尝试用一个句子来总结段落内容。 关于上文准确性,我们可以通过指令或说明进一步改善它,这一点我们会在后续指南中进行探讨。 读到这里,您可以暂时停住并进行实验,看看是否能获得更好的结果。


2、信息提取

语言模型通过训练不仅可以用于执行自然语言生成相关任务,还可以用于执行文本分类和其他一系列自然语言处理 (NLP) 任务。

使用以下示例提示词从指定段落中提取信息:

提示词

Author-contribution statements and acknowledgements in research papers should state clearly and specifically whether, and to what extent, the authors used AI technologies such as ChatGPT in the preparation of their manuscript and analysis. They should also indicate which LLMs were used. This will alert editors and reviewers to scrutinize manuscripts more carefully for potential biases, inaccuracies and improper source crediting. Likewise, scientific journals should be transparent about their use of LLMs, for example when selecting submitted manuscripts.Mention the large language model based product mentioned in the paragraph above: // 指出上文中提到的大语言模型:

输出结果

The large language model based product mentioned in the paragraph above is ChatGPT.

我们可以通过许多方式改进以上结果,但当前方式已经非常有用。

现在应该很明显,您可以通过简单地指示语言模型去执行不同的任务。 AI 研发人员也利用这种能力来构建强大的产品和体验。

Paragraph source: ChatGPT: five priorities for research(opens in a new tab)


3、问答

提高模型响应精确度的最佳方法之一是改进提示词的格式。 如前所述,提示词可以通过指令、上下文、输入和输出指示以改进响应结果。 虽然这些要素不是必需的,但如果您的指示越明确,响应的结果就会越好。 以下示例可以说明结构化提示词的重要性。

提示词

Answer the question based on the context below. Keep the answer short and concise. Respond "Unsure about answer" if not sure about the answer. // 基于以下语境回答问题。如果不知道答案的话,请回答“不确定答案”。Context: Teplizumab traces its roots to a New Jersey drug company called Ortho Pharmaceutical. There, scientists generated an early version of the antibody, dubbed OKT3. Originally sourced from mice, the molecule was able to bind to the surface of T cells and limit their cell-killing potential. In 1986, it was approved to help prevent organ rejection after kidney transplants, making it the first therapeutic antibody allowed for human use.Question: What was OKT3 originally sourced from?Answer:

输出结果

Mice.

语境参考至 Nature(opens in a new tab)。


4、文本分类

目前,我们已经会使用简单的指令来执行任务。 作为提示工程师,您需要提供更好的指令。 此外, 您也会发现,对于更负责的使用场景,仅提供指令是远远不够的。 所以,您需要思考如何在提示词中包含相关语境和其他不同要素。 同样,你还可以提供其他的信息,如输入数据示例

可以通过以下示例体验文本分类:

提示词

Classify the text into neutral, negative or positive. // 将文本按中立、负面或正面进行分类Text: I think the food was okay. Sentiment:

输出结果

Neutral

我们给出了对文本进行分类的指令,语言模型做出了正确响应,判断文本类型为 'Neutral'。 如果我们想要语言模型以指定格式做出响应, 比如,我们想要它返回 neutral 而不是 Neutral, 那我们要如何做呢? 我们有多种方法可以实现这一点。 此例中,我们主要是关注绝对特性,因此,我们提示词中包含的信息越多,响应结果就会越好。 我们可以使用以下示例来校正响应结果:

提示词

Classify the text into neutral, negative or positive. Text: I think the vacation is okay.Sentiment: neutral Text: I think the food was okay. Sentiment:

输出结果

neutral

完美! 这次模型返回了 neutral,这正是我们想要的特定标签。 提示词中的示例使得模型可以给出更具体的响应。 有时给出具体的指令十分重要,可以通过以下示例感受这一点:

提示词

Classify the text into nutral, negative or positive. Text: I think the vacation is okay.Sentiment:

输出结果

Neutral

这时候你知道给出具体指令的重要性了吧?


5、对话

你可以通过提示工程进行更有趣的实验,比如指导大语言模型系统如何表现,指定它的行为意图和身份。 如果你正在构建客服聊天机器人之类的对话系统时,这项功能尤其有用。

比如,可以通过以下示例创建一个对话系统,该系统能够基于问题给出技术性和科学的回答。 你可以关注我们是如何通过指令明确地告诉模型应该如何表现。 这种应用场景有时也被称为 角色提示(Role Prompting)

提示词

The following is a conversation with an AI research assistant. The assistant tone is technical and scientific. // 以下是与 AI 助理的对话,语气应该专业、技术性强。Human: Hello, who are you?AI: Greeting! I am an AI research assistant. How can I help you today?Human: Can you tell me about the creation of blackholes?AI:

输出结果

Sure! Black holes are regions of spacetime where the gravitational force is so strong that nothing, not even light, can escape from it. They are created when a very massive star dies and its core collapses in on itself, forming a singularity of infinite density. The intense gravity of the singularity pulls in all the matter and radiation around it, creating the black hole.

我们的 AI 助理给出的回答非常技术对吧? 下面,我们让它给出更易于理解的答案。

提示词

The following is a conversation with an AI research assistant. The assistant answers should be easy to understand even by primary school students. // 以下是与 AI 助理的对话。请给出易于理解的答案,最好是小学生都能看懂的那种。Human: Hello, who are you?AI: Greeting! I am an AI research assistant. How can I help you today?Human: Can you tell me about the creation of black holes?AI: 

输出结果

Sure! Black holes are created when a very massive star runs out of fuel and collapses in on itself. The gravity of the star is so strong that nothing, not even light, can escape its pull. This creates a point in space-time with an intense gravitational force called a black hole.

我想我们应该取得了一些进展, 你也可以继续改进它。 如果你再添加更多的示例,可能会得到更好的结果。


6、代码生成

大语言模型另外一个有效的应用场景是代码生成。 在此方面,Copilot 就是一个很好的示例。 你可以通过一些有效的提示词执行代码生成任务。 让我们来看一下下面的例子。

我们先用它写个简单的用户欢迎程序:

提示词

/*询问用户的姓名并说“ Hello”*/

输出结果

let name = prompt("What is your name?");console.log(`Hello, ${name}!`);

你看,我们甚至都不需要指定要使用的编程语言。

来,我们再稍微升级一下。 下面的例子会向你展示提示词会让大语言模型变得多么强大。

提示词

"""Table departments, columns = [DepartmentId, DepartmentName]Table students, columns = [DepartmentId, StudentId, StudentName]Create a MySQL query for all students in the Computer Science Department"""

输出结果

SELECT StudentId, StudentName FROM students WHERE DepartmentId IN (SELECT DepartmentId FROM departments WHERE DepartmentName = 'Computer Science');

挺厉害的嘛。 本例中,我们提供了有关数据库架构并要求它生成有效的 MySQL 查询。


7、推理

目前对于大语言模型来说,推理任务算是最具有挑战性的了。 推理任务最让人兴奋的地方就是可以促使各种复杂的应用程序从大语言模型中诞生。

目前,涉及数学能力的推理任务已经有了一些改进。 对于当前的大型语言模型来说,执行推理任务可能会有一些难度,因此就需要更高级的提示词工程技术。 我们会在后面的指南中介绍这些高级技术。 现在,我们将介绍几个基本示例来展示算术功能。

提示词

What is 9,000 * 9,000?

输出结果

81,000,000

来,我们加大难度:

提示词

The odd numbers in this group add up to an even number: 15, 32, 5, 13, 82, 7, 1. A: 

输出结果

No, the odd numbers in this group add up to an odd number: 119.

这不对! 我们试着用提示词去改进它:

提示词

The odd numbers in this group add up to an even number: 15, 32, 5, 13, 82, 7, 1. Solve by breaking the problem into steps. First, identify the odd numbers, add them, and indicate whether the result is odd or even. 

输出结果

Odd numbers: 15, 5, 13, 7, 1Sum: 41 41 is an odd number.

好多了吧? 顺便说一句,我试过几次,有时还是会失败。 如果你可以用示例给模型说明一下,可能会获得更准确的结果。

我们后面还会针对本章中介绍更多常见应用示例。

在后面的文章中,我们将介绍更高级的提示工程概念和技术,以完成更困难任务。

  创作不易,来个三连(点赞、收藏、关注),同学们的满意是我(H-大叔)的动力。

 代码运行有问题或其他建议,请在留言区评论,看到就会回复,不用私聊。

专栏人工智能 | 大模型 | 实战与教程里面还有其他人工智能|大数据方面的文章,可继续食用,持续更新。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1650824.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

结合kimi chat的爬虫实战思路

背景 想钻研一下项目组件,找找之后的学习方向。不能自以为是,所以借着网开源项目网站上公布的项目内容看一下,那些是我可以努力去学习的(入门的)。首先需要获取相关内容,于是爬取整理。 任务1&#xff1a…

Unity与C#的关系

第一,我们首先需要知道Unity与C#的关系是什么? 第二,我们要明白为什么Unity会使用C#,而不是C? 第三,我们需要知道Unity是怎么使用C#的? 第一点: 先说结论:C#是Unity用…

【Verilog】big_small_cnt

通用大小计数器 timescale 1ns / 1ps // // Company: // Engineer: wengf // Create Date: // Design Name: // Module Name: big_small_cnt // Project Name: // Target Devices: // Tool Versions: // Description: // Dependencies: // Revision: // Revision 0…

一起刷C语言菜鸟教程100题(15-26含解析)

五一过的好快,五天假期说没就没,因为一些事情耽搁到现在,不过还是要继续学习的,之后就照常更新,先说一下,这个100题是菜鸟教程里面的,但是有一些题,我加入了自己的理解,甚…

odoo实施之创建行业demo

创建数据库,添加公司数据 选择应用,获取15天免费试用 创建完成 设置客户公司logo 创建用户 更改用户语言 前置条件:配置邮件 开发模式下,额外信息 加载demo数据

Conda下Richdem包遇到问题

Conda中Richdem包遇到问题 文章目录 Conda中Richdem包遇到问题问题一报错解决 问题二报错解决 参考 问题一 报错 RichDEM 是一套数字高程模型 (DEM) 水文分析工具,这次打算用richdem进行地形分析,尝试在conda里面安装richdem包的…

VMware下Ubuntu的安装教程

文章目录 一、Ubuntu如何下载1.下载官方地址https://ubuntu.com/2.点选Ubuntu服务器版本3.点击下载Ubuntu服务器版本iso镜像二、VMware安装Ubuntu服务器系统1.创建虚拟机2.选择下载好的Ubuntu服务器镜像3.创建安装完成三、Ubuntu Server如何设置1.Ubuntu Server没有中文所以全都…

windows vscode设置扩展和缓存目录

vscode的扩展和缓存占了很大的空间,而且默认在C盘,很烦。。。 修改vscode快捷方式的目标处:"C:\Users\Nv9\AppData\Local\Programs\Microsoft VS Code\Code.exe" --extensions-dir "D:\Program Cache\VScode\extensions"…

sql注入练习

1.什么是SQL注入 SQL注入是比较常见的网络攻击方式之一,它不是利用操作系统的BUG来实现攻击,而是针对程序员编写时的疏忽,通过SQL语句,实现无账号登录,甚至篡改数据库 2.sql注入原理 攻击者注入一段包含注释符的SQL语…

kraken2 最新版安装,极简模式

kraken2 git clone https://github.com/DerrickWood/kraken2.gitcd kraken2./install_kraken2.sh /opt/krakenvim .bashrc ---------------- # Kraken export PATH"/opt/kraken:$PATH" ----------------source .bashrc Note: 不晓得是不是我设置了清华源&#xff0c…

Spring Boot集成Swagger快速入门Demo

1.什么是Swagger? Swagger 是一个规范和完整的框架,用于生成、描述、调用和可视化 RESTful 风格的 Web 服务。 主要作用: 使得前后端分离开发更加方便,有利于团队协作。(实际开发中,接口文档的内容会不停的…

kafka学习笔记(三、生产者Producer使用及配置参数)

1.简介 1.1.producer介绍 生产者就是负责向kafka发送消息的应用程序。消息在通过send()方法发往broker的过程中,有可能需要经过拦截器(Interceptor)、序列化器(Serializer)和分区器(Partitioner)的一系列作用后才能被真正的发往broker。 demo: public class Kafk…

【NodeMCU实时天气时钟温湿度项目 4】通过NTPClient库获取实时网络时间并显示在TFT屏幕上

今天是【实时天气时钟温湿度项目】第四专题,主要内容是:学习导入NTPClient库,通过这个库获取实时网络时间,显示在1.3寸TFT液晶屏幕上。此前三个专题,请选择查看以下链接。 第一专题内容,请参考 【N…

使用Docker安装MySQL5.7.36

拉取镜像并查看 docker pull mysql:5.7.36拉取成功后查看(非必须) docker images创建并设置宿主机 mysql 配置文件目录和数据文件目录 创建相关文件夹将容器中的mysql数据保存到本地,这样即使容器被删除,数据也不会丢失。 mkd…

牛客NC142 最长重复子串【中等 字符串 Java/Go】

题目 题目链接: https://www.nowcoder.com/practice/4fe306a84f084c249e4afad5edf889cc 思路 注意:题目给的时间复杂度是O(N^2)那么直接套用双重循环:外层循环i为假定起始重复子串的初始位置,内层循环的j为假定重复子串的结束位置…

每日一题5:Pandas-修改列

一、每日一题 一家公司决定增加员工的薪水。 编写一个解决方案,将每个员工的薪水乘以2来 修改 salary 列。 返回结果格式如下示例所示。 解答: import pandas as pddef modifySalaryColumn(employees: pd.DataFrame) -> pd.DataFrame:employees.loc[…

人工神经网络初步

大家好,这里是七七,由于各种比赛的缘故,使用了很多人工神经网络模型。但是很多的原理都不是很明白,就导致了不能灵活地运用┭┮﹏┭┮。为此,去看了些人工神经网络原理书,写下此专题。 在进入正文之前要先…

Delta lake with Java--数据增删改查

之前写的关于spark sql 操作delta lake表的,总觉得有点混乱,今天用Java结合真实的数据来进行一次数据的CRUD操作,所涉及的数据来源于Delta lake up and running配套的 GitGitHub - benniehaelen/delta-lake-up-and-running: Companion reposi…

Mac idea gradle解决异常: SSL peer shut down incorrectly

系统:mac 软件:idea 解决异常: SSL peer shut down incorrectly 查看有没有安装 gradle -v安装 根据项目gradle提示安装版本 brew install gradle7idea的配置 在settings搜索gradle,配置Local installation,选择自己的安装目录…

Unity Shader中获取像素点深度信息

1.顶点着色器中对深度进行计算 v2f vert(appdata v) {v2f o;o.pos UnityObjectToClipPos(v.vertex);o.uv TRANSFORM_TEX(v.uv, _MainTex);o.depth (o.pos.z / o.pos.w 1.0) * 0.5; // Normalize depth to [0, 1]return o; }但是达不到预期,最后返回的值一直大于…