Llama3-Tutorial之XTuner微调Llama3个人小助手

news2024/12/24 21:26:43

Llama3-Tutorial之XTuner微调Llama3个人小助手

使用XTuner微调llama3模型。

参考: https://github.com/SmartFlowAI/Llama3-Tutorial

1. web demo部署

参考上一节内容已经完成web demo部署,进行对话测试, 当前回答基于llama3官方发布的模型进行推理生成:

web-demo
web-demo

下面进行微调。

2. 自我认知训练数据集准备

(llama3) root@intern-studio-50014188:~# cd ~/Llama3-Tutorial/
(llama3) root@intern-studio-50014188:~/Llama3-Tutorial# python tools/gdata.py
(llama3) root@intern-studio-50014188:~/Llama3-Tutorial/data# pwd
/root/Llama3-Tutorial/data
(llama3) root@intern-studio-50014188:~/Llama3-Tutorial/data# ll -alh
total 714K
drwxr-xr-x 2 root root 4.0K May  4 10:31 ./
drwxr-xr-x 7 root root 4.0K May  2 11:04 ../
-rw-r--r-- 1 root root    1 May  2 11:04 .gitkeep
-rw-r--r-- 1 root root 681K May  4 10:23 personal_assistant.json
-rw-r--r-- 1 root root  19K May  2 11:04 self_cognition.json

以上脚本在生成了personal_assistant.json 数据文件,格式如下所示:

[
    {
        "conversation": [
            {
                "system""你是一个懂中文的小助手",
                "input""你是(请用中文回答)",
                "output""您好,我是SmartFlowAI,一个由 SmartFlowAI 打造的人工智能助手,请问有什么可以帮助您的吗?"
            }
        ]
    },
    {
        "conversation": [
            {
                "system""你是一个懂中文的小助手",
                "input""你是(请用中文回答)",
                "output""您好,我是SmartFlowAI,一个由 SmartFlowAI 打造的人工智能助手,请问有什么可以帮助您的吗?"
            }
        ]
    }
]

3. XTuner配置文件准备

主要修改了model路径和数据文件:

(llama3) root@intern-studio-50014188:~/Llama3-Tutorial/configs/assistant# ls
llama3_8b_instruct_qlora_assistant.py
(llama3) root@intern-studio-50014188:~/Llama3-Tutorial/configs/assistant# vim llama3_8b_instruct_qlora_assistant.py 
...
#######################################################################
#                          PART 1  Settings                           #
#######################################################################
# Model
pretrained_model_name_or_path = '/root/model/Meta-Llama-3-8B-Instruct'
use_varlen_attn = False

# Data
#data_files = ['/root/Llama3-XTuner-CN/data/personal_assistant.json']
data_files = ['/root/Llama3-Tutorial/data/personal_assistant.json']
...

4. 训练模型

cd ~/Llama3-Tutorial

# 开始训练,使用 deepspeed 加速,A100 40G显存配置,训练耗时24分钟。本文使用24G显存(30%的A100资源),耗时较长。
xtuner train configs/assistant/llama3_8b_instruct_qlora_assistant.py --work-dir /root/llama3_pth

# Adapter PTH 转 HF 格式
xtuner convert pth_to_hf /root/llama3_pth/llama3_8b_instruct_qlora_assistant.py \
  /root/llama3_pth/iter_500.pth \
  /root/llama3_hf_adapter

# 模型合并
export MKL_SERVICE_FORCE_INTEL=1
xtuner convert merge /root/model/Meta-Llama-3-8B-Instruct \
  /root/llama3_hf_adapter\
  /root/llama3_hf_merged

# 最终合并的模型文件如下:
ls llama3_hf_merged/ -alh
total 15G
drwxr-xr-x  2 root root  4.0K May  4 12:07 .
drwxr-xr-x 23 root root  8.0K May  6 13:16 ..
-rw-r--r--  1 root root   707 May  4 12:07 config.json
-rw-r--r--  1 root root   121 May  4 12:07 generation_config.json
-rw-r--r--  1 root root  1.9G May  4 12:07 pytorch_model-00001-of-00009.bin
-rw-r--r--  1 root root  1.8G May  4 12:07 pytorch_model-00002-of-00009.bin
-rw-r--r--  1 root root  1.9G May  4 12:07 pytorch_model-00003-of-00009.bin
-rw-r--r--  1 root root  1.9G May  4 12:07 pytorch_model-00004-of-00009.bin
-rw-r--r--  1 root root  1.9G May  4 12:07 pytorch_model-00005-of-00009.bin
-rw-r--r--  1 root root  1.9G May  4 12:07 pytorch_model-00006-of-00009.bin
-rw-r--r--  1 root root  1.9G May  4 12:07 pytorch_model-00007-of-00009.bin
-rw-r--r--  1 root root  1.3G May  4 12:07 pytorch_model-00008-of-00009.bin
-rw-r--r--  1 root root 1003M May  4 12:07 pytorch_model-00009-of-00009.bin
-rw-r--r--  1 root root   24K May  4 12:07 pytorch_model.bin.index.json
-rw-r--r--  1 root root   301 May  4 12:07 special_tokens_map.json
-rw-r--r--  1 root root  8.7M May  4 12:07 tokenizer.json
-rw-r--r--  1 root root   50K May  4 12:07 tokenizer_config.json

5. 推理验证

streamlit run ~/Llama3-Tutorial/tools/internstudio_web_demo.py \
  /root/llama3_hf_merged

此时Llama3拥有了他是SmartFlowAI打造的人工智能助手的认知:

fine-tuning
fine-tuning

但是训练后的模型丢失了之前模型的认知。

本文由 mdnice 多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1646800.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

HCIP-Datacom-ARST必选题库_BGP【道题】

1.关于summary automatic命令和BGP聚合的描述,错误的是? 该命令用于实现自动聚合,其优先级高于手动聚合 配置该命令后,BGP将按自然网段聚合路由 该命令用来使能对本地引入的路由进行自动聚合 配置该命令后,BGP只向对等体发送聚合后的路由 1.关于summary automatic命令和BGP聚…

基于51单片机的手动数字时钟设计

基于51单片机的手动数字时钟 (仿真+程序) 功能介绍 具体功能: 1.八位数码管显示时分秒,格式为XX-XX-XX; 2.六个按键控制时、分、秒的加减; 3.复位按键重新计时; ​演示视频&am…

文件加密软件排行榜前五:好用的文件加密软件推荐

后台有很多老板留言,说最近机密数据外泄的事情频发,让自己开始有了危机意识,想要提前针对企业安全问题采取措施,比方说选一款适合防泄密软件,但是不知道如何选择。 下面介绍几款软件,让大家了解一下市面上常…

Python中的函数定义(def)详解

Python中的函数定义(def)详解 在编程语言中,函数是组织代码的一种方式,它们可以帮助我们将复杂的程序拆分为简单、易管理的部分。在Python中,函数的定义使用def关键字。 什么是函数? 函数是一段完成特定…

腾讯云服务器 宝塔面板部署小程序和后台教程

文章目录 目录 文章目录 安装流程 小结 概要部署流程技术细节小结 概要 本次的部署准备了3个域名,都是从二级域名映射出3个三级域名,域名注册可以在3大互联网官网购买一个域名就行。并且备案审核这些比较花费时间一般需要15工作日 部署流程 宝塔面板的…

设计模式Java实现-工厂模式

✨这里是第七人格的博客✨小七,欢迎您的到来~✨ 🍅系列专栏:设计模式🍅 ✈️本篇内容: 工厂模式✈️ 🍱本篇收录完整代码地址:https://gitee.com/diqirenge/design-pattern 🍱 楔子 记得刚…

JVM之内存分配的详细解析

内存分配 两种方式 不分配内存的对象无法进行其他操作,JVM 为对象分配内存的过程:首先计算对象占用空间大小,接着在堆中划分一块内存给新对象 如果内存规整,使用指针碰撞(Bump The Pointer)。所有用过的内…

快速入门!学习鸿蒙App开发的终极指南!

鸿蒙(HarmonyOS)是华为推出的一款分布式操作系统,旨在为不同设备提供统一的操作体验。鸿蒙App开发可以让应用程序在多个设备上实现流畅运行。本文将介绍鸿蒙App开发的终极指南,帮助您快速入门。 开发环境搭建 鸿蒙App开发过程需要…

R语言Rstudio突然无法启动?如何解决

🏆本文收录于「Bug调优」专栏,主要记录项目实战过程中的Bug之前因后果及提供真实有效的解决方案,希望能够助你一臂之力,帮你早日登顶实现财富自由🚀;同时,欢迎大家关注&&收藏&&…

fiscobcos 3.x linux安装与java简单调用

所用环境 vmware 16 Pro centos7.6 jdk11.0.6 ideal 2022 1、安装fiscobcos # 创建操作目录 # cd ~ && mkdir -p fisco && cd fisco# 下载建链脚本 # curl -#LO https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v3.6.0/build_chain.sh &a…

知识图谱在提升大语言模型性能中的应用:减少幻觉与增强推理的综述

幻觉现象指的是模型在生成文本时可能会产生一些听起来合理但实际上并不准确或相关的输出,这主要是由于模型在训练数据中存在知识盲区所致。 为了解决这一问题,研究人员采取了多种策略,其中包括利用知识图谱作为外部信息源。知识图谱通过将信息…

Kalign 3:大型数据集的多序列比对

之前一直用的是muscle,看到一个文章使用了Kalign,尝试一下吧 安装 wget -c https://github.com/TimoLassmann/kalign/archive/refs/tags/v3.4.0.tar.gz tar -zxvf v3.4.0.tar.gz cd kalign-3.4.0 mkdir build cd build cmake .. make make test su…

OpenNJet:云原生技术中的创新者与实践者

目录 引言OpenNJet介绍OpenNJet优势1. 性能无损动态配置2. 灵活的CoPilot框架3. 支持HTTP/34. 支持国密5. 企业级应用6. 高效安全 OpenNJet 编译与安装环境准备编译环境配置配置yum源yum 安装软件包创建符号连接修改 ld.so.conf 配置 编译代码 部署 WEB SERVER配置OpenNJet部署…

Unity 性能优化之遮挡剔除(Occlusion Culling)(六)

提示:仅供参考,有误之处,麻烦大佬指出,不胜感激! 文章目录 前言一、遮挡剔除是什么?二、静态遮挡剔除的使用步骤1.标记为遮挡剔除对象2.创建Occlusion Area组件3.烘焙4.Occlusion窗口Bake的参数Smallest Oc…

linux实验(数据库备份)

以下所有操作皆以机房电脑上的虚拟机为基础环境 下载链接:Linux课程机房虚拟机# 切换到root用户 su - root安装数据库mysql 5.7 rpm -ivh https://mirrors4.tuna.tsinghua.edu.cn/mysql/yum/mysql-5.7-community-el7-x86_64/mysql-community-common-5.7.29-1.el7.x…

ROS 2边学边练(43)-- 利用GTest写一个基本测试(C++)

前言 在ROS(Robot Operating System)中,gtest(Google Test)是一个广泛使用的C测试框架,用于编写和执行单元测试。这些测试可以验证ROS节点、服务和消息等的正确性和性能。 如果我们需要在写的包中添加测试&…

严苛工作环境下IMU的最佳选择—爱普生M-G364及M-G354

爱普生(EPSON)秉持其省、小、精的核心技术,并运用长期于工业市场中所累积的专业经验与知识,专注于研发符合市场需求的IMU产品,打造出即使在具高挑战性的严苛环境下,亦可提供优异稳定性及高分辨率的IMU产品。随着自主精密农业机械、…

echars设置渐变颜色的方法

在我们日常的开发中,难免会遇到有需求,需要使用echars设置渐变的图表,如果我们需要设置给图表设置渐变颜色的话,我们只需要在 series 配置项中 添加相应的属性配置项即可。 方式一:colorStops type:‘lin…

jenkins常用插件之Filesystem Trigger

安装插件 Filesystem Trigger 项目配置 验证 根据上述配置,当1.txt文件发生变化时,jenkins每分钟会进行检测,检测到后即进行任务构建,后续的具体操作可自行配置

C++ 如何进阶?

一、C基础(3个月) 1、面向对象的三大特性:封装、继承、多态 2、类的访问权限:private、protected、public 3、类的构造函数、析构函数、赋值函数、拷贝函数 4、移动构造函数与接贝构造函数对比 5、深接贝与浅贝的区别 6、空…