H.265 与 H.264 的主要区别

news2025/1/10 17:14:40

H.265 与 H.264 的主要区别

  • H.265 与 H.264 的主要区别
    • 各模块技术差异汇总
    • 宏块划分
    • 帧内预测模式
    • 帧间预测模式
    • 去块滤波
    • ALF自适应环路滤波
    • 采样点自适应偏移(Sample Adaptive Offset)滤波
    • 并行化设计
      • Tile
      • Entropy slice
      • Dependent Slice
      • WPP(Wavefront Parallel Processing)
    • 码率控制方法
    • 参考

H.265 与 H.264 的主要区别

H.265 仍然采用混合编解码,编解码结构域 H.264 基本一致。

H.265的框架图:

在这里插入图片描述

主要的不同在于:

  1. H.265新的编码块划分结构:采用CU(Coding Unit)、PU(Prediction Unit)和TU(Transform Unit)的递归结构。
  2. 基本细节:各功能块的内部细节有很多差异。
  3. 并行工具:增加了Tile以及WPP等并行工具集以提高编码速度。
  4. 滤波器:在去块滤波之后增加了SAO(sample adaptive offset)滤波模块。

各模块技术差异汇总

在这里插入图片描述

在这里插入图片描述

宏块划分

在H.265中,将宏块的大小从H.264的16×16扩展到了64×64,以便于高分辨率视频的压缩。

同时,采用了更加灵活的编码结构来提高编码效率,包括编码单元(Coding Unit)、预测单元(Predict Unit)和变换单元(Transform Unit)。

在这里插入图片描述

其中:

  • 编码单元类似于H.264/AVC中的宏块的概念,用于编码的过程。
  • 预测单元是进行预测的基本单元,
  • 变换单元是进行变换和量化的基本单元。

这三个单元的分离,使得变换、预测和编码各个处理环节更加灵活,也有利于各环节的划分更加符合视频图像的纹理特征,有利于各个单元更优化的完成各自的功能。

在这里插入图片描述

RQT是一种自适应的变换技术,这种思想是对H.264/AVC中ABT(AdaptiveBlock-size Transform)技术的延伸和扩展。

对于帧间编码来说,它允许变换块的大小根据运动补偿块的大小进行自适应的调整;对于帧内编码来说,它允许变换块的大小根据帧内预测残差的特性进行自适应的调整。

大块的变换相对于小块的变换,一方面能够提供更好的能量集中效果,并能在量化后保存更多的图像细节,但是另一方面在量化后却会带来更多的振铃效应。

因此,根据当前块信号的特性,自适应的选择变换块大小,如下图所示,可以得到能量集中、细节保留程度以及图像的振铃效应三者最优的折中。

在这里插入图片描述

帧内预测模式

H.265在H.264的预测方向基础上增加了更多的预测方向。

H.264亮度预测:

  • 4x4块:9个方向
  • 8x8块:9个方向
  • 16x16块:4种方向

H.264色度预测:4种方向。

在这里插入图片描述

H.265的亮度预测有35种方向,色度预测有5种方向。

在这里插入图片描述

帧间预测模式

H.265是在H.264基础上增加插值的抽头系数个数,改变抽头系数值以及增加运动矢量预测值的候选个数,以达到减少预测残差的目的。

H.265与H.264一样插值精度都是亮度到1/4,色度到1/8精度,但插值滤波器抽头长度和系数不同。

H.265的增加了运动矢量预测值候选的个数,而H.264预测值只有一个。

去块滤波

H.265的去块滤波与H.264的流程是一致的,做了如下最显著的改变:

  1. 滤波边界: H.264最小到4x4边界滤波;而H.265适应最新的CU、PU和TU划分结构的滤波边缘,最小滤波边界为8x8。
  2. 滤波顺序:H.264先宏块内采用垂直边界,再当前宏块内水平边界;而H.265先整帧的垂直边界,再整帧的水平边界。

ALF自适应环路滤波

ALF在编解码环路内,位于Deblock和SAO之后,用于恢复重建图像以达到重建图像与原始图像之间的均方差(MSE)最小。

ALF的系数是在帧级计算和传输的,可以整帧应用ALF,也可以对于基于块或基于量化树(quadtree)的部分区域进行ALF,如果是基于部分区域的ALF,还必须传递指示区域信息的附加信息。

采样点自适应偏移(Sample Adaptive Offset)滤波

H.265新增采样点自适应偏移(Sample AdaptiveOffset)滤波,就是对去块滤波后的重建像素按照不同的模板进行分类,并对每一种分类像素进行补偿,分类模板分为BO(Band offset)和EO(Edge offset)。

带状补偿将像素值强度等级划分为若干个条带,每个BO内的像素拥有相同的补偿值。进行补偿时根据重构像素点所处的条带,选择相应的带状补偿值进行补偿。

SAO 把有效的YUV取值范围(0-255)平均分为32个band,如下图所示。通过某些算法(可以通过RDO确定)来选择其中连续的4个band进行补偿,当CTB中的sample的Luma/Chroma处于这4个选定的band中时,需要对这个sample进行补偿(把该band相关的offset值加到sample的值上)。

在这里插入图片描述

EO补偿时当前像素点c的相邻像素点包括2个像素,同时规定相邻像素点的位置仅有水平方向(EO_0),竖直方向(EO_1),135°方向(EO_2),45°方向(EO_3)这4种模式,如下图:

在这里插入图片描述

SAO在编解码环路内,位于Deblock之后,通过对重建图像的分类,对每一类图像像素值加减一个偏移,达到减少失真的目的,从而提高压缩率,减少码流。

采用SAO后,平均可以减少2%~6%的码流,而编码器和解码器的性能消耗仅仅增加了约2%。

并行化设计

当前芯片架构已经从单核性能逐渐往多核并行方向发展,因此为了适应并行化程度非常高的芯片实现,HEVC/H.265引入了很多并行运算的优化思路, 主要包括以下几个方面。

Tile

用垂直和水平的边界将图像划分为一些行和列,划分出的矩形区域为一个Tile,每一个Tile包含整数个LCU(Largest Coding Unit),Tile之间可以互相独立,以此实现并行处理。

在这里插入图片描述

Entropy slice

H.264 Slice切分存在的缺点:H.264的熵编码以slice为单位,这可能会造成各个slice之间的编码负担不均衡,有的slice负担重,有的则负担轻。理论上多切分一些slice有助于在多核计算机上提高负载均衡能力。

Entropy Slice允许在一个slice内部再切分成多个Entropy Slices,每个Entropy Slice可以独立的编码和解码,从而提高了编解码器的并行处理能力。

在这里插入图片描述

Dependent Slice

Dependent slice,其解码或编码的起始熵编码CABAC上下文状态是以上一个slice为基础,因此它不能完成数据丢失后的重新同步,该技术可以理解为对原先NALU数据的进一步拆分,可以适合更加灵活的打包方式。

在这里插入图片描述

WPP(Wavefront Parallel Processing)

上一行的第二个LCU处理完毕,即对当前行的第一个LCU的熵编码(CABAC)概率状态参数进行初始化,如图所示。因此,只需要上一行的第二个LCU编解码完毕,即可以开始当前行的编解码,以此提高编解码器的并行处理能力。

在这里插入图片描述

码率控制方法

CBR(Constant Bit Rate)是以恒定比特率方式进行编码,有Motion发生时,由于码率恒定,只能通过增大QP来减少码字大小,图像质量变差,当场景静止时,图像质量又变好,因此图像质量不稳定。这种算法优先考虑码率(带宽)。

这个算法也算是码率控制最难的算法了,因为无法确定何时有motion发生,假设在码率统计窗口的最后一帧发生motion,就会导致该帧size变大,从而导致统计的码率大于预设的码率,也就是说每秒统计一次码率是不合理的,应该是统计一段时间内的平均码率,这样会更合理一些。

VBR(Variable Bit Rate)动态比特率,其码率可以随着图像的复杂程度的不同而变化,因此其编码效率比较高,Motion发生时,马赛克很少。码率控制算法根据图像内容确定使用的比特率,图像内容比较简单则分配较少的码率,图像内容复杂则分配较多的码字,这样既保证了质量,又兼顾带宽限制。这种算法优先考虑图像质量。

参考

  1. https://baike.baidu.com/item/%E9%AB%98%E6%95%88%E7%8E%87%E8%A7%86%E9%A2%91%E7%BC%96%E7%A0%81/22742375?fr=ge_ala#3
  2. https://blog.csdn.net/bvngh3247/article/details/80239593
  3. https://zhuanlan.zhihu.com/p/633413414
  4. https://www.cnblogs.com/qing1991/p/10111847.html
  5. https://zhuanlan.zhihu.com/p/494849282

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1642997.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

docker部署nginx并实现https

文章目录 docker部署nginx并实现https1、服务器环境2、安装docker3、准备证书4、准备nginx配置文件和dockerfile文件5、创建nginx镜像与容器6、验证访问 docker部署nginx并实现https 1、服务器环境 [rootliuyanfen12 ~]#systemctl stop firewalld [rootliuyanfen12 ~]#setenf…

HTML/CSS1

1.前置说明 请点这里 2.img元素 格式&#xff1a; <img src"图片地址" alt"占位文字" width"图片宽度" height"图片高度">其中alt是当图片加载失败时显示的文字 而且不同内核的浏览器显示出来的占位文字的效果也是不尽相同的…

Django之单文件上传(以图片为例)

一&#xff0c;创建项目 初始化&#xff0c;数据迁移&#xff0c;创建superuser&#xff0c;创建app等 二&#xff0c;配置settings.py 1&#xff0c;配置数据库&#xff08;本作者使用的mysql&#xff09;&#xff0c;以前文章有提到 2&#xff0c;配置静态文件存放路径 STAT…

论文笔记ColdDTA:利用数据增强和基于注意力的特征融合进行药物靶标结合亲和力预测

ColdDTA发表在Computers in Biology and Medicine 的一篇一区文章 突出 • 数据增强和基于注意力的特征融合用于药物靶点结合亲和力预测。 • 与其他方法相比&#xff0c;它在 Davis、KIBA 和 BindingDB 数据集上显示出竞争性能。 • 可视化模型权重可以获得可解释的见解。 …

安卓硬件访问服务

安卓硬件访问服务 硬件访问服务通过硬件抽象层模块来为应用程序提供硬件读写操作。 由于硬件抽象层模块是使用C语言开发的&#xff0c; 而应用程序框架层中的硬件访问服务是使用Java语言开发的&#xff0c; 因此&#xff0c; 硬件访问服务必须通过Java本地接口&#xff08;Jav…

EPAI手绘建模APP演示板、材质编辑器、样式编辑器

(11) 更多 图 74 更多工具栏 ① 演示板&#xff1a;打开关闭演示板。演示板用来显示从设备导入的模型图纸图片或者打开模型建模教程网页&#xff0c;是建模过程中一个辅助功能。有些设备有小窗口功能有些没有&#xff0c;对于没有小窗口功能的设备&#xff0c;通过演示板能够在…

A Bug‘s Life (并查集)

//新生训练 #include <iostream> #include <algorithm> using namespace std; const int N 5000; int p[N], sz[N]; int n, m; int find(int x) {if (p[x] ! x)p[x] find(p[x]);return p[x]; } int main() {int T;scanf("%d", &T);for (int k 1; …

车载电子电器架构 —— 通信安全E2E Rollng counter

车载电子电器架构 —— 通信安全E2E Rollng counter 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要…

17_Scala面向对象高阶功能

文章目录 1.继承1.1 构造对象时,父类对象优于子类对象1.2父类主构造有参数,子类必须要显示地调用父类主构造器并传值 2.封装3.抽象3.1抽象定义3.2子类继承抽象类3.3抽象属性 4.伴生对象4.1创建类和伴生对象4.2调用 1.继承 –和Java一样,权限protected , public.父类定义子类用…

[嵌入式系统-67]:RT-Thread-组件:虚拟-设备文件系统DFS,以目录结构和文件的方式存储和管理各种各样的数据

目录 虚拟文件系统 1. DFS 简介 DFS 架构 POSIX 接口层 虚拟文件系统层 设备抽象层 2. 挂载管理&#xff1a;构建统一的文件系统目录 初始化 DFS 组件 注册文件系统 将存储设备注册为块设备 格式化文件系统 挂载文件系统 卸载文件系统 3. 文件管理 打开和关闭文…

分布式与一致性协议之一致哈希算法(三)

一致哈希算法 如何使用一致哈希算法实现哈希寻址 我们一起来看一个例子&#xff0c;对于1000万个key的3节点KV存储&#xff0c;如果我们使用一致哈希算法增加1个节点&#xff0c;即3节点集群变为4节点集群&#xff0c;则只需要迁移24.3%的数据,如代码所示 package mainimpor…

时间日志格式的统一和定制

返回当前格式的时间没有错误&#xff0c;但是不符合中国人的阅读习惯 解决&#xff1a; 方案一&#xff1a;JsonFormat 解决后端 传到 前端格式问题 依赖&#xff1a; <dependency><groupId>com.fasterxml.jackson.core</groupId><artifactId>jack…

brpc profiler

cpu profiler cpu profiler | bRPC MacOS的额外配置 在MacOS下&#xff0c;gperftools中的perl pprof脚本无法将函数地址转变成函数名&#xff0c;解决办法是&#xff1a; 安装standalone pprof&#xff0c;并把下载的pprof二进制文件路径写入环境变量GOOGLE_PPROF_BINARY_PA…

Spring Boot与JSP的浪漫邂逅:轻松构建动态Web应用的秘诀

本文介绍 Spring Boot 集成 JSP。 1、pom.xml 增加对 JSP 的支持 Spring Boot 的默认视图支持是 Thymeleaf 模板引擎&#xff0c;如果想要使用 JSP 页面&#xff0c;需要配置 servlet 依赖和 tomcat 的支持。 在 pom.xml 文件中增加如下代码&#xff1a; <!-- servlet依赖 -…

Sarcasm detection论文解析 |使用基于多头注意力的双向 LSTM 进行讽刺检测

论文地址 论文地址&#xff1a;https://ieeexplore.ieee.org/document/8949523 论文首页 笔记框架 使用基于多头注意力的双向 LSTM 进行讽刺检测 &#x1f4c5;出版年份:2020 &#x1f4d6;出版期刊:IEEE Access &#x1f4c8;影响因子:3.9 &#x1f9d1;文章作者:Kumar Avinas…

使用docker-compose编排lnmp(dockerfile)完成wordpress

文章目录 使用docker-compose编排lnmp&#xff08;dockerfile&#xff09;完成wordpress1、服务器环境2、Docker、Docker-Compose环境安装2.1 安装Docker环境2.2 安装Docker-Compose 3、nginx3.1 新建目录&#xff0c;上传安装包3.2 编辑Dockerfile脚本3.3 准备nginx.conf配置文…

WebAssembly 入门教程 c++、python编译wasm

WebAssembly 入门 了解 wasm 使用场景&#xff0c;复杂对象传递和经验法则。 简介 WebAssembly 是一种新的编码方式&#xff0c;可以在现代的网络浏览器中运行。它是一种低级的类汇编语言&#xff0c;具有紧凑的二进制格式&#xff0c;可以接近原生的性能运行&#xff0c;并…

【C++】学习笔记——vector_2

文章目录 七、vector2. vecotr的使用3. vector的模拟实现 未完待续 七、vector 2. vecotr的使用 上节我们以二维数组结束&#xff0c;这一节我们以二维数组开始。 // 二维数组 vector<vector<int>> vv;二维数组在底层是连续的一维数组。vv[i][j] 是怎样访问的&a…

FBA头程海运发货流程是怎样的?

FBA头程发货作为整个FBA流程的关键一环&#xff0c;更是直接影响到商品从起点到终点的流通效率和成本。其中&#xff0c;海运作为一种经济、稳定的运输方式&#xff0c;在FBA头程发货中扮演着举足轻重的角色。那么&#xff0c;FBA头程海运发货流程究竟是怎样的呢? 1、装箱与发…

轻松应对数据恢复挑战:雷神笔记本,不同情况不同策略

在数字化时代&#xff0c;数据无疑是我们生活中不可或缺的一部分。无论是重要的工作文件、珍贵的家庭照片&#xff0c;还是回忆满满的视频&#xff0c;一旦丢失&#xff0c;都可能给我们的生活带来诸多不便。雷神笔记本作为市场上备受欢迎的电脑品牌&#xff0c;用户在使用过程…