Linux学习之IP协议

news2025/2/22 19:51:46

前言:

在学习IP协议i前,我们其实知道网络协议栈是一层层的,上层封装好之后就传给下层,对于我们治安学习到的TCP协议,在对数据进行封装之后,并不是直接就将数据进行传输,而是交给下一层网络层进行传输,将数据通过网络形式从一台主机传输到另一台主机。我们的TCP只是给我们网络层,提供了许多可靠性策略,但是数据的传输并不是直接靠TCP。

实际上IP协议已经可以帮我们跨网络传输数据,但是并不能保证每次数据都是可靠的,安全的传输,通过TCP协议提供的策略,基本上数据传输时完全可靠的,安全的。

IP协议

 首先从一台主机到另一台主机,进行数据传输的过程中首先要进行源地址与目的地址的确定,即从源ip到目的ip,其次就是进行路段的选择,即路由选择。

而ip地址就是由两部分组成:目标网络+目标主机。先到达目标的网络区域,在确定是哪一台主机。ip地址通过这种方式,在进行网络通信的过程中,就能有较高的效率去排除,知道知道对应的目标主机。

IP协议的报头

关于ip的报头还是主要有两个问题:

1.报头与载荷的有效分离 

靠固定长度加自描述字段进行分离,如这里的报头总共20字节,剩下的为数据,其次还有4位首部长度(一个字节4位)。子描述字段报头首部+总长。

 2.将有效载荷交付给上层。

有8位协议字段表示要交付的上层协议。

网段划分

我们知道ip地址有网络好于主机号构成:

网络号:保证相互连接的两个网段具有不同的标识。

主机号:同一网段中,主机间有相同的网络号,因此靠主机号唯一识别。

主机之间通过路由器在网络层上跨网段传输数据,实际上路由器可以是一个个子网的主机,需要对齐进行配置ip地址。一个路由器相当于在两个子网中。

根据主机与网络号不同的位数,我们就可以对ip地址进行划分。IPv4下总共用32位标识:

随着 Internet 的飞速发展 , 这种划分方案的局限性很快显现出来 , 大多数组织都申请 B 类网络地址 , 导致 B 类地址很快就 分配完了, A 类却浪费了大量地址 ;
例如 , 申请了一个 B 类地址 , 理论上一个子网内能允许 6 5 千多个主机 . A 类地址的子网内的主机数更多 .
然而实际网络架设中 , 不会存在一个子网内有这么多的情况 . 因此大量的 IP 地址都被浪费掉了 .
针对这种情况提出了新的划分方案 , 称为 CIDR(Classless Interdomain Routing):
引入一个额外的子网掩码 (subnet mask) 来区分网络号和主机号 ;
子网掩码也是一个 32 位的正整数 . 通常用一串 "0" 来结尾 ;
IP 地址和子网掩码进行 " 按位与 " 操作 , 得到的结果就是网络号 ;
网络号和主机号的划分与这个 IP 地址是 A 类、 B 类还是 C 类无关 ;

除此之外也有一些特定格式的特定ip地址。

IP 地址中的主机地址全部设为 0, 就成为了网络号 , 代表这个局域网 ;
IP 地址中的主机地址全部设为 1, 就成为了广播地址 , 用于给同一个链路中相互连接的所有主机发送数 据包;
127.* IP 地址用于本机环回 (loop back) 测试 , 通常是 127.0.0.1

我们知道ip地址的数量是有限的,并且数量是越来越少,为了较少ip地址的浪费,提高利用率,用了三种方式来解决:

动态分配 IP 地址 : 只给接入网络的设备分配 IP 地址 . 因此同一个 MAC 地址的设备 , 每次接入互联网中 , 得到 的IP 地址不一定是相同的 ;
NAT 技术 ( 后面会重点介绍 );
IPv6: IPv6 并不是 IPv4 的简单升级版 . 这是互不相干的两个协议 , 彼此并不兼容 ; IPv6 16 字节 128 位来表 示一个IP 地址 ; 但是目前 IPv6 还没有普及 ;

公网IP与私网IP

其次ip地址也被被硬性划分为公网ip和私网ip。(规定组建局域网的必须是私有ip)

我们在日常生活过中使用的一般都是直接的私网ip。不过对于我们使用的云服务器,这是事公网ip。

如果一个组织内部组建局域网 ,IP 地址只用于局域网内的通信 , 而不直接连到 Internet , 理论上 使用任意的 IP 地址都 可以, 但是 RFC 1918 规定了用于组建局域网的私有 IP 地址
10.*, 8 位是网络号 , 16,777,216 个地址
172.16. 172.31. , 12 位是网络号 , 1,048,576 个地址
192.168.*, 16 位是网络号 , 65,536 个地址
包含在这个范围中的 , 都成为私有 IP, 其余的则称为全局 IP( 或公网 IP);

理解运营商和全球网络

我们先来理解运营商:

运营商其实就是建设了网络基础设施的大型企业,负责让我们中国的每一个人用到互联网,为我们配备网络的。所以在网络通信时,首先要经过运营商。

全球网络

 ip地址就相当于是一个巨大的资源,因此就需要对资源进行划分,我们简单地以国家为个体进行划分(公网ip):

内网路由器就是由家庭管理,先来自运营商内部的子网,子网的路由器网络从广域网来,而广域网就是一些大公司组建的机房。

ip路由

IP 数据包的传输过程也和问路一样:
1.当 IP 数据包 , 到达路由器时 , 路由器会先查看目的 IP;
2.路由器决定这个数据包是能直接发送给目标主机 , 还是需要发送给下一个路由器 ;
3.依次反复 , 一直到达目标 IP 地址 ;
那么如何判定当前这个数据包该发送到哪里呢 ? 这个就依靠每个节点内部维护一个路由表 ;

路由器在进行数据传输中,如何选择其他网段呢,首先会将自己的ip地址与其他路由器的子网掩码按位与,如果结果是ip地址,就说明是传输的网段,就交给目标主机,如果不匹配,他回去再路由表按位与,找到你需要那个路由器的接口,从该接口转发给下一个路由器。

路由表可以使用 route 命令查看
如果目的 IP 命中了路由表 , 就直接转发即可 ;
路由表中的最后一行 , 主要由下一跳地址和发送接口两部分组成 , 当目的地址与路由表中其它行都不匹配 时, 就按缺省路由条目规定的接口发送到下一跳地址。

再往下,我们知道数据并不会直接就发送到网络层了,而是发送给数据链路层了,数据链路层是有要求的,要求一次不能发送太多的数据报,而此时的封装后的ip数据包已经很大了,所赐此时需要对ip数据包进行分片,并且在处理之后进行组装。

如何进行分片与组装呢:这里就看的是ip协议包头中的3位标志字段,其中只有第二位与第三位有含义,第二位为0,表示允许分片,第三位表示结束标记(是否是最后一个小包)。

数据链路层

用于两个设备(同一种数据链路节点)之间进行传递.

数据链路层实现了一个区间内的通信(一跳),而IP实现的是直至到最终目的通信(点对点)。

数据链路层处理的是:直接相连的主机之间进行数据交付的问题。

而MAC地址区分了一个局域网中特定的主机。

源地址和目的地址是指网卡的硬件地址 ( 也叫 MAC 地址 ), 长度是 48 , 是在网卡出厂时固化的 ;
帧协议类型字段有三种值 , 分别对应 IP ARP RARP;
帧末尾是 CRC 校验码

报头域有效载荷如何分离,怎么判断分用呢?

 还是一样,采用定长的报文格式,可以看到14字节的报头,剩下的就是有效载荷。

报头的前6个字节目的主机MAC地址,之后的6字节为u源主机MAC地址,之后的两个字节标识上一层协议的类型。

认识MAC地址

MAC地址用来识别数据链路层中相连的节点;
长度为48位, 及6个字节. 一般用16进制数字加上冒号的形式来表示(例如: 08:00:27:03:fb:19)
在网卡出厂时就确定了, 不能修改. mac地址通常是唯一的(虚拟机中的mac地址不是真实的mac地址, 可 能会冲突; 也有些网卡支持用户配置mac地址)。
MAC地址用于一个局域网内的网络设备寻址和传输数据,MAC地址是硬件地址,是不可被修改的,(其实是网卡的地址),也是用来唯一标识一个局域网中的网络设备。
IP地址可以进行不同网段之间的划分,用于不同网段之间数据的传输和路由,是一种标识主机的逻辑地址。
MAC帧只在局域网中有效,在数据传输过程中,每经过一个网段,向上层决策之后解包,之后在封装(重新添加MAC帧),到下一网段在解包,在封装 -----整个过程类似于唐僧取经,每到一个地方,都会被问“你从哪里来,要到哪里去?”先拆掉之前的包,在换上新的包。直到到达终点。

随着局域网增多,数据在传输过程中就有大概率会发生碰撞,为了应对这一问题,于是又出现了交换机,交换机管理者与它相连的路由器的通信。

认识ARP

虽然我们在这里介绍ARP协议, 但是需要强调, ARP不是一个单纯的数据链路层的协议, 而是一个介于数据链路层和网络层之间的协议。

数据链路层获取到了上层封装后的ip数据帧,可以进行网络传输,但是网络通信不仅仅看ip地址,这只是表示主机的,那么主机上的网络设备呢?是靠MAC地址标识的,找不到目的网络设备的地址先进行处理,就算找到了该主机,还是会丢弃数据包的。

ARP 协议的作用
ARP 协议建立了主机 IP 地址 和 MAC 地址 的映射关系 .
在网络通讯时 , 源主机的应用程序知道目的主机的 IP 地址和端口号 , 却不知道目的主机的硬件地址 ;
数据包首先是被网卡接收到再去处理上层协议的 , 如果接收到的数据包的硬件地址与本机不符,则直接丢弃;
因此在通讯前必须获得目的主机的硬件地址 ;
原理(先广播确定,在传输):
源主机发出 ARP 请求 , 询问 “IP 地址是 192.168.0.1 的主机的硬件地址是多少 ”, 并将这个请求广播到本地网 段( 以太网帧首部的硬件地址填 FF:FF:FF:FF:FF:FF 表示广播 ); 
目的主机接收到广播的 ARP 请求 , 发现其中的 IP 地址与本机相符 , 则发送一个 ARP 应答数据包给源主机 , 将自 己的硬件地址填写在应答包中;
每台主机都维护一个 ARP 缓存表 , 可以用 arp -a 命令查看。缓存表中的表项有过期时间 ( 一般为 20 分钟 ), 如果20 分钟内没有再次使用某个表项 , 则该表项失效 , 下次还要发 ARP 请求来获得目的主机的硬件地址。

 ARP报头:

 

  

注意到源 MAC 地址、目的 MAC 地址在以太网首部和 ARP 请求中各出现一次 , 对于链路层为以太网的情况是多余的, 但如果链路层是其它类型的网络则有可能是必要的。
硬件类型指链路层网络类型 ,1 为以太网 ;
协议类型指要转换的地址类型 ,0x0800 IP 地址 ;
硬件地址长度对于以太网地址为 6 字节 ;
协议地址长度对于和 IP 地址为 4 字节 ;
op字段为1表示ARP请求,op字段为2表示ARP应答。

源主机通过广播获取目的主机的MAC地址,在网络通信时根据MAC地址传输给特定网络设备在进行上层协议的解包。因为每一个路由器要构建路由器表的时候也要认识周围的路由器,此时也适用arp协议进行记录。所以ARP不经可以在节点到主机之间,还可以是节点到节点之间。(路由器之间)。

ARP欺骗

举例:

  • 1.主机A要和主机C通信,主机A发出ARP包询问谁是192.168.1.3?请回复192.168.1.1。
  • 2.这时主机B在疯狂的向主机A回复,我是192.168.1.3,我的地址是0A-11-22-33-44-02。
  • 3.由于ARP协议不会验证回复者的身份,造成主机A错误的将192.168.1.3的MAC映射为0A-11-22-33-44-02。

其次在发送ARP请求后,如果获取到目的主机的ARP应答,此时还会将目的主的MAC地址缓存在主机中。但若收到很多的ARP应答(存在伪装的ARP应答,用虚假的ip地址和MAC地址构建的ARP应答),(更新ARP缓存)ip地址会去使用虚假的映射ip地址,MAC地址使用我的MAC地址,造成的后果会让网络阻塞,主机网络断开。

网络整体结构

域名

由于ip地址与端口号不方便我们我们日常使用,因此可以使用域名来代替ip地址与端口号:

域名简介
主域名是用来识别主机名称和主机所属的组织机构的一种分层结构的名称 .
域名使用 . 连接
com: 一级域名 . 表示这是一个企业域名 . 同级的还有 "net"( 网络提供商 ), "org"( 非盈利组织 ) .
baidu: 二级域名 , 公司名 .
www: 只是一种习惯用法 . 之前人们在使用域名时 , 往往命名成类似于 ftp.xxx.xxx/ www.xxx.xxx 这样的格 式, 来表示主机支持的协议 .

NAT技术

NAT 技术背景
之前我们讨论了 , IPv4 协议中 , IP 地址数量不充足的问题
NAT 技术当前解决 IP 地址不够用的主要手段 , 是路由器的一个重要功能 ;
NAT 能够将私有 IP 对外通信时转为全局 IP. 也就是就是一种将私有 IP 和全局 IP 相互转化的技术方法 :
很多学校 , 家庭 , 公司内部采用每个终端设置私有 IP, 而在路由器或必要的服务器上设置全局 IP;
全局 IP 要求唯一 , 但是私有 IP 不需要 ; 在不同的局域网中出现相同的私有 IP 是完全不影响的 ;

NAPT

那么问题来了 , 如果局域网内 , 有多个主机都访问同一个外网服务器 , 那么对于服务器返回的数据中 , 目的 IP 都是相同 的. 那么 NAT 路由器如何判定将这个数据包转发给哪个局域网的主机 ?
这时候 NAPT 来解决这个问题了 . 使用 IP+port 来建立这个关联关系

NAT和代理服务器

路由器往往都具备 NAT 设备的功能 , 通过 NAT 设备进行中转 , 完成子网设备和其他子网设备的通信过程 .代理服务器看起来和NAT 设备有一点像 . 客户端向代理服务器发送请求 , 代理服务器将请求转发给真正要请求的服务器; 服务器返回结果后 , 代理服务器又把结果回传给客户端 .
那么 NAT 和代理服务器的区别有哪些呢 ?
从应用上讲 , NAT 设备是网络基础设备之一 , 解决的是 IP 不足的问题 . 代理服务器则是更贴近具体应用 , 比 如通过代理服务器进行翻墙, 另外像迅游这样的加速器 , 也是使用代理服务器 .
从底层实现上讲 , NAT 是工作在网络层 , 直接对 IP 地址进行替换 . 代理服务器往往工作在应用层 .
从使用范围上讲 , NAT 一般在局域网的出口部署 , 代理服务器可以在局域网做 , 也可以在广域网做 , 也可以 跨网.
代理服务器又分为正向代理和反向代理. 正向代理用于请求的转发 ( 例如借助代理绕过反爬虫 ). 反向代理往往作为一个缓存.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1641727.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【讲解如何OpenCV入门】

🌈个人主页: 程序员不想敲代码啊 🏆CSDN优质创作者,CSDN实力新星,CSDN博客专家 👍点赞⭐评论⭐收藏 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共…

GDPU unity游戏开发 碰撞器与触发器

砰砰叫,谁动了她的奶酪让你的小鹿乱撞了。基于此,亦即碰撞与触发的过程。 碰撞器与触发器的区别 通俗点讲,碰撞器检测碰撞,触发器检测触发,讲了跟没讲似的。碰撞器是用来检测碰撞事件的,在unity中&#xff…

发表博客之:transformer 架构 推理时候运算流程详细讲解,小白都可以看得懂,AI推理工程师必备技能!

文章目录 [发表博客之:transformer 架构 推理时候 详细讲解,小白都可以看得懂,AI推理工程师必备技能!](https://cyj666.blog.csdn.net/article/details/138439826)总结一下 发表博客之:transformer 架构 推理时候 详细…

[每日AI·0501]GitHub 版 Devin,Transformer的强力挑战者 Mamba,Sora 制作细节与踩坑,OpenAI 记忆功能

AI 资讯 国资委:加快人工智能等新技术与制造全过程、全要素深度融合GitHub版 Devin 上线,会打字就能开发应用,微软 CEO:重新定义 IDE在12个视频理解任务中,Mamba 先打败了 TransformerSora 会颠覆电影制作吗&#xff…

Python | Leetcode Python题解之第66题加一

题目: 题解: class Solution:def plusOne(self, digits: List[int]) -> List[int]:n len(digits)for i in range(n - 1, -1, -1):if digits[i] ! 9:digits[i] 1for j in range(i 1, n):digits[j] 0return digits# digits 中所有的元素均为 9retu…

Java——认识异常

目录 一.异常的概念与体系结构 1.异常的概念 1.1算术异常 1.2数组越界异常 1.3空指针异常 2.异常的体系结构 3.异常的分类 3.1编译时异常 3.2运行时异常 二.异常的处理 1.防御式编程 1.1LBYL 1.2EAFP(核心) 2.异常的抛出 3.异常的捕获 3…

1081 检查密码(测试点2简析)

solution 潜在的非法字符里可能包含空格&#xff0c;所以不能直接用cin接收string&#xff08;测试点2&#xff09; #include<iostream> #include<string> using namespace std; int judge(string s){if(s.size() < 6) return 1;int num 0, c 0;for(int i …

C++基础——输入输出(文件)

一、标准输入输出流 C 的输入输出是程序与用户或外部设备&#xff08;如文件、网络等&#xff09;之间交换信息的过程。 C 提供了丰富的标准库来支持这种交互&#xff0c;主要通过流的概念来实现。 流&#xff1a;抽象概念&#xff0c;表示一连串的数据&#xff08;字节或字…

Python爬虫--爬取糗事百科段子

爬取糗事百科段子&#xff1a; 段子在 <div class"content"> 里面的 <span> 标签里面 不过这里有个坑&#xff0c;div 标签跟 span 标签 之间有很多空行 普通 .*? 是匹配不了的&#xff0c;需要使用模式修饰符 S S 的意思 让 .(点) 匹配&#xff0c…

政安晨:【Keras机器学习示例演绎】(三十一)—— 梯度集中,提高训练效果

目录 简介 设置 准备数据 使用数据增强 定义模型 实现梯度集中化 训练工具 不使用 GC 训练模型 使用 GC 训练模型 性能比较 政安晨的个人主页&#xff1a;政安晨 欢迎 &#x1f44d;点赞✍评论⭐收藏 收录专栏: TensorFlow与Keras机器学习实战 希望政安晨的博客能够对…

基于php+mysql+html简单图书管理系统

博主介绍&#xff1a; 大家好&#xff0c;本人精通Java、Python、Php、C#、C、C编程语言&#xff0c;同时也熟练掌握微信小程序、Android等技术&#xff0c;能够为大家提供全方位的技术支持和交流。 我有丰富的成品Java、Python、C#毕设项目经验&#xff0c;能够为学生提供各类…

C#语言入门

一、基础知识 1. 程序语言是什么 用于人和计算机进行交流&#xff0c;通过程序语言让计算机能够响应我们发出的指令 2. 开发环境 IDE&#xff0c;集成开发环境。它就是一类用于程序开发的软件&#xff0c;这一类软件一般包括了代码编辑、编译器、调试器、图形用户界面等等工…

springboot 整合 knife4j-openapi3

适用于&#xff1a;项目已使用shiro安全认证框架&#xff0c;整合knife4j-openapi3 1.引入依赖 <!-- knife4j-openapi3 --> <dependency><groupId>com.github.xiaoymin</groupId><artifactId>knife4j-openapi3-spring-boot-starter</artifa…

【C语言】——结构体

【C语言】——结构体 一、结构体类型的声明1.1、结构体的声明1.2、结构体变量的创建和初始化1.3、结构体的特殊声明1.4、结构体的自引用1.5、结构体的重命名 二、 结构体的内存对齐2.1、对齐规则2.2、结构体对齐实践2.3、为什么存在内存对齐2.4、修改默认对齐数 三、结构体传参…

数据库(MySQL)—— 多表查询

数据库&#xff08;MySQL&#xff09;—— 多表查询 多表关系一对多多对多一对一多表查询概述数据准备查询形式笛卡尔积 分类连接查询内连接外连接左外连接右外连接 自连接联合查询 今天我们来进入MySQL中一个非常重要的部分&#xff1a;多表查询&#xff1a; 多表关系 多表关…

【HM】DevEco Studio如何使用代码编程AI助手

大家可能都有用过或了解过github copilot插件&#xff0c;确实为我们编码智能、提升开发效率有很大的帮助。推荐两款国产的ai编程插件&#xff0c;分别是华为的CodeArts Snap和阿里的通义灵码。 DevEco 中如何安装通义灵码&#xff1f; 一、下载通义灵码离线安装包 打开官网…

数组邻接表+堆优化版dijkstra+蓝桥杯2022年第十三届决赛真题-出差

文章目录 邻接表数组实现堆优化版dijkstra蓝桥杯2022年第十三届决赛真题-出差 邻接表数组实现 idx是每条边的地址e保存终点的节点值w保存每条边的权值ne[idx]保存边表&#xff0c;idx的下一个顶点的地址h[a]保存顶点表&#xff0c;a是起点&#xff0c;h[a]是终点的地址 int e…

docker-compose单机容器集群编排工具

前言&#xff1a; docker-compose用来单机上编排容器&#xff08;定义和运行多个容器&#xff0c;使容器能互通&#xff09; Eg&#xff1a;前端和后端部署在一台机器上&#xff0c;现在直接通过编写docker-compose文件对多个服务&#xff08;可定义依赖&#xff0c;按顺序启…

conda环境安装的pyproj包报错

conda环境安装的pyproj包报错 文章目录 conda环境安装的pyproj包报错问题解决参考 问题 在conda创建的Python3.9虚拟环境中安装pyproj包3.6在运行时出现以下报错 UserWarning: pyproj unable to set database path. _pyproj_global_context_initialize()解决 先激活并进入创…

古典密码学简介

目录 C. D. Shannon: 一、置换密码 二、单表代替密码 ① 加法密码 ② 乘法密码 ③密钥词组代替密码 三、多表代替密码 代数密码 四、古典密码的穷举分析 1、单表代替密码分析 五、古典密码的统计分析 1、密钥词组单表代替密码的统计分析 2、英语的统计规…