Universal Thresholdizer:将多种密码学原语门限化

news2025/1/2 0:18:46

参考文献:

  1. [LS90] Lapidot D, Shamir A. Publicly verifiable non-interactive zero-knowledge proofs[C]//Advances in Cryptology-CRYPTO’90: Proceedings 10. Springer Berlin Heidelberg, 1991: 353-365.
  2. [Shoup00] Shoup V. Practical threshold signatures[C]//Advances in Cryptology—EUROCRYPT 2000: International Conference on the Theory and Application of Cryptographic Techniques Bruges, Belgium, May 14–18, 2000 Proceedings 19. Springer Berlin Heidelberg, 2000: 207-220.
  3. [AJL+12] Asharov G, Jain A, López-Alt A, et al. Multiparty computation with low communication, computation and interaction via threshold FHE[C]//Advances in Cryptology–EUROCRYPT 2012: 31st Annual International Conference on the Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings 31. Springer Berlin Heidelberg, 2012: 483-501.
  4. [BGI15] Boyle E, Gilboa N, Ishai Y. Function secret sharing[C]//Annual international conference on the theory and applications of cryptographic techniques. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015: 337-367.
  5. [CM15] Clear M, McGoldrick C. Multi-identity and multi-key leveled FHE from learning with errors[C]//Advances in Cryptology–CRYPTO 2015: 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II 35. Springer Berlin Heidelberg, 2015: 630-656.
  6. [GVW15] Gorbunov S, Vaikuntanathan V, Wichs D. Leveled fully homomorphic signatures from standard lattices[C]//Proceedings of the forty-seventh annual ACM symposium on Theory of computing. 2015: 469-477.
  7. [GHK+17] Goyal R, Hohenberger S, Koppula V, et al. A generic approach to constructing and proving verifiable random functions[C]//Theory of Cryptography: 15th International Conference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part II 15. Springer International Publishing, 2017: 537-566.
  8. [BGG+18] Boneh D, Gennaro R, Goldfeder S, et al. Threshold cryptosystems from threshold fully homomorphic encryption[C]//Advances in Cryptology–CRYPTO 2018: 38th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 19–23, 2018, Proceedings, Part I 38. Springer International Publishing, 2018: 565-596.
  9. PZK via OWF
  10. LSSS & MSP
  11. Threshold FHE
  12. Multi-key FHE

文章目录

  • Centralized ThFHE
    • Definition
    • ThFHE from Special LSSS
    • ThFHE from Shamir SSS
  • Decentralized ThFHE
  • Universal Thresholdizer
    • Definition
    • UT from PZK
    • UT from HS
  • Threshold Cryptosystems from UT
    • Function Secret Sharing
    • Threshold Signatures
    • Others

[BGG+18] 基于 门限同态加密,给出了构造 各种门限密码系统的一种通用方法。

Centralized ThFHE

Definition

[BGG+18] 首先给出了 threshold fully homomorphic encryption (ThFHE) for any class of access structures 的接口以及相关属性的定义。这个定义是中心化的,它有一个可信的 Setup 阶段,用于生成公私钥对以及分发私钥。

接口为:

在这里插入图片描述

我们要求 ThFHE 具有:紧凑性、计算正确性、语义安全性(IND-CPA)、模拟安全性(更强)

在这里插入图片描述

在这里插入图片描述

接下来,[BGG+18] 使用了 [AJL+12] 的噪声洪泛策略:为了防止 partial decryption 泄露参与者的 secret share 信息,他们根据 Smudging Lemma,对部分解密的结果(本来噪声的界 B B B)添加上超多项式大小的噪声(污染噪声的界 B s m B_{sm} Bsm 满足 B / B s m = n e g l ( λ ) B/B_{sm}=negl(\lambda) B/Bsm=negl(λ)),这使得包含私钥信息与否的两个分布的统计距离是可忽略的,从而证明模拟安全性。

[AJL+12] 使用的是形如 s = ∑ i = 1 N s i s = \sum_{i=1}^N s_i s=i=1Nsi 的 additive SSS。根据 FHE 的双线性(内积)解密特点,它在重构时的噪声累积是线性的,但是它只能处理 ( N − 1 ) (N-1) (N1)-out-of- N N N 访问结构。

[BGG+18] 考虑了任意的门限访问结构(threshold access structures , TAS

在这里插入图片描述

为了构造 ThFHE,首先需要一个底层的 FHE,要求它具有:紧凑性、正确性、安全性。[BGG+18] 特别地要求它的解密函数可以明确地分为线性部分以及非线性部分

在这里插入图片描述

ThFHE from Special LSSS

为了减小 LSSS 重建时的噪声累加,[BGG+18] 提出了一类特殊的访问结构,称之为 {0,1}-LSSS 访问结构族,它可以被一些重构系数要么是零要么是壹的 LSSS 所支持。

在这里插入图片描述

这个 {0,1}-LSSS 访问结构族包含了所有可以由 monotone Boolean formulas(MBFs)计算的那些访问结构(只含 AND 以及 OR 的布尔函数,不含 NOT)。特别地,TAS 也包含在内。也就是说 Special LSSS 依旧足够的富有,
TAS ⊆ MBF ⊆ { 0 , 1 } -LSSS \text{TAS} \subseteq \text{MBF} \subseteq \{0,1\}\text{-LSSS} TASMBF{0,1}-LSSS
LSSS 等价于 MSP,分发的 SS 都是由 secret 以及 random 组成的向量和某个 LSSS 矩阵相乘来获得的。各个参与者最终会拿到和 LSSS 矩阵的某些行相关的一个向量。[BGG+18] 将那些被 MSP 接受的那些行的 indices 称为 valid share set,将它们对应的参与者称为 valid party set,可对应地定义两者的 maximal invalid set 以及 minimal valid set

基于 Special FHE 以及 Special LSSS,构造 ThFHE 如下:

在这里插入图片描述

选择的参数应当满足: B + l ⋅ B s m ≤ q / 4 B+l\cdot B_{sm} \le q/4 B+lBsmq/4 以及 B / B s m = n e g l ( λ ) B/B_{sm} = negl(\lambda) B/Bsm=negl(λ),从而需要设置超多项式大小的洪泛噪声的上界 B s m B_{sm} Bsm 以及超多项式大小的底层 FHE 密文模数 q q q,安全假设是超多项式因子的近似格问题的困难性。可以证明构造出的 ThFHE 满足:紧凑性、计算正确性、语义安全性、模拟安全性。

ThFHE from Shamir SSS

使用 LSSS 的一个缺点就是它的 SS 规模太大了,对于 TAS 的描述需要 O ( N 5.2 ) O(N^{5.2}) O(N5.2) 大小的单调公式。而 Shamir SS 的规模是和 secret 大小相同的。但是如果直接使用 Shamir SSS,它的拉格朗日插值系数需要除法(在 Z q \mathbb Z_q Zq 上求逆元,范数往往很大),这导致噪声快速累计从而无法正确解密。

[BGG+18] 使用了 [Shoup00] 的 clearing out denominators(清理分母)策略:限制各个 party 的插值点为 x = 1 , 2 , ⋯   , N x=1,2,\cdots,N x=1,2,,N,特别地 dealer 插值点是 0 0 0,那么授权集 S ⊆ A t ∪ { 0 } S \subseteq \mathbb A_t \cup \{0\} SAt{0} 的 Lagrange coefficients 形如:
λ i j S = ∏ k ∈ S \ { j } ( j − k ) ∏ k ∈ S \ { j } ( i − k ) ∈ Q \lambda_{ij}^S = \frac{\prod_{k \in S\backslash\{j\}}(j-k)}{\prod_{k \in S\backslash\{j\}}(i-k)} \in \mathbb Q λijS=kS\{j}(ik)kS\{j}(jk)Q
它们被用于计算 s j = ∑ i ∈ S λ i j S ⋅ s i s_j = \sum_{i \in S} \lambda_{ij}^S \cdot s_i sj=iSλijSsi,其中 i ∈ S i \in S iS 是授权集内的参与者,而 j ∈ { 1 , 2 , ⋯   , N } \ S j \in \{1,2,\cdots,N\}\backslash S j{1,2,,N}\S 是其他参与者。容易看出这些插值系数的分母都整除 Δ = ( N ! ) 2 \Delta = (N!)^2 Δ=(N!)2,因此 Δ ⋅ λ i j S ∈ Z \Delta \cdot \lambda_{ij}^S \in \mathbb Z ΔλijSZ 是整数,并且上界是 ∣ Δ ⋅ λ i j S ∣ ≤ ( N ! ) 3 |\Delta \cdot \lambda_{ij}^S| \le (N!)^3 ∣ΔλijS(N!)3,它们都是低范数的整数

基于 Special FHE 以及 Shamir SSS,构造 ThFHE 如下:

在这里插入图片描述

选择的参数应当满足: B + ( N ! ) 3 ⋅ N ⋅ B s m ≤ q / 4 B+(N!)^3\cdot N\cdot B_{sm} \le q/4 B+(N!)3NBsmq/4 以及 B / B s m = n e g l ( λ ) B/B_{sm} = negl(\lambda) B/Bsm=negl(λ),这也需要超多项式近似因子的困难假设。可以证明构造出的 ThFHE 满足:计算正确性、语义安全性、模拟安全性。但是它不满足紧凑性,因为密文模数的规模和 N N N 有关,比特长度的增长因子是 O ( N log ⁡ N ) O(N \log N) O(NlogN)

Decentralized ThFHE

上述的 ThFHE 是中心化的,它在很多场景下有限制。除了是否存在可信方这个问题,还有参与者动态地加入和退出的情况,这导致 Setup 的频繁执行。

[BGG+18] 定义了一个去中心化的版本,记为 dThFHE,它没有 Setup 阶段。为了实现门限,他们在 Enc 算法中让各个参与者独立地生成 FHE 私钥及其 SS,然后再利用 PKE 封装这些 SS 到密文中。接口为:

在这里插入图片描述

类似的,定义它的一些属性:计算正确性、语义安全、模拟安全。由于 dThFHE 密文中需要包含给各个参与者的 SS 的 PKE 加密,因此密文规模一定会和 N N N 有关,因此定义了弱紧凑性。这些属性的定义我就不抄过来了,太繁琐。

构造如下:

在这里插入图片描述

它是一个满足各项属性的 dThFHE 方案。注意 TFHE.Setup 必须在每次 Enc 时独立地生成,因为它的私钥已经被分发在了密文中的 PKE 部分,不应该复用。所以,即使是单个参与者生成的不同密文,它们之间也无法相互作用。

不过,如果将底层的 FHE 替换为 [CM15] 提出的 Multi-Key FHE,那么获得的 MK dThFHE 是可以数据交互的。对于 ThFHE.Setup 生成独立的公私钥,它们的密文总可以先利用 masking system 转换成某组参与者对应的 expanded ciphertext,然后这些扩展的密文互相之间可以运算,最后解密时需要这组参与者中每个人的 FHE 私钥,这被从 PKE 密文中恢复出来。

Universal Thresholdizer

Definition

[BGG+18] 利用 ThFHE 给出了其他密码学原语的门限版本的通用构造:门限转化器(universal thresholdizer, UT

他们把 Setup 和 Enc 合并(使用 ThFHE 加密 secret 作为 pp 的一部分),把 Eval 和 PartDec 合并(各个参与者对这个 secret 密文做同一个运算,然后部分解密),并添加了 PartVerify 提供鲁棒性。确切地说,UT 提供了这样的一个功能:由 dealer 分发 ThFHE 私钥,同时 dealer 还用 ThFHE 加密某个秘密 x x x 获得 c t ( x ) ct(x) ct(x) 密文;接着对于公开的某个电路 C C C,各个 party 同态计算出 c t ( C ( x ) ) ct(C(x)) ct(C(x)),然后立即部分解密得到 p i p_i pi,它们是计算结果 C ( x ) C(x) C(x) 的一组 SS;最终这些 SS 可以合成为 C ( x ) C(x) C(x) 本身。即 UT 把关于秘密 x x x 的电路 C C C 给 “门限化” 了,只有满足访问结构的一组参与者同时计算 C ( x ) C(x) C(x) 以获得它的 SS,才能最终获得 C ( x ) C(x) C(x) 结果,这里的 x x x 是被 Setup 固定到 pp 里的,而公开的电路 C C C 可以随意变化。

UT 的接口为:

在这里插入图片描述

紧凑性、计算正确性、验证正确性:

在这里插入图片描述

鲁棒性:

在这里插入图片描述

模拟安全性:

在这里插入图片描述

UT from PZK

带预处理的 ZKP 系统(zero knowledge proof system with pre-processing, PZK)是 NIZK 的弱化,它的存在性只需要比 NIZK 所要求的弱得多的假设。PZK 只有最后一轮通信需要从 Prover 发往 Verifier,之前的所有通信轮次都可以被双方离线计算。

在这里插入图片描述

[BGG+18] 利用 ThFHE、PZK 系统(证明执行了正确的计算)、非交互的承诺(绑定 ThFHE 私钥的 SS),给出了 UT 的构造。

  • [LS90] 在 OWF 存在的假设下,给出了 NIZK with CRS 的构造,我们可以根据 LWE 问题来构造 OWF(虽然效率会很低)
  • [GHK+17] 基于(超多项式近似因子的) LWE 假设,构造了 non-interactive commitments,因此并不引入新的假设。

构造如下:

在这里插入图片描述

可以证明它满足 UT 所要求的各种属性。

UT from HS

同态签名(homomorphic signature, HS)允许在签名上执行同态运算,可用于证明 y y y(生成 y y y 的签名)确实是 x x x(已经被签名)在电路 C C C(公开的)上正确计算的。它的接口是:

在这里插入图片描述

HS 的功能是:

在这里插入图片描述

假设 SIS 困难,[GVW15] 给出了 (Leveled) FHS 的构造。因此利用 HS 提供 UT 的鲁棒性,也只需要格上困难问题,并没有引入新的假设。这篇文章我还没看,具体的构造,略。

HS 比 NIZK 更加紧凑,并且可以直接基于 LWE 构造出来,因此将它应用到 UT 的构造中替换 NIZK 以提供鲁棒性,在性能上会更好一些。容易把上述的 UT from PZK 修改为 UT from HS,略。

Threshold Cryptosystems from UT

[BGG+18] 利用 Universal Thresholdizer,将其他的多种密码原语转换成对应的门限版本。

Function Secret Sharing

[BGI15] 提出了函数秘密分享(Function Secret Sharing, FSS),类似于 SSS,但是分发的不再是消息,而是去分发函数。接口是:

在这里插入图片描述

紧凑性、计算正确性、安全性:

在这里插入图片描述

利用 UT 以及 PRF,可以给出 FSS 的构造。简记 U ( f , x ) \mathcal U(f,x) U(f,x) 是计算 f ( x ) f(x) f(x) 的通用电路(universal circuit),简记 U x \mathcal U_x Ux 是硬编码 x x x 的电路。

在这里插入图片描述

Threshold Signatures

门限签名是把 signing key 分发给多个签名者,只有满足某访问结构的签名者小组可以共同生成一个合法的签名。

在这里插入图片描述

紧凑性、计算正确性、部分验签正确性:

在这里插入图片描述

(弱)不可伪造性:

在这里插入图片描述

鲁棒性、匿名性:

在这里插入图片描述

使用 UT 将底层 Sign 门限化,

在这里插入图片描述

Others

[BGG+18] 还利用 UT 给出了:CCA Threshold PKECompact ThFHEThreshold Distributed PRFs

基本的思路都是:对于携带秘密的原始电路 C ( k , s ) C(k,s) C(k,s)将它的秘密 k k k 使用 UT.Setup 分发,然后使用 UT.Eval 对硬编码了字符串 s s s 的电路关于这些秘密的 SS 做运算,生成了运算结果的 SS,最后再用 UT.Combine 将它们组合成最终的结果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1640594.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[嵌入式系统-53]:嵌入式系统集成开发环境大全 ( IAR Embedded Workbench(通用)、MDK(ARM)比较 )

目录 一、嵌入式系统集成开发环境分类 二、由MCU芯片厂家提供的集成开发工具 三、由嵌入式操作提供的集成开发工具 四、由第三方工具厂家提供的集成开发工具 五、开发工具的整合 5.1 Keil MDK for ARM 5.2 IAR Embedded Workbench(通用)、MDK&…

240503-关于VisualStudio2022社区版的二三事

240503-关于VisualStudio2022社区版的二三事 1 常用快捷键 快捷键描述AltEnter选中代码片段以提取方法Alt上下箭头移动选中的代码片段F12转到方法定义CtrlR*2批量修改选中的变量名称 2 自动生成构造函数 3 快速重写父类方法 4 节约时间:写代码使用“头插法”&…

深度解析 Spring 源码:从BeanDefinition源码探索Bean的本质

文章目录 一、BeanDefinition 的概述1.1 BeanDefinition 的定位1.2 BeanDefition 的作用 二、BeanDefinition 源码解读2.1 BeanDefinition 接口的主要方法2.2 BeanDefinition 的实现类2.2.1 实现类的区别2.2.2 setBeanClassName()2.2.3 getDependsOn()2.2.4 setScope() 2.3 Bea…

用双目相机实现坐标标定

一:相机参数设置和计算 镜头参数:MF2808-10MP 靶面尺寸2/3 ,视场角(对角水平垂直) 69.758.545.5 焦距:8mm,分辨率:16241240 1.1视场角的计算 图像分辨率越高,双目匹…

FP16、BF16、INT8、INT4精度模型加载所需显存以及硬件适配的分析

大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法…

Arduino 推出带 Wi-Fi的 32 位 UNO 板

Arduino 推出了下一代 UNO 板,引入了 32 位 Renesas 微控制器和 Espressif ESP32-S3 模块、一键云连接和大量 I/O 以及 128 红色 LED 矩阵。新型 UNO R4 板有两个版本,带 Wi-Fi 连接和不带 Wi-Fi 连接,并保持了 UNO R3 的外形尺寸、屏蔽兼容性…

分布式事务—> seata

分布式事务之Seata 一、什么是分布式事务? 分布式事务是一种特殊类型的事务,它涉及多个分布式系统中的节点,包括事务的参与者、支持事务的服务器、资源服务器以及事务管理器。 在分布式事务中,一次大型操作通常由多个小操作组成…

jvm垃圾回收机制介绍

JVM(Java虚拟机)是Java程序的运行环境,它负责执行字节码文件。JVM的工作原理主要包括以下几个部分:类加载器、执行引擎、垃圾收集器和内存管理。类加载器负责加载字节码文件并将其转换成Java平台上的机器码,执行引擎负…

vue3 + ts 快速入门(全)

文章目录 学习链接1. Vue3简介1.1. 性能的提升1.2.源码的升级1.3. 拥抱TypeScript1.4. 新的特性 2. 创建Vue3工程2.1. 基于 vue-cli 创建2.2. 基于 vite 创建(推荐)vite介绍创建步骤项目结构安装插件项目结构总结 2.3. 一个简单的效果Person.vueApp.vue …

数据结构:时间复杂度/空间复杂度

目录 一、时间复杂度 定义 常见的时间复杂度 如何计算时间复杂度 计算方法 三、实例分析 二、空间复杂度 定义 重要性 常见的空间复杂度 二、空间复杂度 定义 重要性 常见的空间复杂度 计算方法 三、实例分析 大O的渐进表示法 最好情况(Best Case…

吴恩达机器学习笔记:第 9 周-15 异常检测(Anomaly Detection) 15.3-15.4

目录 第 9 周 15、 异常检测(Anomaly Detection)15.3 算法15.4 开发和评价一个异常检测系统 第 9 周 15、 异常检测(Anomaly Detection) 15.3 算法 在本节视频中,我将应用高斯分布开发异常检测算法。 异常检测算法:对于给定的数据集 x ( 1 ) , x ( 2…

2024年短剧小程序视频解析下载

小程序下载工具我已经打包好了,有需要的自己下载一下 小程序下载工具链接:百度网盘 请输入提取码 提取码:1234 --来自百度网盘超级会员V10的分享 1.首先解压好我给大家准备好的压缩包 2.退出微信,点击电脑右下角进行退出 3…

链栈--c语言实现

#include <stdio.h> #include <stdlib.h> #include <stdbool.h>// 栈节点的结构体定义 typedef struct StackNode {int data; // 数据域struct StackNode *next; // 指针域&#xff0c;指向下一个节点 } StackNode, *LinkStack;// 初始化栈 …

【保姆级教程】Linux上部署Stable Diffusion WebUI和LoRA训练,拥有你的专属图片生成模型

0 写在前面 Stable Diffusion 是当前最火热的图像生成模型之一&#xff0c;目前已经广泛应用于艺术创 作、游戏开发、设计模拟等领域&#xff0c;因其开源生态和易于使用而受到创作者的广泛关注&#xff0c;相比 Midjourney 而言&#xff0c;其最大的优势是完全免费&#xff0…

笔记1--Llama 3 超级课堂 | Llama3概述与演进历程

1、Llama 3概述 https://github.com/SmartFlowAI/Llama3-Tutorial.git 【Llama 3 五一超级课堂 | Llama3概述与演进历程】 2、Llama 3 改进点 【最新【大模型微调】大模型llama3技术全面解析 大模型应用部署 据说llama3不满足scaling law&#xff1f;】…

使用node调用chrome(基于selenium-webdriver包)

下载测试版chrome和chromedriver https://googlechromelabs.github.io/chrome-for-testing/ 把chromedriver复制到chrome的文件里 设置环境变量 编写代码 const { Builder, Browser, By, Key, until } require(selenium-webdriver) const puppeteer require(puppeteer)//查…

Modelsim自动仿真平台的搭建

Modelsim自动仿真平台的搭建 如果要搭建自动仿真平台脚本那就需要更改下面3个文件。run_simulation.bat、complie.do和wave.do文件。注&#xff1a;前提是安装了modulsim并且配置好了环境变量&#xff0c;这里不过多介绍。 一、下面是run_simulation.bat文件的内容 : 注释的…

企业计算机服务器中了devicdata勒索病毒怎么处理,devicdata解密数据恢复

网络技术的不断应用与发展&#xff0c;加快了社会进步的步伐&#xff0c;越来越多的企业利用网络开展各项工作业务&#xff0c;网络为企业提供了极大便利&#xff0c;大大提高了生产效率&#xff0c;网络数据安全问题成为了众多企业关心的主要话题。近日&#xff0c;云天数据恢…

C# Web控件与数据感应之 CheckBoxList 类

目录 关于数据感应 CheckBoxList 类 范例运行环境 数据源表设计 角色字典表 用户角色表 AutoValueDBList 方法 原理 设计 实现 调用示例 初始化数据 启动查询模式 使用保存模式 小结 关于数据感应 数据感应也即数据捆绑&#xff0c;是一种动态的&#xff0c;We…

11个2024年热门的AI编码助手

大家好&#xff0c;人工智能&#xff08;AI&#xff09;领域的大型语言模型&#xff08;LLMs&#xff09;已经逐渐发展成熟&#xff0c;并且深入到了我们日常的工作当中。在众多AI应用中&#xff0c;编码助手尤为突出&#xff0c;是开发人员编写更高效、准确无误代码的必备辅助…