基于GWO灰狼优化的CNN-LSTM-Attention的时间序列回归预测matlab仿真

news2025/1/12 13:30:29

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1卷积神经网络(CNN)在时间序列中的应用

4.2 长短时记忆网络(LSTM)处理序列依赖关系

4.3 注意力机制(Attention)

4.4 GWO优化

5.算法完整程序工程


1.算法运行效果图预览

优化前

优化后

2.算法运行软件版本

matlab2022a

3.部分核心程序

..........................................................................
    a=2*(1-(t/Iters));  
    for i=1:Num
        for j=1:dim       
            r1      = rand; 
            r2      = rand;
            A1      = 2*a*r1-a;%
            C1      = 2*r2;    %
            D_alpha = abs(C1*Alpx(j)-xpos(i,j));%
            X1      = Alpx(j)-A1*D_alpha;       %
            
            r1      = rand; 
            r2      = rand;
            A2      = 2*a*r1-a; %
            C2      = 2*r2; %
            D_beta  = abs(C2*btx(j)-xpos(i,j)); %
            X2      = btx(j)-A2*D_beta; %    
            
            r1      = rand; 
            r2      = rand;
            A3      = 2*a*r1-a; %
            C3      = 2*r2; %
            D_delta = abs(C3*dltx(j)-xpos(i,j)); %
            X3      = dltx(j)-A3*D_delta; %           
            
            xpos(i,j) = (X1+X2+X3)/3;%

            if xpos(i,j)>=Lmax(j)
               xpos(i,j)=Lmax(j);
            end
            if xpos(i,j)<=Lmin(j)
               xpos(i,j)=Lmin(j);
            end
 
        end
    end
end

LR             = Alpx(1)
numHiddenUnits = floor(Alpx(2))+1


........................................................................

%数据预测
Dpre1 = predict(Net, Nsp_train2);
Dpre2 = predict(Net, Nsp_test2);

%归一化还原
T_sim1=Dpre1*Vmax2;
T_sim2=Dpre2*Vmax2;


%网络结构
analyzeNetwork(Net)


figure
subplot(211);
plot(1: Num1, Tat_train,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num1, T_sim1,'g',...
    'LineWidth',2,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);

legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
grid on

subplot(212);
plot(1: Num1, Tat_train-T_sim1','-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
 
xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);



figure
subplot(211);
plot(1: Num2, Tat_test,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num2, T_sim2,'g',...
    'LineWidth',2,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
legend('真实值', '预测值')
xlabel('测试样本')
ylabel('测试结果')
grid on

subplot(212);
plot(1: Num2, Tat_test-T_sim2','-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
 
xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);


save R2.mat Num2 Tat_test T_sim2 
132

4.算法理论概述

        时间序列回归预测是数据分析的重要领域,旨在根据历史数据预测未来时刻的数值。近年来,深度学习模型如卷积神经网络(Convolutional Neural Network, CNN)、长短时记忆网络(Long Short-Term Memory, LSTM)以及注意力机制(Attention Mechanism)在时间序列预测中展现出显著优势。然而,模型参数的有效设置对预测性能至关重要。灰狼优化(GWO)作为一种高效的全局优化算法,被引入用于优化深度学习模型的超参数。

4.1卷积神经网络(CNN)在时间序列中的应用

        在时间序列数据中,CNN用于提取局部特征和模式。对于一个长度为T的时间序列数据X = [x_1, x_2, ..., x_T],通过卷积层可以生成一组特征映射:

        CNN通过多个卷积层和池化层的堆叠来提取输入数据的特征。每个卷积层都包含多个卷积核,用于捕捉不同的特征。池化层则用于降低数据的维度,减少计算量并增强模型的鲁棒性。

4.2 长短时记忆网络(LSTM)处理序列依赖关系

        LSTM单元能够有效捕捉时间序列中的长期依赖关系。在一个时间步t,LSTM的内部状态h_t和隐藏状态c_t更新如下:

        长短时记忆网络是一种特殊的循环神经网络(RNN),设计用于解决长序列依赖问题。在时间序列预测中,LSTM能够有效地捕捉时间序列中的长期依赖关系。

4.3 注意力机制(Attention)

         注意力机制是一种让模型能够自动地关注输入数据中重要部分的技术。在时间序列预测中,注意力机制可以帮助模型关注与当前预测最相关的历史信息。     

         CNN-LSTM-Attention模型结合了CNN、LSTM和Attention三种技术的优势。首先,使用CNN提取时间序列中的局部特征;然后,将提取的特征输入到LSTM中,捕捉时间序列中的长期依赖关系;最后,通过注意力机制对LSTM的输出进行加权,使模型能够关注与当前预测最相关的历史信息。具体来说,模型的流程如下:

4.4 GWO优化

       灰狼优化(Grey Wolf Optimizer, GWO)是一种受到灰狼社群行为启发的全球优化算法,由Seyedali Mirjalili等于2014年提出。它模仿了灰狼在自然界中的领导层次结构、狩猎策略以及社会共存机制,以解决各种复杂的优化问题。与遗传算法类似,GWO也是基于种群的优化技术,但其独特的搜索策略和更新规则使其在处理某些类型的问题时展现出不同的优势。

        在GWO算法中,灰狼被分为四类:α(领头狼)、β(第二领导者)、δ(第三领导者)以及普通狼(Ω)。在每次迭代中,这些角色对应于当前种群中适应度最好的三个解以及其余的解。通过模拟这些狼在捕食过程中的协作与竞争,算法逐步向全局最优解靠近。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1639853.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SpringBoot实现图片上传(个人头像的修改)

SpringBootlayui实现个人信息头像的更改 该文章适合对SpringBoot&#xff0c;Thymeleaf&#xff0c;layui入门的小伙伴 废话不多说&#xff0c;直接上干货 Springbootlayui实现头像更换 前端公共部分代码 HTML页面代码 <div class"layui-card-header" style&quo…

[实例] Unity Shader 利用顶点着色器模拟简单水波

我们都知道顶点着色器可以用来改变模型各个顶点的位置&#xff0c;那么本篇我们就利用顶点着色器来做一个模拟简单水波的应用。 1. 简谐运动 在进行模拟水波之前&#xff0c;我们需要了解简谐运动&#xff08;Simple Harmonic Motion&#xff09;公式&#xff1a; 其中&#…

有公网IP的好处?

1. 维护远程连接需求的解决方案 公网IP是指可以通过互联网直接访问的IP地址&#xff0c;相对于私有IP地址而言具有重要的好处。公网IP的最大好处之一是解决了各行业客户的远程连接需求。由于天联组网操作简单、跨平台应用、无网络要求以及独创的安全加速方案等原因&#xff0c…

Python 全栈体系【四阶】(三十八)

第五章 深度学习 八、目标检测 3. 目标检测模型 3.2 YOLO 系列 3.2.1 YOLOv1&#xff08;2016&#xff09; 3.2.1.1 基本思想 YOLO&#xff08;You Only Look Once &#xff09;是继 RCNN&#xff0c;fast-RCNN 和 faster-RCNN 之后&#xff0c;Ross Girshick 针对 DL 目…

人工智能论文:BERT和GPT, GPT-2, GPT-3 的简明对比和主要区别

在BERT的论文里面&#xff1a; 2018.10 BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding&#xff0c;BERT已经解释了BERT&#xff0c;GPT&#xff0c;ELMo的区别。 *ELMo为双向RNN&#xff0c;请忽略。 主要区别&#xff1a; BERT使用的是…

Qt QLCDNumber详解

1.简介 它提供了一个显示数字的显示屏控件&#xff0c;效果类似于现实世界中的液晶显示屏。它可以显示任何大小的数字。它可以显示十进制、十六进制、八进制或二进制数字。可以用setMode更改基数&#xff0c;用setSmallDecimalPoint更改小数点。 2.常用方法 以下是一些常用的…

nginx--第三方模块安装上传下载服务

第三方模块安装 准备 cd /usr/local/src/ yum install git -y git clone https://github.com/openresty/echo-nginx-module.git cd nginx-1.24.0 yum -y install perl-devel perl-ExtUtils-Embed zlib-devel gcc-c libtool openssl openssl-devel 编译安装 ./configure \--p…

【深度学习基础(2)】深度学习之前:机器学习简史

文章目录 一. 深度学习的起源1. 概率建模--机器学习分类器2. 早期神经网络--反向传播算法的转折3. 核方法 -- 忽略神经网络4. 决策树、随机森林和梯度提升机5. 神经网络替代svm与决策树 二. 深度学习与机器学习有何不同 可以这样说&#xff0c;当前工业界所使用的大部分机器学习…

Web安全研究(七)

NDSS 2023 开源地址&#xff1a;https://github.com/bfpmeasurementgithub/browser-fingeprint-measurement 霍普金斯大学 文章结构 introbackground threat model measurement methodology step1: traffic analysisstep2: fingerprint analysis dataset attack statisticsbro…

【通信中间件】Fdbus HelloWorld实例

Fdbus实例教程 Fdbus简介 Fdbus 全称 Fast Distributed Bus&#xff08;高速分布式总线&#xff09;&#xff0c;提供IPCRPC功能。适用于多种OS&#xff1a; LinuxQNXAnroidOSWindow Fdbus本质是Socket&#xff0c;IPC基于Unix domain socket&#xff0c;RPC基于TCP。使用G…

诺基亚贝尔探访上海斯歌,共探创新合作新机遇

近日&#xff0c;上海斯歌K2 BPM迎来重要客户考察交流活动。来自诺基亚贝尔的首席数字官刘少勇一行莅临了上海斯歌K2 BPM 的武汉研发中心&#xff0c;并对上海斯歌在BPM业务流程管理领域的研发成果及交付能力给予了高度肯定。 此次活动不仅加深了双方的战略合作&#xff0c;也为…

【机器学习基础1】什么是机器学习、预测模型解决问题的步骤、机器学习的Python生态圈

文章目录 一. 什么是机器学习1. 概念2. 机器学习算法分类 二. 利用预测模型解决问题的步骤三. 机器学习的Python生态圈 一. 什么是机器学习 1. 概念 机器学习&#xff08;Machine Learning&#xff0c;ML&#xff09;是一门多领域的交叉学科&#xff0c;涉及概率论、统计学、…

Librosa:探索音频处理利器

Librosa&#xff1a;探索音频处理利器 音频处理在数据科学、音乐分析和语音识别等领域中扮演着重要角色。Python库Librosa是一个功能强大且广泛使用的工具&#xff0c;专门用于音频分析和处理。本文将介绍Librosa库的基本概念、主要功能以及常见应用场景&#xff0c;帮助读者深…

银行卡归属地查询API接口快速对接

银行卡归属地查询API接口指的是通过银行卡号查询该银行卡详细信息&#xff0c;包括银行卡名称、卡种、卡品牌、发卡行、编号以及归属地等信息&#xff0c;支持一千多家银行返回归属地信息&#xff0c;那么银行卡归属地查询API接口如何快速对接呢&#xff1f; 首先找到有做银行…

【linux-汇编-点灯之思路-程序】

目录 1. ARM汇编中的一些注意事项2. IMXULL汇编点灯的前序&#xff1a;3. IMXULL汇编点灯之确定引脚&#xff1a;4. IMXULL汇编点灯之引脚功能编写&#xff1a;4.1 第一步&#xff0c;开时钟4.2 第二步&#xff0c;定功能&#xff08;MUX&#xff09;4.3 第三步&#xff0c;定电…

Qt5 框架学习及应用 — 对象树

Qt 对象树 对象树概念Qt为什么使用对象树 &#xff1f;将对象挂到对象树上 对象树概念 对象树&#xff1a;对于树的概念&#xff0c;相信许多学过数据结构的同学应该都不会陌生。在学习数据结构的时候我们所接触的什么二叉树、多叉树、哈夫曼树、AVL树、再到红黑树、B/B树………

【C++中的模板】

和你有关&#xff0c;观后无感................................................................................................................. 目录 前言 一、【模板的引入和介绍】 1、泛型编程 2、【模板的介绍】 二、【 函数模板】 2.1【模函数板的介绍】 1.…

win11 Terminal 部分窗口美化

需求及分析&#xff1a;因为在 cmd、anaconda prompt 窗口中输入命令较多&#xff0c;而命令输入行和输出结果都是同一个颜色&#xff0c;不易阅读&#xff0c;故将需求定性为「美化窗口」。 美化结束后&#xff0c;我在想是否能不安装任何软件&#xff0c;简单地通过调整主题颜…

STM32——点亮第一个LED灯

代码示例&#xff1a; #include "stm32f10x.h" // Device headerint main() {RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);//开启时钟GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode GPIO_Mode_Out_PP;GPIO_InitSt…

头歌实践教学平台:投影变换v2.0

第2关&#xff1a;两点透视 一. 任务描述 1. 本关任务 (1) 理解透视投影变换的方法; (2) 将main函数中的空白部分补充完整。 2. 输入 (1) 代码将自动输入一个边长为1的obj正方体模型&#xff0c;具体模型如下图&#xff1a; (2) 代码自动将模型投影到二维平面中心生成一个…