细说SVPWM原理及软件实现原理,关联PWM实现

news2024/11/23 22:37:11

细说SVPWM原理及软件实现原理,关联PWM实现

文章目录

  • 细说SVPWM原理及软件实现原理,关联PWM实现
    • 1. 前言
    • 2. 基础控制原理回顾
      • 2.1 FOC 原理回顾
      • 2.2 细说 SVPWM
        • 2.2.1 矢量扇区计算
        • 2.2.2 矢量作用时间计算
      • 2.2.3 如何理解 U4 = U6 = 2/3Udc?
      • 2.2.4 如何理解 U4max = 2/3 Udc?
    • 3. 各矢量作用时间如何关联到PWM?软件如何实现?
    • 4. PWM输出占空比计算
      • 4.1 Ta Tb Tc 时间计算
      • 4.2 针对低端采样补充分析
    • 5. 总结

1. 前言

在本人之前的博客中,针对直流无刷电机的 FOC 控制算法进行了一个详细且完整的叙述,从理论推导到实际实现的全过程展示;但由于文章篇幅过长,有些小的细节可能没有得到详细叙述。

本文将针对FOC运算中最复杂的部分——SVPWM的理论原理以及具体的软件实现原理进行详细讲解,特别是SVPWM的实现如何与实际的PWM占空比连接起来。相信看过此篇文章对你一定有莫大帮助!

在这之前对于FOC控制不熟悉的同学,或者想要更深入了解的同学,均推荐可阅读本人精心编写的几篇博客内容,希望对你有所帮助:

  • 专栏:电机控制专栏(点击跳转)

  • 博文:直流无刷电机FOC控制算法 理论到实践 —— 理论(一)(点击跳转)

  • 博文:直流无刷电机FOC控制算法 理论到实践 —— 理论(二)(点击跳转)

  • 博文:直流无刷电机FOC控制算法 理论到实践 —— 实践(点击跳转)

  • 博文:直流无刷电机FOC控制原语

2. 基础控制原理回顾

在细说 SVPWM 之前,我们先对 FOC 矢量控制的整个原理进行一个简单的回顾,以便于我们在后续更好的理解后续的 SVPWM实现 以及对应的 PWM 输出的计算,同时检验下大家对于 FOC 矢量控制的理解。

2.1 FOC 原理回顾

关于FOC矢量控制步骤主要如下:

  1. 通过电流采样,获取 U V W 三相的实时电流 Ia Ib Ic
  2. 通过 Clack 变换 将 U V W 三相电流由 U-V-W 三相坐标系 转换到 α-β 直角坐标系 得到 Iα Iβ
  3. 之后通过 Park 变换α-β 直角坐标系 转换到旋转的 d-q 坐标系 得到 Iq_feedback Id_feedback,且经过 park 变换之后电流将由正弦变换状态变为直流状态;
  4. 之后在 d-q 坐标系 上进行 PID 计算,PID目标值为 Iq_targetId_target,反馈为 Iq_feedbackId_feedback,PID的输出结果为 Uq 以及 Ud
  5. 得到 Uq 以及 Ud 以后进行 反 Park 变换,由旋转的 d-q 坐标系 转换到 α-β 直角坐标系 得到 Uα Uβ
  6. 之后便是采用 SVPWM 去实现 Uα Uβ 咯 ~

这便是整个FOC的控制回顾,如果你不能快速理解上述过程,建议可以先阅读上文中介绍到的博文进行学习 ~

2.2 细说 SVPWM

接下来继续回归下 SVPWM 是如何实现 Uα Uβ 的吧。

2.2.1 矢量扇区计算

Uα 和 Uβ 是在 α-β 直角坐标系 上的两个坐标轴方向的矢量,将 Uα 和 Uβ 通过力矩合成可以得到 Uref ,这个其实是我们最终需要输出的 合成力矩(后文中也称之为合成磁力)。
在这里插入图片描述

根据由三个半桥组成的电机驱动电路,采用三三通电方式(也即同一时间必须有三个管子打开),一共可以由六种组合,这便是我们所能得到的六个基础矢量;这六个基础矢量将矢量输出切割出了六个扇区。
在这里插入图片描述
在这里插入图片描述

之后我们需要思考的便是 Uref 所在哪一个扇区;因为 Uref 落在哪一个扇区,决定了此矢量由哪两个基础矢量合成;

关于扇区的判断方式,我们有两种方式,简单叙述如下:

方式一: 通过假设等式计算得出:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

方式二: 通过正余弦角度推理计算:

  1. 根据 Uα 和 Uβ 的正负判断所处四象限中的哪一个象限
  2. 之后根据 sin(θ) = Uβ / Uα 计算值与 sin(60°) 大小做比对进一步确认所处的扇区位置即可

通过以上方法便可得到 Uref 所处的扇区位置,便可知 Uref 将由哪两个基础矢量去进行合成!,之后便是计算基础矢量的作用时间了!


2.2.2 矢量作用时间计算

知道基础矢量是由哪 “两个” 矢量组成之后,剩下的便是计算此两个基础矢量的作用时间以及零矢量的作用时间了。

根据 Uα 和 Uβ 我们可以计算出 T4 和 T6 所作用的时间,如下图所示:
在这里插入图片描述
在这里插入图片描述

2.2.3 如何理解 U4 = U6 = 2/3Udc?

在上述计算中,我们有使用到一个条件:

在这里插入图片描述

这个条件是如何产生的呢?

在这里插入图片描述
如上图所示,紫色的六边形区域是我们通过控制基础矢量的大小能够实现的合成矢量(合成磁力)所覆盖的区域,如果我们始终保持输出的磁力始终为最大值,则输出的磁力将按照下图中的六边形外边缘轨迹输出,此时我们会发现输出的磁力大小将会不均匀!

那么为了使我们输出的合成磁力的大小保持均匀,我们在绘制此六边形的内切圆,即上图中的粉色区域,内切圆的边缘轨迹即为:最大的能均匀输出的合成磁力输出轨迹,因为需要有保证我们矢量的大小均匀的条件,故我们应控制我们输出的合成磁力落在上图中的红色圆内区域!

那红色圆区域最大的输出磁力 Uref max 是多少,如何计算呢?
在这里插入图片描述
在这里插入图片描述
好家伙,这里又引入了一个条件了: U4max = 2/3 Udc, 这个又是怎么来的呢? 继续!

2.2.4 如何理解 U4max = 2/3 Udc?

起始这个很好理解,U4max 即为电机相电压的最大值,注意是相电压,而不是线电压!

什么是线电压?什么是相电压?直接看下图,一目了然!
在这里插入图片描述


综上分析,我们已经彻底弄明白了 Uref 的分解是如何计算的,采用同样的方式,可计算出 Uref 在其他扇区时对应的基础矢量作用时间,如何所示:

在这里插入图片描述
那么得到 V4 和 V6 矢量的作用时间 T4 和 T6 以及零矢量的作用时间 T0 和 T7 之后,我们又如何与PWM的值关联起来呢?这便是本文所重点讨论的内容了!

3. 各矢量作用时间如何关联到PWM?软件如何实现?

通过上述计算,我们已经可以得出各基础矢量的公式了,但是这个公式看上去似乎很不尽人意,还是一点也想不到如何将这与PWM的占空比联系起来,更别说使用上述公式实现代码了!

上面这些公式看上去很复杂,其实是因为还没经过化简,那么如何化简呢?

我们继续以第一扇区的 T4 和 T6 举例,根据2.2.3章节可知,如果控制矢量在内切圆,则 Uref_max 的最大值为 Udc/sqrt3,而Uref又是由 Uα 和 Uβ 组成,故可知 Uα 和 Uβ 的范围为: ±Udc/sqrt3 !!!

markdown 不好打公式,那我还是继续使用word编辑好贴图吧~

在这里插入图片描述

通过上述化简,最终我们拿到的 T4 = Ts x (sqrt(3)/2 x Uα` - 1/2 x Uβ`) ,Ts 的整个控制周期,取定时器的ARR更新寄存器值,Uα` 和 Uβ` 为 -1 ~ +1 的标量!

这个时候再来看看 Uα` 和 Uβ` 从何而来?

Uα` 和 Uβ` 是通过来自 Uq 和 Ud 经过反Park坐标变化而来,因此 Uq 和 Ud 的取值范围也将是 -1 ~ +1!

再来看看 Uq 和 Ud 又是从何而来?

Uq 和 Ud 来自电流环的PID计算结果,故在进行电流环PID计算的时候,我们需要将电流环的输出限幅设置在 ±1!

当然,有时为了方便PID调参,PID输出目标值太小了,会导致PID参数值通常需要设置的非常小,而这会关联到一些精度丢失,浮点运算等等麻烦的事情,因此我们还可以进行下优化!

我们可以把 Ts 缩小 ARR 倍,及 Ts 取1,对应的 Uα` 和 Uβ` 的范围将由 -1 ~ +1 变为 0 - ARR,注意不是 -ARR - ARR,因为我们输出的是互补PWM,当占空比 >50% 的时候 U相为正, <50% 的时候 U相为负!通过这样的方式,这样我们PID输出的限幅可以修改 0 - ARR,输出数值更大,更方便我们PID的调节,当然你也可以改变放大倍数,不是ARR倍,放心吧,PID参数会帮我们搞定这事的,所以放大其他倍数也不会有影响,关键看我们怎么方便了~

在这里插入图片描述

4. PWM输出占空比计算

首先涉及到的是SVPWM的发波方式,SVPWM的发波方式有两种:五段式七段式控制。不同的控制方式,其零矢量的组成不一样,会对计算产生一点点影响。下面我们也来简单回顾一下两种控制方案:

七段式:
在这里插入图片描述

五段式:
在这里插入图片描述

  • 七段式一个控制周期,存在7种不同状态的切换,优势是对电机控制引入的谐波干扰更小;

  • 五段式一个控制周期存在5种不同的状态切换,优势是MOS发热更小;

以上两种方案,任意一种都行,弄懂一个,另外一个也就弄明白了,这里继续以七段式作为举例进行讲解。

这里,我们以 Uref 在第Ⅰ扇区举例,采用 七段式 控制方式。

首先我们回想下我们之前的六个基础矢量的定义方式;我们是假定 U+ V- W- 时,合成矢量为V4;在这个基础之上,其他矢量对应的通电顺序如下
在这里插入图片描述

序号矢量名称通电顺序
1V4U+ V- W-
2V6U+ V+ W-
3V2U- V+ W-
4V3U- V+ W+
5V1U- V- W+
6V5U+ V- W+

那么如果某相需要通正电,对应的其所在半桥的上管应该打开,下管关闭;

我们再假定打开为高,关闭为低;针对三个半桥的上管,对应波形应该如下:
在这里插入图片描述

之后我们用上述的 V4V6 两个基础矢量以及零矢量(V0V7)去实现 Uref我们可以先不思考各矢量的时间是多少,先思考为了减小开关损耗,如何实现每次矢量变化的时候只开关一个 MOS?

大家此处可先做思考,之后再来看下述答案。

在这里插入图片描述

我们将 V4 和 V6 拆解成了两份,这样便能实现切换时只用动作一个mos管了!

大家再仔细观察下上图,如果我们需要控制PWM输出上述波形,有哪里需要注意的吗?那便是我们对于PWM有效电平的控制,按照上述发波定义(之前的那几个假定条件),我们对上管的PWM应该是低电平先发送,触发比较寄存器CCR之后,电平翻转为有效电平高电平!注意这一点细节!

接下来就是最重要的计算各路PWM的输出了!

首先需要给大家提醒一个点,我们的FOC运算是一个PWM更新中断触发一次,因此实际FOC控制是在针对每个pwm周期进行!

在第2章节,我们已经计算得出了 T0、T7、T4、T6的时间,如下图:
在这里插入图片描述
注意上图中,我们配置PWM为三角波输出模式,计数值CNT由0增加至ARR,再由ARR递减至0,此过程合成了两次Uref,而不是一次!因此上图中是两个T4、两个T6以及两个T0和两个T7!

4.1 Ta Tb Tc 时间计算

如图所示,那么如何计算 UVW(ABC)三相的作用时间 Ta、Tb、Tc 是不是就很清楚了呢!注意,我们这里的 Ta、Tb、Tc 所指代的是上桥臂P波输出为高,也即上桥臂打开的时间!

  • Tc = T7 = T0 = 0.5 * (Ts - T4 -T6)
  • Tb = Tc + T6
  • Ta = Tb + T4

同理,其他扇区的计算也是同样的方法,这下大家应该弄懂了 Ta、Tb、Tc 是如何计算出来的了吧!
在这里插入图片描述
笔记最后的假定 K=1 Ts=1,所描述的即为约去了 sqrt(3)/Udc 以及标幺化Ts为1的操作,在第三章节已进行详细阐述!

通过以上计算,我们便可以得到 Ta Tb Tc 的作用时间,也即 U V W 三相的正反向通电时间。

计算出 Ta Tb Tc 的作用时间,也即上桥臂 PWM 高电平所占用的时间之后,接下来就是配置PWM输出来实现此发波了。PWM配置也有两种方式:即你配置的PWM输出是先输出高电平还是低电平有关!如下是具体的两种方式:

  • 方式A:
    • CNT < CCR:输出低电平
    • CNT > CCR:输出高电平
  • 方式B:
    • CNT < CCR:输出高电平
    • CNT > CCR:输出低电平

注意,我们这里分析的输出P波均是面向上半桥,下板桥采用互补输出! 如果你要面向下半桥,会存在差异,需你自行再分析下,都掌握了之后对你应该也不难~

在这里插入图片描述

采用不同的方式,对应的通道 CCR 计算方式不一样;

  • 以通道A举例:
    • 采用方式A,通道CCR值应设置为:ARR - Ta
    • 采用方式B,通道CCR值应设置为:Ta

4.2 针对低端采样补充分析

以上有两种发波方式,各有其优缺点,那么具体到实际应用中,又有哪些注意事项呢?

我们以三电阻或者两电阻的低端采样分析下;

低端采样有一个注意点,那便是采样时机的控制,务必要求在下半桥mos管打开的时候才去进行采样,这个时候有意思的就来了。回到我们上一小节描述的两种发波方式:

  • 方式A:
    • CNT < CCR:输出低电平
    • CNT > CCR:输出高电平
  • 方式B:
    • CNT < CCR:输出高电平
    • CNT > CCR:输出低电平

再次提醒,注意此发波为面向上桥臂,下桥臂采用互补输出自动发波。

针对方式A,在三角波的起始位置,及CNT=0时,上桥臂PWM输出低,下桥臂输出高,此时下桥臂全部打开,可以进行采样;因此每次电流采样可由定时器的更新中断触发,或者在更新中断内调用函数对ADC进行软触发;进行电流采集后进行FOC运算;

针对方式B,在三角波的中央位置,及CNT=ARR时,上桥臂PWM输出低,下桥臂输出高,此时下桥臂全部打开,可以进行采样;因此此方式电流采样需要配置定时器通道4,通道4的比较值设置为 ARR,当通道4的发生比较事件时,触发ADC采样,或者在通道4的比较中断内调用函数对ADC进行软触发,并进行FOC运算!

方式A,采样点在更新中断发生后,FOC也在更新中断内;
方式B,采样点在通道4的比较中断发生后,FOC计算位于通道4的比较中断内;

所以说P波可不是乱发的,选对合适的很重要~

相信这才是实战的经验吧!希望帮助到看到这里的每一个人~

5. 总结

综上,便是对于SVPWM之PWM输出占空比计算的的补充,欢迎大家讨论留言!也欢迎大家点赞关注+收藏,大家的支持是我创作的动力~

  • 专栏:电机控制专栏(点击跳转)

  • 博文:直流无刷电机FOC控制算法 理论到实践 —— 理论(一)(点击跳转)

  • 博文:直流无刷电机FOC控制算法 理论到实践 —— 理论(二)(点击跳转)

  • 博文:直流无刷电机FOC控制算法 理论到实践 —— 实践(点击跳转)

  • 博文:直流无刷电机FOC控制原语

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1639041.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

flash attention 参数(笔记)

目录 一、flash attention官方 1.1、flash attention安装 二、flash attention 常见函数 2.1、flash_attn_varlen_qkvpacked_func 2.2、flash_attn_varlen_kvpacked_func 2.3、flash_attn_varlen_func ​​​​​​​2.4、flash_attn_with_kvcache 2.5、flash_attn_func 一、…

1. 深度学习笔记--神经网络中常见的激活函数

1. 介绍 每个激活函数的输入都是一个数字&#xff0c;然后对其进行某种固定的数学操作。激活函数给神经元引入了非线性因素&#xff0c;如果不用激活函数的话&#xff0c;无论神经网络有多少层&#xff0c;输出都是输入的线性组合。激活函数的意义在于它能够引入非线性特性&am…

魔方阵(C语言)

一、魔方阵规律&#xff1b; 8 1 6 3 5 7 4 9 2 魔方阵中各数的排列规律如下&#xff1a; (1)将1放在第1行中间一列。 (2)从2开始直到nn止&#xff0c;各数依次按此规则存放&#xff1a;每一个数存放的行比前一个数的行数减1&#xff0c;列数加1(例如上…

Go 语言基础(二)【数组、切片、指针、map、struct】

1、数组 特别需要注意的是&#xff1a;在 Go 语言中&#xff0c;数组长度也是数组类型的一部分&#xff01;所以尽管元素类型相同但是长度不同的两个数组&#xff0c;它们的类型并不相同。 1.1、数组的初始化 1.1.1、通过初始化列表{}来设置值 var arr [3]int // int类型的数…

HSDB使用教程

HSDB&#xff1a;Hostspot Debugger&#xff0c;JVM内置的工具&#xff0c;用于深入分析JVM运行时的内部状态 启动HSDB java -cp D:/tools/jdk-1.8/lib/sa-jdi.jar sun.jvm.hotspot.HSDB 获取进程id jps 连接到指定进程 查找类 通过查询查找对象 输入查询语句 select d from …

Linux 学习 --- 编辑 vi 命令

1、vi 基本概念&#xff08;了解&#xff09; 基本上 vi 可以分为三种状态&#xff0c;分别是命令模式 (command mode)、插入模式 (Insert mode) 和底行模式 (last line mode)&#xff0c;各模式的功能区分如下: 命令行模式 command mode&#xff09;  控制屏幕光标的移动&a…

「笔试刷题」:字母收集

一、题目 描述 有一个 &#x1d45b;∗&#x1d45a; 的矩形方阵&#xff0c;每个格子上面写了一个小写字母。 小红站在矩形的左上角&#xff0c;她每次可以向右或者向下走&#xff0c;走到某个格子上就可以收集这个格子的字母。 小红非常喜欢 "love" 这四个字母。…

kubernetes中使用ELK进行日志收集

目录 一、需要收集哪些日志 1、kubernetes集群的系统组件日志 2、应用日志 二、日志收集方案ELK 1、收集日志&#xff1a;Logstash 2、存储日志&#xff1a;Elasticsearch 3、展示日志&#xff1a;Kibana 三、安装elk 1、下载安装包 2、创建用户并切换到新用户 3、上…

【Web】CTFSHOW 中期测评刷题记录(1)

目录 web486 web487 web488 web489 web490 web491 web492 web493 web494 web495 web496 web497 web498 web499 web500 web501 web502 web503 web505 web506 web507 web508 web509 web510 web486 扫目录 初始界面尝试文件包含index.php&am…

ubuntu与redhat的不同之处

华子目录 什么是ubuntu概述 ubuntu版本简介桌面版服务器版 安装部署部署后的设置设置root密码关闭防火墙启用允许root进行ssh登录更改apt源安装所需软件 网络配置Netplan概述配置详解配置文件DHCP静态IP设置设置 软件安装方法apt安装软件作用常用命令配置apt源 deb软件包安装概…

基于React实现B站评论区

今天继续来学习一下React&#xff0c;使用React实现B站评论区&#xff0c;如下图&#xff1a; 在使用React开发类似B站评论区的功能时&#xff0c;我们需要考虑以下几个关键点来构建一个基本的评论系统&#xff1a; 1. 设计组件结构 首先&#xff0c;设计组件结构是关键。至少…

【数据结构】:链表的带环问题

&#x1f381;个人主页&#xff1a;我们的五年 &#x1f50d;系列专栏&#xff1a;数据结构 &#x1f337;追光的人&#xff0c;终会万丈光芒 前言&#xff1a; 链表的带环问题在链表中是一类比较难的问题&#xff0c;它对我们的思维有一个比较高的要求&#xff0c;但是这一类…

ThreeJS:Mesh网格与三维变换

Mesh网格 ThreeJS中&#xff0c;Mesh表示基于以三角形为多边形网格(polygon mesh)的物体的类&#xff0c;同时也作为其它类的基类。 通过Mesh网格&#xff0c;我们可以组合Geometry几何体与Material材质属性&#xff0c;在3D世界中&#xff0c;定义一个物体。例如&#xff1a;之…

Unity ParticleSystem 入门

概述 在项目的制作过程成&#xff0c;一定少不了粒子系统的使用吧&#xff0c;如果你想在项目粒子效果&#xff0c;那这部分的内容一定不要错过喔&#xff01;我添加了理解和注释更好理解一点&#xff01; 这次的内容比较多&#xff0c;右侧有目录&#xff0c;可以帮助快速导…

高中数学:三角函数公式汇总及推导

一、定义 常用三角函数值 参考&#xff1a; 三角函数定义 二、基本三角函数及相互关系 sinx cosx tanx cscx secx cotx 函数间相互关系 参考&#xff1a; cosx、sinx、tanx的函数图像与性质 secx、cscx、cotx函数图像及相关关系 三、诱导公式 口诀&#xff1a;奇变…

通信接口——时钟和信号

前言 所有接口只要抓住三个核心点就能分清&#xff1a;时钟同步和异步&#xff0c;时钟的来源&#xff0c;信号的传输方向。 一、时钟同步和异步 接口之间的交互方式存在多种形式&#xff0c;如果按照是否有公共时钟CLK的参与&#xff0c;可以分为同步传输和异步传输。 同步&…

C语言——队列的实现

队列按照先进先出&#xff08;FIFO&#xff0c;First In First Out&#xff09;的原则管理数据。这意味着最先进入队列的元素会被最先移出&#xff0c;类似于排队等候服务的情况。队列通常有两个主要操作&#xff1a;入队&#xff08;enqueue&#xff09;&#xff0c;将元素添加…

DRF返回值源码分析

DRF返回值源码分析 1 返回值 在视图中定义finalize_response方法&#xff08;也可以用来判断是否异常&#xff09; 自定义异常 配置文件 # settings.py REST_FRAMEWORK {"EXCEPTION_HANDLER": utils.handlers.exception_handler # 自定义的exceptional_handler路…

Sarcasm detection论文解析 |利用对话语境进行讽刺分析

论文地址&#xff1a; 论文地址&#xff1a;Sarcasm Analysis Using Conversation Context | Computational Linguistics | MIT Press github地址&#xff1a;https://github.com/debanjanghosh/sarcasm_context Alex-Fabbri/deep_learning_nlp_sarcasm: code for deep learnin…

基于springboot实现公司日常考勤系统项目【项目源码+论文说明】

基于springboot实现公司日常考勤系统演示 摘要 目前社会当中主要特征就是对于信息的传播比较快和信息内容的安全问题&#xff0c;原本进行办公的类型都耗费了很多的资源、传播的速度也是相对较慢、准确性不高等许多的不足。这个系统就是运用计算机软件来完成对于企业当中出勤率…