CV+Deep Learning——网络架构Pytorch复现系列——Detection(二:RtinaNet)更换backbones

news2025/1/10 17:15:05

上一话

CV+Deep Learning——网络架构Pytorch复现系列——Detection(一:SSD:Single Shot MultiBox Detector 4.推理Detect)https://blog.csdn.net/XiaoyYidiaodiao/article/details/128683973?spm=1001.2014.3001.5501


复现Object Detection,会复现的网络架构有:

1.SSD: Single Shot MultiBox Detector(√)

2.RetinaNet(√)

3.Faster RCNN

4.YOLO系列

....

代码:

https://github.com/HanXiaoyiGitHub/Simple-CV-Pytorch-masterhttps://github.com/HanXiaoyiGitHub/Simple-CV-Pytorch-master


2.复现RetinaNet

之前已经讲过RetinaNet,链接如下:

目标检测——RetinaNet-Focal Loss 焦点损失函数的理解https://blog.csdn.net/XiaoyYidiaodiao/article/details/124553661?spm=1001.2014.3001.5502

也不想做过多的讲解了,就讲讲在RetinaNet中是如何更换Backbones(将以前的ResNet更换为DarkNet)

之前ResNet骨干网络的代码

我懒得写了直接调用Pytorch包的,但是值得注意的是输出的feature map的channels可能需要修改(这里我在RetinaNet.py中进行了修改),与之后Neck(FPN)网络中输入channles匹配。

import torch
from torch import nn
from torchvision.models import resnet18, resnet34, resnet50, \
    resnet101, resnet152


class ResNet(nn.Module):
    def __init__(self, resnet_type="resnet50", pretrained=False):
        super(ResNet, self).__init__()
        if resnet_type == "resnet18":
            self.model = resnet18(pretrained=pretrained)
        elif resnet_type == "resnet34":
            self.model = resnet34(pretrained=pretrained)
        elif resnet_type == "resnet50":
            self.model = resnet50(pretrained=pretrained)
        elif resnet_type == "resnet101":
            self.model = resnet101(pretrained=pretrained)
        elif resnet_type == "resnet152":
            self.model = resnet152(pretrained=pretrained)
        del self.model.fc
        del self.model.avgpool

    def forward(self, x):
        x = self.model.conv1(x)
        x = self.model.bn1(x)
        x = self.model.relu(x)
        x = self.model.maxpool(x)

        x = self.model.layer1(x)
        C3 = self.model.layer2(x)
        C4 = self.model.layer3(C3)
        C5 = self.model.layer4(C4)

        del x

        return [C3, C4, C5]


if __name__ == "__main__":
    backbone = ResNet(resnet_type='resnet18', pretrained=True)
    x = torch.randn([16, 3, 512, 512])
    C3, C4, C5 = backbone(x)
    print(C3.shape)  # torch.Size([16, 512, 64, 64])
    print(C4.shape)  # torch.Size([16, 1024, 32, 32])
    print(C5.shape)  # torch.Size([16, 2048, 16, 16])

DarkNet骨干网络的代码

这里更换的backbones是DarkNetTiny,DarkNet19和DarkNet53,DarkNet系列是出自YOLO系列,其中DarkNet19是来自于YOLO9000(也就是我们通常意义上的YOLOv2[1],DarkNet53是来自于最经典的YOLOv3[2],而DarkNetTiny是来自YOLOv3-Tiny[2]。

import torch
import torch.nn as nn

__all__ = [
    'darknettiny',
    'darknet19',
    'darknet53',
]


class DarkNet(nn.Module):
    def __init__(self, darknet_type='darknet19'):
        super(DarkNet, self).__init__()
        self.darknet_type = darknet_type
        if darknet_type == 'darknettiny':
            self.model = darknettiny()
        elif darknet_type == 'darknet19':
            self.model = darknet19()
        elif darknet_type == 'darknet53':
            self.model = darknet53()

    def forward(self, x):
        out = self.model(x)
        return out


class ActBlock(nn.Module):
    def __init__(self, act_type='leakyrelu', inplace=True):
        super(ActBlock, self).__init__()
        assert act_type in ['silu', 'relu', 'leakyrelu'], \
            "Unsupported activation function!"
        if act_type == 'silu':
            self.act = nn.SiLU(inplace=inplace)
        elif act_type == 'relu':
            self.act = nn.ReLU(inplace=inplace)
        elif act_type == 'leakyrelu':
            self.act = nn.LeakyReLU(0.1, inplace=inplace)

    def forward(self, x):
        x = self.act(x)
        return x


class ConvBlock(nn.Module):
    def __init__(self, inplanes, planes, kernel_size, stride, padding, groups=1, has_bn=True, has_act=True,
                 act_type='leakyrelu'):
        super(ConvBlock, self).__init__()
        bias = False if has_bn else True

        self.layer = nn.Sequential(
            nn.Conv2d(in_channels=inplanes, out_channels=planes, kernel_size=kernel_size, stride=stride,
                      padding=padding, groups=groups, bias=bias),
            nn.BatchNorm2d(planes) if has_bn else nn.Sequential(),
            ActBlock(act_type=act_type, inplace=True) if has_act else nn.Sequential()

        )

    def forward(self, x):
        x = self.layer(x)
        return x


class DarkNetTiny(nn.Module):
    def __init__(self, act_type='leakyrelu'):
        super(DarkNetTiny, self).__init__()
        self.conv1 = ConvBlock(inplanes=3, planes=16, kernel_size=3, stride=1, padding=1, groups=1, has_bn=True,
                               has_act=True, act_type=act_type)
        self.conv2 = ConvBlock(inplanes=16, planes=32, kernel_size=3, stride=1, padding=1, groups=1, has_bn=True,
                               has_act=True, act_type=act_type)
        self.conv3 = ConvBlock(inplanes=32, planes=64, kernel_size=3, stride=1, padding=1, groups=1, has_bn=True,
                               has_act=True, act_type=act_type)
        self.conv4 = ConvBlock(inplanes=64, planes=128, kernel_size=3, stride=1, padding=1, groups=1, has_bn=True,
                               has_act=True, act_type=act_type)
        self.conv5 = ConvBlock(inplanes=128, planes=256, kernel_size=3, stride=1, padding=1, groups=1, has_bn=True,
                               has_act=True, act_type=act_type)
        self.conv6 = ConvBlock(inplanes=256, planes=512, kernel_size=3, stride=1, padding=1, groups=1, has_bn=True,
                               has_act=True, act_type=act_type)

        self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
        self.zeropad = nn.ZeroPad2d((0, 1, 0, 1))
        self.last_maxpool = nn.MaxPool2d(kernel_size=2, stride=1)
        self.out_channels = [64, 128, 256]

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

    def forward(self, x):
        x = self.conv1(x)
        x = self.maxpool(x)

        x = self.conv2(x)
        x = self.maxpool(x)

        C3 = self.conv3(x)
        C3 = self.maxpool(C3)

        C4 = self.conv4(C3)
        C4 = self.maxpool(C4)  # 128

        C5 = self.conv5(C4)
        C5 = self.maxpool(C5)  # 256

        del x
        return [C3, C4, C5]


class D19Block(nn.Module):
    def __init__(self, inplanes, planes, layer_num, use_maxpool=False, act_type='leakyrelu'):
        super(D19Block, self).__init__()
        self.use_maxpool = use_maxpool
        layers = []
        for i in range(0, layer_num):
            if i % 2 == 0:
                layers.append(
                    ConvBlock(inplanes=inplanes, planes=planes, kernel_size=3, stride=1, padding=1, groups=1,
                              has_bn=True, has_act=True, act_type=act_type))
            else:
                layers.append(
                    ConvBlock(inplanes=planes, planes=inplanes, kernel_size=1, stride=1, padding=0, groups=1,
                              has_bn=True, has_act=True, act_type=act_type))
        self.D19Block = nn.Sequential(*layers)
        if self.use_maxpool:
            self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)

    def forward(self, x):
        x = self.D19Block(x)

        if self.use_maxpool:
            x = self.maxpool(x)
        return x


class DarkNet19(nn.Module):
    def __init__(self, act_type='leakyrelu'):
        super(DarkNet19, self).__init__()

        self.layer1 = ConvBlock(inplanes=3, planes=32, kernel_size=3, stride=1, padding=1, groups=1, has_bn=True,
                                has_act=True, act_type=act_type)
        self.layer2 = D19Block(inplanes=32, planes=64, layer_num=1, use_maxpool=True, act_type=act_type)
        self.layer3 = D19Block(inplanes=64, planes=128, layer_num=3, use_maxpool=True, act_type=act_type)
        self.layer4 = D19Block(inplanes=128, planes=256, layer_num=3, use_maxpool=True, act_type=act_type)
        self.layer5 = D19Block(inplanes=256, planes=512, layer_num=5, use_maxpool=True, act_type=act_type)
        self.layer6 = D19Block(inplanes=512, planes=1024, layer_num=5, use_maxpool=False, act_type=act_type)
        self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
        self.out_channels = [128, 256, 512]

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

    def forward(self, x):
        x = self.layer1(x)
        x = self.maxpool(x)
        x = self.layer2(x)

        C3 = self.layer3(x)
        C4 = self.layer4(C3)
        C5 = self.layer5(C4)

        del x
        return [C3, C4, C5]


# conv*2+residual
class BasicBlock(nn.Module):
    def __init__(self, inplanes, planes):
        super(BasicBlock, self).__init__()
        self.conv1 = ConvBlock(inplanes=inplanes, planes=planes, kernel_size=1, stride=1, padding=0)
        self.conv2 = ConvBlock(inplanes=planes, planes=planes * 2, kernel_size=3, stride=1, padding=1)

    def forward(self, x):
        out = self.conv1(x)
        out = self.conv2(out)

        out += x
        del x
        return out


class DarkNet53(nn.Module):
    def __init__(self):
        super(DarkNet53, self).__init__()
        self.conv1 = ConvBlock(inplanes=3, planes=32, kernel_size=3, stride=1, padding=1)
        self.conv2 = ConvBlock(inplanes=32, planes=64, kernel_size=3, stride=2, padding=1)

        self.block1 = nn.Sequential(
            BasicBlock(inplanes=64, planes=32),
            ConvBlock(inplanes=64, planes=128, kernel_size=3, stride=2, padding=1)
        )  # 128

        self.block2 = nn.Sequential(
            BasicBlock(inplanes=128, planes=64),
            BasicBlock(inplanes=128, planes=64),
            ConvBlock(inplanes=128, planes=256, kernel_size=3, stride=2, padding=1)
        )  # 256

        self.block3 = nn.Sequential(
            BasicBlock(inplanes=256, planes=128),
            BasicBlock(inplanes=256, planes=128),
            BasicBlock(inplanes=256, planes=128),
            BasicBlock(inplanes=256, planes=128),
            BasicBlock(inplanes=256, planes=128),
            BasicBlock(inplanes=256, planes=128),
            BasicBlock(inplanes=256, planes=128),
            BasicBlock(inplanes=256, planes=128),
            ConvBlock(inplanes=256, planes=512, kernel_size=3, stride=2, padding=1)
        )  # 512

        self.block4 = nn.Sequential(
            BasicBlock(inplanes=512, planes=256),
            BasicBlock(inplanes=512, planes=256),
            BasicBlock(inplanes=512, planes=256),
            BasicBlock(inplanes=512, planes=256),
            BasicBlock(inplanes=512, planes=256),
            BasicBlock(inplanes=512, planes=256),
            BasicBlock(inplanes=512, planes=256),
            BasicBlock(inplanes=512, planes=256),
            ConvBlock(inplanes=512, planes=1024, kernel_size=3, stride=2, padding=1)
        )  # 1024

        self.block5 = nn.Sequential(
            BasicBlock(inplanes=1024, planes=512),
            BasicBlock(inplanes=1024, planes=512),
            BasicBlock(inplanes=1024, planes=512),
            BasicBlock(inplanes=1024, planes=512)
        )

        self.out_channels = [256, 512, 1024]

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.block1(x)
        C3 = self.block2(x)
        C4 = self.block3(C3)
        C5 = self.block4(C4)
        del x
        return [C3, C4, C5]


def darknettiny(**kwargs):
    model = DarkNetTiny(**kwargs)
    return model


def darknet19(**kwargs):
    model = DarkNet19(**kwargs)
    return model


def darknet53(**kwargs):
    model = DarkNet53(**kwargs)
    return model


if __name__ == '__main__':
    x = torch.randn([8, 3, 512, 512])
    darknet = DarkNet(darknet_type='darknet53')
    [C3, C4, C5] = darknet(x)
    print("C3.shape:{}".format(C3.shape))
    print("C4.shape:{}".format(C4.shape))
    print("C5.shape:{}".format(C5.shape))

    # DarkNet53
    # C3.shape: torch.Size([8, 256, 64, 64])
    # C4.shape: torch.Size([8, 512, 32, 32])
    # C5.shape: torch.Size([8, 1024, 16, 16])

    # DarkNet19
    # C3.shape: torch.Size([8, 128, 64, 64])
    # C4.shape: torch.Size([8, 256, 32, 32])
    # C5.shape: torch.Size([8, 512, 16, 16])

    # DarkNetTiny
    # C3.shape: torch.Size([8, 64, 64, 64])
    # C4.shape: torch.Size([8, 128, 32, 32])
    # C5.shape: torch.Size([8, 256, 16, 16])

如何在RetinaNet网络中使用呢?我设置了个Backbones_type,修改这个就行。

RetinaNet.py代码

import os
import sys

BASE_DIR = os.path.dirname(
    os.path.dirname(
        os.path.abspath(__file__)))
sys.path.append(BASE_DIR)

import torch
import torch.nn as nn
from torchvision.ops import nms
from models.detection.RetinaNet.neck import FPN
from models.detection.RetinaNet.loss import FocalLoss
from models.detection.RetinaNet.anchor import Anchors
from models.detection.RetinaNet.head import clsHead, regHead
from models.detection.RetinaNet.backbones.ResNet import ResNet
from models.detection.RetinaNet.utils.ClipBoxes import ClipBoxes
from models.detection.RetinaNet.backbones.DarkNet import DarkNet
from models.detection.RetinaNet.utils.BBoxTransform import BBoxTransform


# assert input annotations are [x_min, y_min, x_max, y_max]
class RetinaNet(nn.Module):
    def __init__(self,
                 backbones_type="resnet50",
                 num_classes=80,
                 planes=256,
                 pretrained=False,
                 training=False):
        super(RetinaNet, self).__init__()
        self.backbones_type = backbones_type
        # coco 80, voc 20
        self.num_classes = num_classes
        self.planes = planes
        self.training = training
        if backbones_type[:6] == 'resnet':
            self.backbone = ResNet(resnet_type=self.backbones_type,
                                   pretrained=pretrained)
        elif backbones_type[:7] == 'darknet':
            self.backbone = DarkNet(darknet_type=self.backbones_type)
        expand_ratio = {
            "resnet18": 1,
            "resnet34": 1,
            "resnet50": 4,
            "resnet101": 4,
            "resnet152": 4,
            "darknettiny": 0.5,
            "darknet19": 1,
            "darknet53": 2
        }

        C3_inplanes, C4_inplanes, C5_inplanes = \
            int(128 * expand_ratio[self.backbones_type]), \
            int(256 * expand_ratio[self.backbones_type]), \
            int(512 * expand_ratio[self.backbones_type])
        self.fpn = FPN(C3_inplanes=C3_inplanes,
                       C4_inplanes=C4_inplanes,
                       C5_inplanes=C5_inplanes,
                       planes=self.planes)

        self.cls_head = clsHead(inplanes=self.planes,
                                num_classes=self.num_classes)

        self.reg_head = regHead(inplanes=self.planes)

        self.anchors = Anchors()
        self.regressBoxes = BBoxTransform()
        self.clipBoxes = ClipBoxes()

        self.loss = FocalLoss()
        self.freeze_bn()

    def freeze_bn(self):
        '''Freeze BatchNorm layers.'''
        for layer in self.modules():
            if isinstance(layer, nn.BatchNorm2d):
                layer.eval()

    def forward(self, inputs):
        if self.training:
            img_batch, annots = inputs

        # inference
        else:
            img_batch = inputs

        [C3, C4, C5] = self.backbone(img_batch)

        del inputs
        features = self.fpn([C3, C4, C5])
        del C3, C4, C5
        # (batch_size, total_anchors_nums, num_classes)
        cls_heads = torch.cat([self.cls_head(feature) for feature in features], dim=1)
        # (batch_size, total_anchors_nums, 4)
        reg_heads = torch.cat([self.reg_head(feature) for feature in features], dim=1)

        del features

        anchors = self.anchors(img_batch)

        if self.training:
            return self.loss(cls_heads, reg_heads, anchors, annots)
        # inference
        else:
            transformed_anchors = self.regressBoxes(anchors, reg_heads)
            transformed_anchors = self.clipBoxes(transformed_anchors, img_batch)

            # scores
            finalScores = torch.Tensor([])

            # anchor id:0~79
            finalAnchorBoxesIndexes = torch.Tensor([]).long()

            # coordinates size:[...,4]
            finalAnchorBoxesCoordinates = torch.Tensor([])

            if torch.cuda.is_available():
                finalScores = finalScores.cuda()
                finalAnchorBoxesIndexes = finalAnchorBoxesIndexes.cuda()
                finalAnchorBoxesCoordinates = finalAnchorBoxesCoordinates.cuda()

            # num_classes
            for i in range(cls_heads.shape[2]):
                scores = torch.squeeze(cls_heads[:, :, i])
                scores_over_thresh = (scores > 0.05)
                if scores_over_thresh.sum() == 0:
                    # no boxes to NMS, just continue
                    continue
                scores = scores[scores_over_thresh]
                anchorBoxes = torch.squeeze(transformed_anchors)
                anchorBoxes = anchorBoxes[scores_over_thresh]
                anchors_nms_idx = nms(anchorBoxes, scores, 0.5)

                # use idx to find the scores of anchor
                finalScores = torch.cat((finalScores, scores[anchors_nms_idx]))
                # [0,0,0,...,1,1,1,...,79,79]
                finalAnchorBoxesIndexesValue = torch.tensor([i] * anchors_nms_idx.shape[0])

                if torch.cuda.is_available():
                    finalAnchorBoxesIndexesValue = finalAnchorBoxesIndexesValue.cuda()

                finalAnchorBoxesIndexes = torch.cat((finalAnchorBoxesIndexes, finalAnchorBoxesIndexesValue))
                # [...,4]
                finalAnchorBoxesCoordinates = torch.cat((finalAnchorBoxesCoordinates, anchorBoxes[anchors_nms_idx]))

        return finalScores, finalAnchorBoxesIndexes, finalAnchorBoxesCoordinates


if __name__ == "__main__":
    C = torch.randn([8, 3, 512, 512])
    annot = torch.randn([8, 15, 5])
    model = RetinaNet(backbones_type="darknet19", num_classes=80, pretrained=True, training=True)
    model = model.cuda()
    C = C.cuda()
    annot = annot.cuda()
    model = torch.nn.DataParallel(model).cuda()
    model.training = True
    out = model([C, annot])
    # if model.training == True out==loss
    # out = model([C, annot])
    # if model.training == False out== scores
    # out = model(C)
    for i in range(len(out)):
        print(out[i])

# Scores: torch.Size([486449])
# tensor([4.1057, 4.0902, 4.0597,  ..., 0.0509, 0.0507, 0.0507], device='cuda:0')
# Id: torch.Size([486449])
# tensor([ 0,  0,  0,  ..., 79, 79, 79], device='cuda:0')
# loc: torch.Size([486449, 4])
# tensor([[ 45.1607, 249.4807, 170.5788, 322.8085],
# [ 85.9825, 324.4150, 122.9968, 382.6297],
# [148.1854, 274.0474, 179.0922, 343.4529],
# ...,
# [222.5421,   0.0000, 256.3059,  15.5591],
# [143.3349, 204.4784, 170.2395, 228.6654],
# [208.4509, 140.1983, 288.0962, 165.8708]], device='cuda:0')

未完...


参考文献

[1] Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 7263-7271.

[2] Redmon J, Farhadi A. Yolov3: An incremental improvement[J]. arXiv preprint arXiv:1804.02767, 2018.

[3] Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE international conference on computer vision. 2017: 2980-2988.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/163637.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

设计模式-门面模式

医院的例子 现代的软件系统都是比较复杂的,设计师处理复杂系统的一个常见方法便是将其"分而治之",把一个系统划分为几个较小的子系统。如果把医院作为一个子系统,按照部门职能,这个系统可以划分为挂号、门诊、划价、化…

Web--Jedis

# Redis 1. 概念: redis是一款高性能的NOSQL系列的非关系型数据库 1.1.什么是NOSQL NoSQL(NoSQL Not Only SQL),意即“不仅仅是SQL”,是一项全新的数据库理念,泛指非关系型的数据库。 随着互联网web2.0网…

Arch Linux 来报道!!!

导读Ubuntu 的制造商 Canonical 早已和微软进行合作,让我们体验了极具争议的 Bash on Windows。外界对此也是褒贬不一,许多 Linux 重度用户则是质疑其是否有用,以及更进一步认为 Bash on Windows 是一个安全隐患。 Unix 的 Bash 是通过 WSL (…

LabVIEW使用VI脚本创建和打开VI

LabVIEW使用VI脚本创建和打开VI按照下列步骤,可以创建一个VI,该VI使用VI脚本创建和打开VI。创建VI前,需先了解VI脚本的基本内容。必须启用VI脚本,才能显示VI脚本选板,使用相关属性和方法。1. 选择文件新建VI&#xff0…

第1章 ESP32-VSCODE环境搭建

ESP32-VSCODE环境搭建 环境安装 在Windows中安装ESP-IDF在vscode中安装Espressif IDF插件开始配置Espressif IDF插件 在vscode最上方点击:查看->命令面板,输入esp-idf:config,选择ESP-IDF:Configure ESP-IDF extension 选择EXPRESS Sele…

java07-面向对象2

一:面向对象的第二个特征:继承,关键字extends 1.继承的好处: 1)减少代码的冗余,提高代码的复用​​​​​性。 2)便于功能的扩展 3)为之后多态性的使用,提供了前提 …

【阶段三】Python机器学习27篇:机器学习项目实战:数据降维:主成分分析PCA、基本原理与PCA模型:人脸识别

本篇的思维导图: 数据降维:主成分分析PCA 建立模型分析特征数据时,很可能会面临特征数据维度过大的问题。例如,根据已有的信用卡持有人信息及其违约数据来建立信用卡违约预测模型时,数据可能包含申请人的收入、年龄、性别、婚姻状况、工作单位等数百个维度的特征。…

【图像分类】基于yolov5的钢板表面缺陷分类(附代码和数据集)

写在前面: 首先感谢兄弟们的订阅,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。 Hello,大家好&#xf…

ArcGIS基础实验操作100例--实验100三维可视性分析

本实验专栏参考自汤国安教授《地理信息系统基础实验操作100例》一书 实验平台:ArcGIS 10.6 实验数据:请访问实验1(传送门) 空间分析篇--实验100 三维可视性分析 目录 一、实验背景 二、实验数据 三、实验步骤 (1&a…

JavaScript---DOM---高级事件---1.8

注册事件&#xff08;绑定事件&#xff09; 给元素添加事件称为注册事件或绑定事件。注册事件有两种方式&#xff1a;传统方式、方法监听注册方式。 传统注册方式&#xff1a; 利用on开头的事件onclick&#xff1a; <button onclick"alert(hi~)"></butt…

测试用例具体的设计方法

等价类法由于输入的集合是无穷的&#xff0c;不能全部覆盖到&#xff0c;所以通过划分若干个等价类&#xff0c;选出有代表性的达到尽量多的功能覆盖有效等价类&#xff1a;根据规格说明书是合理的、有意义的输入数据构成的集合无效等价类&#xff1a;根据需求说明书是不合理&a…

246页10万字省级政务专用云项目技术方案

【版权声明】本资料来源网络&#xff0c;知识分享&#xff0c;仅供个人学习&#xff0c;请勿商用。【侵删致歉】如有侵权请联系小编&#xff0c;将在收到信息后第一时间删除&#xff01;完整资料领取见文末&#xff0c;部分资料内容&#xff1a; 目录 对本项目的技术服务类总体…

【Java AWT 图形界面编程】LayoutManager 布局管理器 ⑦ ( Box 容器 | Box 容器中添加分割 )

文章目录一、Box 容器二、Box 容器 API三、Box 容器代码示例四、Box 容器中添加分割一、Box 容器 为了 方便使用 BoxLayout 布局 , Swing 中提供了 Box 容器 ; Box 容器 默认的 布局管理器 就是 BoxLayout ; 通过在 Box 容器构造函数中传入不同的参数 , 可以直接创建 水平排列…

Java基础语法(一)

注释1.1注释概述注释是在程序指定位置添加的说明性信息注释不参与程序运行&#xff0c;仅起到说明作用1.2注释分类单行注释格式&#xff1a;//注释信息多行注释格式&#xff1a;/*注释信息*/文档注释格式&#xff1a;/**注释信息*/文档注释目前用不上&#xff0c;暂不讲解/* Ja…

C++入门

目录 1. 命名空间 1.1 命名空间的定义 1.2 命名空间的使用 2. C的输入输出 3. 缺省参数 3.1 缺省参数概念 3.2 缺省参数分类 4.函数重载 4.1 函数重载概念 4.2 C支持函数重载的原理——名字修饰 5. 引用 5.1 引用概念 5.2 引用特性 5.3 常引用 5.4 使用场景 5.5 引用…

什么是测试金字塔?如何使用测试金字塔来构建自动化测试体系?

测试金字塔 &#xff08;Test Pyramid&#xff09;是一套使用单元测试&#xff0c;集成测试和端到端测试来构建自动化测试体系的方法。 如下图所示&#xff0c;在金字塔的最下方是单元测试&#xff0c;中段是集成测试&#xff0c;最上方是端到端测试。单元测试实现的成本最低&…

Android 深入系统完全讲解(17)

这个就是我们在初始化的时候给对应的属性设置上下文。chcon 这个可以修改上下文。 我们在遇见类似的属性读取不到的时候&#xff0c;一般操作是&#xff1a; getprop -z 看下属性的上下文&#xff0c;然后 ps -z 看下进程的上下文&#xff0c;然后判断出来是否有对应的 权限&am…

1. PyTorch是什么?

这篇博客将介绍PyTorch深度学习库&#xff0c;包括&#xff1a; PyTorch是什么如何安装PyTorch重要的PyTorch功能&#xff0c;包括张量和自动标记PyTorch如何支持GPU为什么PyTorch在研究人员中如此受欢迎PyTorch是否优于Keras/TensorFlow是否应该在项目中使用PyTorch或Keras/T…

ArcGIS10.2保姆式安装教程,超详细;附安装包

安装前请关闭杀毒软件&#xff0c;系统防火墙&#xff0c;断开网络连接 参考链接&#xff1a;请点击 下载链接&#xff1a; 通过百度网盘分享的文件&#xff1a;ArcGIS10.2zip 链接:https://pan.baidu.com/s/1s_xc1HvmMdo4fnnUo97ldA 提取码:v74k 复制这段内容打开「百度网盘A…

2022年11月下午案例分析真题及答案解析

试题一&#xff08;共15分&#xff09;&#xff08;202211&#xff09; 阅读下列说明和图&#xff0c;回答问题1至问题4&#xff0c;将解答填入答题纸的对应栏内。 【说明】 随着新能源车数量的迅猛增长&#xff0c;全国各地电动汽车配套充电桩急速增长&#xff0c;同时也带…