LLM学习笔记-4

news2024/11/25 16:55:58

从Hugging Face加载预训练权重

  1. 因为每次训练都要有资源消耗 (GPU算力,还有时间成本),所以说及时保存模型是非常重要的。
  2. 教大家如何去下载Hugging Face的模型进行生成文本
    在这里插入图片描述
pip install transformers
pip install tiktoken
from importlib.metadata import version

pkgs = ["numpy", "torch", "transformers"]
for p in pkgs:
    print(f"{p} version: {version(p)}")

numpy version: 1.26.4
torch version: 2.1.2
transformers version: 4.39.3

from transformers import GPT2Model


# allowed model names
model_names = {
    "gpt2-small": "openai-community/gpt2",         # 124M
    "gpt2-medium": "openai-community/gpt2-medium", # 355M
    "gpt2-large": "openai-community/gpt2-large",   # 774M
    "gpt2-xl": "openai-community/gpt2-xl"          # 1558M
}

CHOOSE_MODEL = "gpt2-small"

gpt_hf = GPT2Model.from_pretrained(model_names[CHOOSE_MODEL], cache_dir="checkpoints")
gpt_hf.eval()

GPT2Model(
(wte): Embedding(50257, 768)
(wpe): Embedding(1024, 768)
(drop): Dropout(p=0.1, inplace=False)
(h): ModuleList(
(0-11): 12 x GPT2Block(
(ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(attn): GPT2Attention(
(c_attn): Conv1D()
(c_proj): Conv1D()
(attn_dropout): Dropout(p=0.1, inplace=False)
(resid_dropout): Dropout(p=0.1, inplace=False)
)
(ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(mlp): GPT2MLP(
(c_fc): Conv1D()
(c_proj): Conv1D()
(act): NewGELUActivation()
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
(ln_f): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
)

BASE_CONFIG = {
    "vocab_size": 50257,  # Vocabulary size
    "ctx_len": 1024,      # Context length
    "drop_rate": 0.0,     # Dropout rate
    "qkv_bias": True      # Query-key-value bias
}

model_configs = {
    "gpt2-small": {"emb_dim": 768, "n_layers": 12, "n_heads": 12},
    "gpt2-medium": {"emb_dim": 1024, "n_layers": 24, "n_heads": 16},
    "gpt2-large": {"emb_dim": 1280, "n_layers": 36, "n_heads": 20},
    "gpt2-xl": {"emb_dim": 1600, "n_layers": 48, "n_heads": 25},
}


BASE_CONFIG.update(model_configs[CHOOSE_MODEL])
def assign_check(left, right):
    if left.shape != right.shape:
        raise ValueError(f"Shape mismatch. Left: {left.shape}, Right: {right.shape}")
    return torch.nn.Parameter(torch.tensor(right))
import numpy as np


def load_weights(gpt, gpt_hf):

    d = gpt_hf.state_dict()

    gpt.pos_emb.weight = assign_check(gpt.pos_emb.weight, d["wpe.weight"])
    gpt.tok_emb.weight = assign_check(gpt.tok_emb.weight, d["wte.weight"])
    
    for b in range(BASE_CONFIG["n_layers"]):
        q_w, k_w, v_w = np.split(d[f"h.{b}.attn.c_attn.weight"], 3, axis=-1)
        gpt.trf_blocks[b].att.W_query.weight = assign_check(gpt.trf_blocks[b].att.W_query.weight, q_w.T)
        gpt.trf_blocks[b].att.W_key.weight = assign_check(gpt.trf_blocks[b].att.W_key.weight, k_w.T)
        gpt.trf_blocks[b].att.W_value.weight = assign_check(gpt.trf_blocks[b].att.W_value.weight, v_w.T)
    
        q_b, k_b, v_b = np.split(d[f"h.{b}.attn.c_attn.bias"], 3, axis=-1)
        gpt.trf_blocks[b].att.W_query.bias = assign_check(gpt.trf_blocks[b].att.W_query.bias, q_b)
        gpt.trf_blocks[b].att.W_key.bias = assign_check(gpt.trf_blocks[b].att.W_key.bias, k_b)
        gpt.trf_blocks[b].att.W_value.bias = assign_check(gpt.trf_blocks[b].att.W_value.bias, v_b)
    
    
        gpt.trf_blocks[b].att.out_proj.weight = assign_check(gpt.trf_blocks[b].att.out_proj.weight, d[f"h.{b}.attn.c_proj.weight"].T)
        gpt.trf_blocks[b].att.out_proj.bias = assign_check(gpt.trf_blocks[b].att.out_proj.bias, d[f"h.{b}.attn.c_proj.bias"])
    
        gpt.trf_blocks[b].ff.layers[0].weight = assign_check(gpt.trf_blocks[b].ff.layers[0].weight, d[f"h.{b}.mlp.c_fc.weight"].T)
        gpt.trf_blocks[b].ff.layers[0].bias = assign_check(gpt.trf_blocks[b].ff.layers[0].bias, d[f"h.{b}.mlp.c_fc.bias"])
        gpt.trf_blocks[b].ff.layers[2].weight = assign_check(gpt.trf_blocks[b].ff.layers[2].weight, d[f"h.{b}.mlp.c_proj.weight"].T)
        gpt.trf_blocks[b].ff.layers[2].bias = assign_check(gpt.trf_blocks[b].ff.layers[2].bias, d[f"h.{b}.mlp.c_proj.bias"])
    
        gpt.trf_blocks[b].norm1.scale = assign_check(gpt.trf_blocks[b].norm1.scale, d[f"h.{b}.ln_1.weight"])
        gpt.trf_blocks[b].norm1.shift = assign_check(gpt.trf_blocks[b].norm1.shift, d[f"h.{b}.ln_1.bias"])
        gpt.trf_blocks[b].norm2.scale = assign_check(gpt.trf_blocks[b].norm2.scale, d[f"h.{b}.ln_2.weight"])
        gpt.trf_blocks[b].norm2.shift = assign_check(gpt.trf_blocks[b].norm2.shift, d[f"h.{b}.ln_2.bias"])
    
        gpt.final_norm.scale = assign_check(gpt.final_norm.scale, d[f"ln_f.weight"])
        gpt.final_norm.shift = assign_check(gpt.final_norm.shift, d[f"ln_f.bias"])
        gpt.out_head.weight = assign_check(gpt.out_head.weight, d["wte.weight"])


import tiktoken
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader

#####################################
# Chapter 2
#####################################


class GPTDatasetV1(Dataset):
    def __init__(self, txt, tokenizer, max_length, stride):
        self.tokenizer = tokenizer
        self.input_ids = []
        self.target_ids = []

        # Tokenize the entire text
        token_ids = tokenizer.encode(txt)

        # Use a sliding window to chunk the book into overlapping sequences of max_length
        for i in range(0, len(token_ids) - max_length, stride):
            input_chunk = token_ids[i:i + max_length]
            target_chunk = token_ids[i + 1: i + max_length + 1]
            self.input_ids.append(torch.tensor(input_chunk))
            self.target_ids.append(torch.tensor(target_chunk))

    def __len__(self):
        return len(self.input_ids)

    def __getitem__(self, idx):
        return self.input_ids[idx], self.target_ids[idx]


def create_dataloader_v1(txt, batch_size=4, max_length=256,
                         stride=128, shuffle=True, drop_last=True):
    # Initialize the tokenizer
    tokenizer = tiktoken.get_encoding("gpt2")

    # Create dataset
    dataset = GPTDatasetV1(txt, tokenizer, max_length, stride)

    # Create dataloader
    dataloader = DataLoader(
        dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last)

    return dataloader


#####################################
# Chapter 3
#####################################
class MultiHeadAttention(nn.Module):
    def __init__(self, d_in, d_out, block_size, dropout, num_heads, qkv_bias=False):
        super().__init__()
        assert d_out % num_heads == 0, "d_out must be divisible by n_heads"

        self.d_out = d_out
        self.num_heads = num_heads
        self.head_dim = d_out // num_heads  # Reduce the projection dim to match desired output dim

        self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
        self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
        self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
        self.out_proj = nn.Linear(d_out, d_out)  # Linear layer to combine head outputs
        self.dropout = nn.Dropout(dropout)
        self.register_buffer('mask', torch.triu(torch.ones(block_size, block_size), diagonal=1))

    def forward(self, x):
        b, num_tokens, d_in = x.shape

        keys = self.W_key(x)  # Shape: (b, num_tokens, d_out)
        queries = self.W_query(x)
        values = self.W_value(x)

        # We implicitly split the matrix by adding a `num_heads` dimension
        # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)
        keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)
        values = values.view(b, num_tokens, self.num_heads, self.head_dim)
        queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)

        # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim)
        keys = keys.transpose(1, 2)
        queries = queries.transpose(1, 2)
        values = values.transpose(1, 2)

        # Compute scaled dot-product attention (aka self-attention) with a causal mask
        attn_scores = queries @ keys.transpose(2, 3)  # Dot product for each head

        # Original mask truncated to the number of tokens and converted to boolean
        mask_bool = self.mask.bool()[:num_tokens, :num_tokens]

        # Use the mask to fill attention scores
        attn_scores.masked_fill_(mask_bool, -torch.inf)

        attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
        attn_weights = self.dropout(attn_weights)

        # Shape: (b, num_tokens, num_heads, head_dim)
        context_vec = (attn_weights @ values).transpose(1, 2)

        # Combine heads, where self.d_out = self.num_heads * self.head_dim
        context_vec = context_vec.reshape(b, num_tokens, self.d_out)
        context_vec = self.out_proj(context_vec)  # optional projection

        return context_vec


#####################################
# Chapter 4
#####################################
class LayerNorm(nn.Module):
    def __init__(self, emb_dim):
        super().__init__()
        self.eps = 1e-5
        self.scale = nn.Parameter(torch.ones(emb_dim))
        self.shift = nn.Parameter(torch.zeros(emb_dim))

    def forward(self, x):
        mean = x.mean(dim=-1, keepdim=True)
        var = x.var(dim=-1, keepdim=True, unbiased=False)
        norm_x = (x - mean) / torch.sqrt(var + self.eps)
        return self.scale * norm_x + self.shift


class GELU(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, x):
        return 0.5 * x * (1 + torch.tanh(
            torch.sqrt(torch.tensor(2.0 / torch.pi)) *
            (x + 0.044715 * torch.pow(x, 3))
        ))


class FeedForward(nn.Module):
    def __init__(self, cfg):
        super().__init__()
        self.layers = nn.Sequential(
            nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]),
            GELU(),
            nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]),
            nn.Dropout(cfg["drop_rate"])
        )

    def forward(self, x):
        return self.layers(x)


class TransformerBlock(nn.Module):
    def __init__(self, cfg):
        super().__init__()
        self.att = MultiHeadAttention(
            d_in=cfg["emb_dim"],
            d_out=cfg["emb_dim"],
            block_size=cfg["ctx_len"],
            num_heads=cfg["n_heads"],
            dropout=cfg["drop_rate"],
            qkv_bias=cfg["qkv_bias"])
        self.ff = FeedForward(cfg)
        self.norm1 = LayerNorm(cfg["emb_dim"])
        self.norm2 = LayerNorm(cfg["emb_dim"])
        self.drop_resid = nn.Dropout(cfg["drop_rate"])

    def forward(self, x):
        # Shortcut connection for attention block
        shortcut = x
        x = self.norm1(x)
        x = self.att(x)   # Shape [batch_size, num_tokens, emb_size]
        x = self.drop_resid(x)
        x = x + shortcut  # Add the original input back

        # Shortcut connection for feed-forward block
        shortcut = x
        x = self.norm2(x)
        x = self.ff(x)
        x = self.drop_resid(x)
        x = x + shortcut  # Add the original input back

        return x


class GPTModel(nn.Module):
    def __init__(self, cfg):
        super().__init__()
        self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])
        self.pos_emb = nn.Embedding(cfg["ctx_len"], cfg["emb_dim"])
        self.drop_emb = nn.Dropout(cfg["drop_rate"])

        self.trf_blocks = nn.Sequential(
            *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])])

        self.final_norm = LayerNorm(cfg["emb_dim"])
        self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False)

    def forward(self, in_idx):
        batch_size, seq_len = in_idx.shape
        tok_embeds = self.tok_emb(in_idx)
        pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))
        x = tok_embeds + pos_embeds  # Shape [batch_size, num_tokens, emb_size]
        x = self.drop_emb(x)
        x = self.trf_blocks(x)
        x = self.final_norm(x)
        logits = self.out_head(x)
        return logits


def generate_text_simple(model, idx, max_new_tokens, context_size):
    # idx is (B, T) array of indices in the current context
    for _ in range(max_new_tokens):

        # Crop current context if it exceeds the supported context size
        # E.g., if LLM supports only 5 tokens, and the context size is 10
        # then only the last 5 tokens are used as context
        idx_cond = idx[:, -context_size:]

        # Get the predictions
        with torch.no_grad():
            logits = model(idx_cond)

        # Focus only on the last time step
        # (batch, n_token, vocab_size) becomes (batch, vocab_size)
        logits = logits[:, -1, :]

        # Get the idx of the vocab entry with the highest logits value
        idx_next = torch.argmax(logits, dim=-1, keepdim=True)  # (batch, 1)

        # Append sampled index to the running sequence
        idx = torch.cat((idx, idx_next), dim=1)  # (batch, n_tokens+1)

    return idx


#####################################
# Chapter 5
#####################################


def text_to_token_ids(text, tokenizer):
    encoded = tokenizer.encode(text)
    encoded_tensor = torch.tensor(encoded).unsqueeze(0)  # add batch dimension
    return encoded_tensor


def token_ids_to_text(token_ids, tokenizer):
    flat = token_ids.squeeze(0)  # remove batch dimension
    return tokenizer.decode(flat.tolist())


def generate(model, idx, max_new_tokens, context_size, temperature, top_k=None):

    # For-loop is the same as before: Get logits, and only focus on last time step
    for _ in range(max_new_tokens):
        idx_cond = idx[:, -context_size:]
        with torch.no_grad():
            logits = model(idx_cond)
        logits = logits[:, -1, :]

        # New: Filter logits with top_k sampling
        if top_k is not None:
            # Keep only top_k values
            top_logits, _ = torch.topk(logits, top_k)
            min_val = top_logits[:, -1]
            logits = torch.where(logits < min_val, torch.tensor(float('-inf')).to(logits.device), logits)

        # New: Apply temperature scaling
        if temperature > 0.0:
            logits = logits / temperature

            # Apply softmax to get probabilities
            probs = torch.softmax(logits, dim=-1)  # (batch_size, context_len)

            # Sample from the distribution
            idx_next = torch.multinomial(probs, num_samples=1)  # (batch_size, 1)

        # Otherwise same as before: get idx of the vocab entry with the highest logits value
        else:
            idx_next = torch.argmax(logits, dim=-1, keepdim=True)  # (batch_size, 1)

        # Same as before: append sampled index to the running sequence
        idx = torch.cat((idx, idx_next), dim=1)  # (batch_size, num_tokens+1)

    return idx


import torch

gpt = GPTModel(BASE_CONFIG)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
load_weights(gpt, gpt_hf)
gpt.to(device);
import tiktoken
# from previous_chapters import generate, text_to_token_ids, token_ids_to_text

torch.manual_seed(123)

tokenizer = tiktoken.get_encoding("gpt2")

# 此处为输入的文本
content ="Hello,My name is Lihua"

idx = text_to_token_ids(content, tokenizer).to(device)

token_ids = generate(
    model=gpt,
    idx=idx,
    max_new_tokens=30,
    context_size=BASE_CONFIG["ctx_len"],
    top_k=1,
    temperature=1.0
)

print("Input text:\n", content)
print("Output text:\n", token_ids_to_text(token_ids, tokenizer))

Input text:
Hello,My name is Lihua
Output text:
Hello,My name is Lihua. I am a student at the University of California, Berkeley. I am a member of the Student Government Association. I am a member of the Student

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1632495.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【树莓派】yolov5 Lite,目标检测,行人检测入侵报警,摄像头绑定

延续之前的程序&#xff1a; https://qq742971636.blog.csdn.net/article/details/138172400 文章目录 播放声音pygame不出声音怎么办&#xff08;调节音量&#xff09;树莓派上的音乐播放器&#xff08;可选&#xff09;命令行直接放歌&#xff08;尝试放mp3歌曲&#xff09; …

用vue3实现留言板功能

效果图&#xff1a; 代码&#xff1a; <script setup lang"ts"> import { ref } from vue;interface Message {name: string;phone: string;message: string; }const name ref<string>(); const phone ref<string>(); const message ref<st…

【SQL】❤️数据库理论加实践详细教程❤️实践出真知❤️

SQL(结构化查询语言) 基础部分 SQL作用 按照作用划分可以划分为四个模块&#xff0c;从而由此行文 DDL&#xff08;数据定义语言&#xff09;: DDL涉及的命令允许用户定义或修改数据库的结构。主要命令包括&#xff1a; CREATE&#xff1a;用于创建新的数据库对象&#xff0c;…

使用 BurpSuite 基于 Token 机制实施暴力破解

前言 Token是一种用于身份验证和授权的令牌&#xff0c;通常由服务器生成并发送给客户端&#xff0c;客户端在后续的请求中携带该令牌来进行身份验证和授权操作。Token的使用可以增强应用程序的安全性&#xff0c;避免了直接传递敏感凭证&#xff08;如用户名和密码&#xff0…

SpringMVC整体工作流程

. 用户发起一个请求&#xff0c;请求首先到达前端控制器前端控制器接收到请求后会调用处理器映射器&#xff0c;由此得知&#xff0c;这个请求该由哪一个Controller来进行处理(并未调用Controller)&#xff1b;前端控制器调用处理器适配器&#xff0c;告诉处理器适配器应该要…

2024抖音AI图文带货班:在这个赛道上 乘风破浪 拿到好效果

课程目录 1-1.1 AI图文学习指南 1.mp4 2-1.2 图文带货的新机会 1.mp4 3-1.3 2024年优质图文新标准 1.mp4 4-1.4 图文如何避免违规 1.mp4 5-1.5 优质图文模板解析 1.mp4 6-2.1 老号重启 快速破局 1.mp4 7-2.2 新号起号 不走弯路 1.mp4 8-2.3 找准对标 弯道超车 1.mp4 9…

判断前端入参是否空否则提示前端写法

vue2中 前端先声明一个变量&#xff0c;用于alert判断 在templeat中定义一个提示语句 然后在点击事件时判断一下是否展示

【Python 对接QQ的接口】简单用接口查询【等级/昵称/头像/Q龄/当天在线时长/下一个等级升级需多少天】

文章日期&#xff1a;2024.04.28 使用工具&#xff1a;Python 类型&#xff1a;QQ接口 文章全程已做去敏处理&#xff01;&#xff01;&#xff01; 【需要做的可联系我】 AES解密处理&#xff08;直接解密即可&#xff09;&#xff08;crypto-js.js 标准算法&#xff09;&…

<计算机网络自顶向下> Internet Protocol

互联网中的网络层 IP数据报格式 ver: 四个比特的版本号&#xff08;IPV4 0100, IPV6 0110&#xff09; headlen&#xff1a;head的长度&#xff08;头部长度字段&#xff08;IHL&#xff09;指定了头部的长度&#xff0c;以32位字&#xff08;4字节&#xff09;为单位计算。这…

How to solve matplotlib Chinese garbled characters in Ubuntu 22.04

conda create -n huizhou python3.8conda activate huizhouconda install numpy matplotlibpip install mplfontsmplfonts init# 导入必要的库 import numpy as np import matplotlib.pyplot as plt# 创建角度数组&#xff0c;从0到2π x np.linspace(0, 2 * np.pi, 100)# 计算…

NFTScan | 04.22~04.28 NFT 市场热点汇总

欢迎来到由 NFT 基础设施 NFTScan 出品的 NFT 生态热点事件每周汇总。 周期&#xff1a;2024.04.22~ 2024.04.28 NFT Hot News 01/ ApeCoin DAO 发起「由 APE 代币支持的 NFT Launchpad」提案投票 4 月 22 日&#xff0c;ApeCoin DAO 社区发起「由 APE 代币支持的 NFT Launch…

第8章 软件工程

一、软件工程概述 &#xff08;一&#xff09;软件危机 1、含义&#xff1a;落后的软件生产方式无法满足迅速增长的计算机软件需求&#xff0c;从而导致软件开发与维护过程中出现一系列严重问题的现象。 2、解决方案&#xff1a;引入软件工程的思想。 &#xff08;二&#x…

ubuntu samba 安装与配置

ubuntu samba 安装与配置 一&#xff1a;安装二&#xff1a;添加samba访问账号及密码三&#xff1a;修改配置文件四&#xff1a;重启服务五&#xff1a;登录 一&#xff1a;安装 sudo apt update sudo apt install samba samba-common二&#xff1a;添加samba访问账号及密码 …

YOLOv8: 快速而准确的对象检测

YOLOv8: 快速而准确的对象检测 背景 对象检测是计算机视觉中的一个关键任务,它可以帮助我们在图像或视频中识别和定位感兴趣的物体。其中,YOLO(You Only Look Once)系列是一类非常出色的实时对象检测算法,以其快速和准确的特点而闻名。YOLOv8是YOLO系列的最新版本,由Ultralyti…

Linux下的基本指令(1)

嗨喽大家好呀&#xff01;今天阿鑫给大家带来Linux下的基本指令&#xff08;1&#xff09;&#xff0c;下面让我们一起进入Linux的学习吧&#xff01; Linux下的基本指令 ls 指令pwd命令cd 指令touch指令mkdir指令(重要)rmdir指令 && rm 指令(重要)man指令(重要)cp指…

020Node.js的FS模块使用fs.mkdir创建目录

Node.js的FS模块使用fs.mkdir创建目录 //fs.mkdir 创建目录 /*path 将创建的目录路径mode 目录权限&#xff08;读写权限&#xff09;&#xff0c;默认777callback 回调&#xff0c;传递异常参数err*/ const fsrequire(fs);fs.mkdir(./css,(err)>{if(err){console.log(err)…

Spring Security OAuth2 统一登录

介绍 Spring Security OAuth2 是一个在 Spring Security 框架基础上构建的 OAuth2 授权服务器和资源服务器的扩展库。它提供了一套功能强大的工具和组件&#xff0c;用于实现 OAuth2 协议中的授权流程、令牌管理和访问控制。 Git地址&#xff1a;yunfeng-boot3-sercurity: Sp…

【会员单位】浙江晧月水务科技有限公司

中华环保联合会理事单位 水环境治理专业委员会副主任委员单位 公司成立于2018年3月14日&#xff0c;是专业研究废水处理业务的国家高新技术企业。 公司自主研发的脱硫废水“零排放”的技术&#xff0c;不仅适应性好&#xff0c;技术先进&#xff0c;智慧化程度高&#xff0c…

【C++第六课 - 模板、STL简介、string】函数模板、类模板、STL简介

目录 模板函数模板函数模板概念函数模板格式实例化推演实例化显示实例化 类模板 STL简介 模板 函数模板 函数模板概念 函数模板代表了一个函数家族&#xff0c;该函数模板与类型无关&#xff0c;在使用时被参数化&#xff0c;根据实参类型产生函数的特定 类型版本。 函数模板…

如何用二维码实现现代仓库管理?

随着科技的进步&#xff0c;二维码技术逐渐应用与各个领域&#xff0c;其中在仓库管理中的应用也日益广泛。 那话不多说&#xff0c;我们直接来看如何用二维码实现现代仓库管理 简道云仓库管理模板&#xff0c;可以点击安装配合阅读&#xff1a;https://www.jiandaoyun.com 二…