Llama-7b-Chinese本地推理

news2024/11/17 17:35:44

Llama-7b-Chinese 本地推理

基础环境信息(wsl2安装Ubuntu22.04 + miniconda)

使用miniconda搭建环境



(base) :~$ conda create --name Llama-7b-Chinese  python=3.10
Channels:
 - defaults
Platform: linux-64
Collecting package metadata (repodata.json): done
Solving environment: done

## Package Plan ##

  environment location: /home/chop/miniconda3/envs/Llama-7b-Chinese

  added / updated specs:
    - python=3.10


The following NEW packages will be INSTALLED:

  _libgcc_mutex      anaconda/pkgs/main/linux-64::_libgcc_mutex-0.1-main
  _openmp_mutex      anaconda/pkgs/main/linux-64::_openmp_mutex-5.1-1_gnu
  bzip2              anaconda/pkgs/main/linux-64::bzip2-1.0.8-h5eee18b_5
  ca-certificates    anaconda/pkgs/main/linux-64::ca-certificates-2024.3.11-h06a4308_0
  ld_impl_linux-64   anaconda/pkgs/main/linux-64::ld_impl_linux-64-2.38-h1181459_1
  libffi             anaconda/pkgs/main/linux-64::libffi-3.4.4-h6a678d5_0
  libgcc-ng          anaconda/pkgs/main/linux-64::libgcc-ng-11.2.0-h1234567_1
  libgomp            anaconda/pkgs/main/linux-64::libgomp-11.2.0-h1234567_1
  libstdcxx-ng       anaconda/pkgs/main/linux-64::libstdcxx-ng-11.2.0-h1234567_1
  libuuid            anaconda/pkgs/main/linux-64::libuuid-1.41.5-h5eee18b_0
  ncurses            anaconda/pkgs/main/linux-64::ncurses-6.4-h6a678d5_0
  openssl            anaconda/pkgs/main/linux-64::openssl-3.0.13-h7f8727e_0
  pip                anaconda/pkgs/main/linux-64::pip-23.3.1-py310h06a4308_0
  python             anaconda/pkgs/main/linux-64::python-3.10.14-h955ad1f_0
  readline           anaconda/pkgs/main/linux-64::readline-8.2-h5eee18b_0
  setuptools         anaconda/pkgs/main/linux-64::setuptools-68.2.2-py310h06a4308_0
  sqlite             anaconda/pkgs/main/linux-64::sqlite-3.41.2-h5eee18b_0
  tk                 anaconda/pkgs/main/linux-64::tk-8.6.12-h1ccaba5_0
  tzdata             anaconda/pkgs/main/noarch::tzdata-2024a-h04d1e81_0
  wheel              anaconda/pkgs/main/linux-64::wheel-0.41.2-py310h06a4308_0
  xz                 anaconda/pkgs/main/linux-64::xz-5.4.6-h5eee18b_0
  zlib               anaconda/pkgs/main/linux-64::zlib-1.2.13-h5eee18b_0


Proceed ([y]/n)? y


Downloading and Extracting Packages:

Preparing transaction: done
Verifying transaction: done
Executing transaction: done
#
# To activate this environment, use
#
#     $ conda activate Llama-7b-Chinese
#
# To deactivate an active environment, use
#
#     $ conda deactivate

(base) :~$ conda activate Llama-7b-Chinese


下载llama.cpp

(Llama-7b-Chinese) :~/newmodels$git init
(Llama-7b-Chinese) :~/newmodels$ git clone https://github.com/ggerganov/llama.cpp.git
(Llama-7b-Chinese) :~/newmodels$ cd llama.cpp/
(Llama-7b-Chinese) :~/newmodels/llama.cpp$ ls
CMakeLists.txt     common.o                       ggml-backend.c    ggml-sycl.h                  llama.o           sampling.o
LICENSE            console.o                      ggml-backend.h    ggml-vulkan-shaders.hpp      llama2-tuili.py   save-load-state
Makefile           convert-hf-to-gguf.py          ggml-backend.o    ggml-vulkan.cpp              llava-cli         scripts
Package.swift      convert-llama-ggml-to-gguf.py  ggml-cuda.cu      ggml-vulkan.h                lookahead         server
README-Origin.md   convert-llama2c-to-ggml        ggml-cuda.h       ggml.c                       lookup            simple
README-sycl.md     convert-lora-to-ggml.py        ggml-cuda.o       ggml.h                       main              speculative
README.md          convert-persimmon-to-gguf.py   ggml-impl.h       ggml.o                       main.log          spm-headers
SHA256SUMS         convert.py                     ggml-kompute.cpp  ggml_vk_generate_shaders.py  media             stage_1_convert.sh
awq-py             direct_trainsformers.py        ggml-kompute.h    gguf                         models            stage_5_test_token.sh
baby-llama         docs                           ggml-metal.h      gguf-py                      mypy.ini          tests
batched            embedding                      ggml-metal.m      grammar-parser.o             parallel          tokenize
batched-bench      examples                       ggml-metal.metal  grammars                     passkey           train-text-from-scratch
beam-search        export-lora                    ggml-mpi.c        imatrix                      perplexity        train.o
benchmark-matmult  finetune                       ggml-mpi.h        infill                       pocs              unicode.h
build-info.o       flake.lock                     ggml-opencl.cpp   kompute                      prompts           vdot
build.zig          flake.nix                      ggml-opencl.h     kompute-shaders              q8dot             zh-models
ci                 ggml-alloc.c                   ggml-quants.c     libllava.a                   quantize
cmake              ggml-alloc.h                   ggml-quants.h     llama-bench                  quantize-stats
codecov.yml        ggml-alloc.o                   ggml-quants.o     llama.cpp                    requirements
common             ggml-backend-impl.h            ggml-sycl.cpp     llama.h                      requirements.txt
(Llama-7b-Chinese) :~/newmodels/llama.cpp$

安装所需要的软件包


(Llama-7b-Chinese) :~/newmodels/llama.cpp$ ls
AUTHORS            convert-hf-to-gguf.py          ggml-common.h            ggml-vulkan.h                llava-cli         retrieval
CMakeLists.txt     convert-llama-ggml-to-gguf.py  ggml-cuda                ggml.c                       lookahead         sampling.o
LICENSE            convert-llama2c-to-ggml        ggml-cuda.cu             ggml.h                       lookup            save-load-state
Makefile           convert-lora-to-ggml.py        ggml-cuda.h              ggml.o                       lookup-create     scripts
Package.swift      convert-persimmon-to-gguf.py   ggml-impl.h              ggml_vk_generate_shaders.py  lookup-merge      server
README-sycl.md     convert.py                     ggml-kompute.cpp         gguf                         lookup-stats      sgemm.cpp
README.md          docs                           ggml-kompute.h           gguf-py                      main              sgemm.h
SECURITY.md        embedding                      ggml-metal.h             gguf-split                   media             simple
baby-llama         eval-callback                  ggml-metal.m             grammar-parser.o             models            speculative
batched            examples                       ggml-metal.metal         grammars                     mypy.ini          spm-headers
batched-bench      export-lora                    ggml-mpi.c               gritlm                       ngram-cache.o     tests
beam-search        finetune                       ggml-mpi.h               imatrix                      parallel          tokenize
benchmark-matmult  flake.lock                     ggml-opencl.cpp          infill                       passkey           train-text-from-scratch
build-info.o       flake.nix                      ggml-opencl.h            json-schema-to-grammar.o     perplexity        train.o
build.zig          ggml-alloc.c                   ggml-quants.c            kompute                      pocs              unicode-data.cpp
ci                 ggml-alloc.h                   ggml-quants.h            kompute-shaders              prompts           unicode-data.h
cmake              ggml-alloc.o                   ggml-quants.o            libllava.a                   q8dot             unicode-data.o
codecov.yml        ggml-backend-impl.h            ggml-sycl.cpp            llama-bench                  quantize          unicode.cpp
common             ggml-backend.c                 ggml-sycl.h              llama.cpp                    quantize-stats    unicode.h
common.o           ggml-backend.h                 ggml-vulkan-shaders.hpp  llama.h                      requirements      unicode.o
console.o          ggml-backend.o                 ggml-vulkan.cpp          llama.o                      requirements.txt  vdot
(Llama-7b-Chinese) :~/Chinese-LLaMA-Alpaca/llama.cpp$ pip install -r requirements.txt
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Collecting numpy~=1.24.4 (from -r ./requirements/requirements-convert.txt (line 1))
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/10/be/ae5bf4737cb79ba437879915791f6f26d92583c738d7d960ad94e5c36adf/numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.3 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 17.3/17.3 MB 3.5 MB/s eta 0:00:00
Collecting sentencepiece~=0.1.98 (from -r ./requirements/requirements-convert.txt (line 2))
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/7f/e5/323dc813b3e1339305f888d035e2f3725084fc4dcf051995b366dd26cc90/sentencepiece-0.1.99-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.3/1.3 MB 2.8 MB/s eta 0:00:00
Requirement already satisfied: transformers<5.0.0,>=4.35.2 in /home/chop/.local/lib/python3.10/site-packages (from -r ./requirements/requirements-convert.txt (line 3)) (4.39.0)
Collecting gguf>=0.1.0 (from -r ./requirements/requirements-convert.txt (line 4))
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/97/a4/83969343abb00fe787de5965c5c1f617aa51b2e2c563d4391c402aba548f/gguf-0.6.0-py3-none-any.whl (23 kB)
Collecting protobuf<5.0.0,>=4.21.0 (from -r ./requirements/requirements-convert.txt (line 5))
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/15/db/7f731524fe0e56c6b2eb57d05b55d3badd80ef7d1f1ed59db191b2fdd8ab/protobuf-4.25.3-cp37-abi3-manylinux2014_x86_64.whl (294 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 294.6/294.6 kB 2.0 MB/s eta 0:00:00
Collecting torch~=2.1.1 (from -r ./requirements/requirements-convert-hf-to-gguf.txt (line 2))
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/03/f1/13137340776dd5d5bcfd2574c9c6dfcc7618285035cd77240496e5c1a79b/torch-2.1.2-cp310-cp310-manylinux1_x86_64.whl (670.2 MB)
Collecting einops~=0.7.0 (from -r ./requirements/requirements-convert-hf-to-gguf.txt (line 3))
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/29/0b/2d1c0ebfd092e25935b86509a9a817159212d82aa43d7fb07eca4eeff2c2/einops-0.7.0-py3-none-any.whl (44 kB)
Requirement already satisfied: filelock in /home/chop/.local/lib/python3.10/site-packages (from transformers<5.0.0,>=4.35.2->-r ./requirements/requirements-convert.txt (line 3)) (3.13.4)
Requirement already satisfied: huggingface-hub<1.0,>=0.19.3 in /home/chop/.local/lib/python3.10/site-packages (from transformers<5.0.0,>=4.35.2->-r ./requirements/requirements-convert.txt (line 3)) (0.22.2)
Requirement already satisfied: packaging>=20.0 in /home/chop/.local/lib/python3.10/site-packages (from transformers<5.0.0,>=4.35.2->-r ./requirements/requirements-convert.txt (line 3)) (24.0)
Collecting pyyaml>=5.1 (from transformers<5.0.0,>=4.35.2->-r ./requirements/requirements-convert.txt (line 3))
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/29/61/bf33c6c85c55bc45a29eee3195848ff2d518d84735eb0e2d8cb42e0d285e/PyYAML-6.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (705 kB)
Requirement already satisfied: regex!=2019.12.17 in /home/chop/.local/lib/python3.10/site-packages (from transformers<5.0.0,>=4.35.2->-r ./requirements/requirements-convert.txt (line 3)) (2024.4.16)
Requirement already satisfied: requests in /home/chop/.local/lib/python3.10/site-packages (from transformers<5.0.0,>=4.35.2->-r ./requirements/requirements-convert.txt (line 3)) (2.31.0)
Requirement already satisfied: tokenizers<0.19,>=0.14 in /home/chop/.local/lib/python3.10/site-packages (from transformers<5.0.0,>=4.35.2->-r ./requirements/requirements-convert.txt (line 3)) (0.15.2)
Requirement already satisfied: safetensors>=0.4.1 in /home/chop/.local/lib/python3.10/site-packages (from transformers<5.0.0,>=4.35.2->-r ./requirements/requirements-convert.txt (line 3)) (0.4.3)
Requirement already satisfied: tqdm>=4.27 in /home/chop/.local/lib/python3.10/site-packages (from transformers<5.0.0,>=4.35.2->-r ./requirements/requirements-convert.txt (line 3)) (4.66.2)
Requirement already satisfied: typing-extensions in /home/chop/.local/lib/python3.10/site-packages (from torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2)) (4.11.0)
Requirement already satisfied: sympy in /home/chop/.local/lib/python3.10/site-packages (from torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2)) (1.12)
Requirement already satisfied: networkx in /home/chop/.local/lib/python3.10/site-packages (from torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2)) (3.3)
Requirement already satisfied: jinja2 in /home/chop/.local/lib/python3.10/site-packages (from torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2)) (3.1.3)
Requirement already satisfied: fsspec in /home/chop/.local/lib/python3.10/site-packages (from torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2)) (2024.3.1)
Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in /home/chop/.local/lib/python3.10/site-packages (from torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2)) (12.1.105)
Requirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in /home/chop/.local/lib/python3.10/site-packages (from torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2)) (12.1.105)
Requirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in /home/chop/.local/lib/python3.10/site-packages (from torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2)) (12.1.105)
Requirement already satisfied: nvidia-cudnn-cu12==8.9.2.26 in /home/chop/.local/lib/python3.10/site-packages (from torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2)) (8.9.2.26)
Requirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in /home/chop/.local/lib/python3.10/site-packages (from torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2)) (12.1.3.1)
Requirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in /home/chop/.local/lib/python3.10/site-packages (from torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2)) (11.0.2.54)
Requirement already satisfied: nvidia-curand-cu12==10.3.2.106 in /home/chop/.local/lib/python3.10/site-packages (from torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2)) (10.3.2.106)
Requirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in /home/chop/.local/lib/python3.10/site-packages (from torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2)) (11.4.5.107)
Requirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in /home/chop/.local/lib/python3.10/site-packages (from torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2)) (12.1.0.106)
Collecting nvidia-nccl-cu12==2.18.1 (from torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2))
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/a4/05/23f8f38eec3d28e4915725b233c24d8f1a33cb6540a882f7b54be1befa02/nvidia_nccl_cu12-2.18.1-py3-none-manylinux1_x86_64.whl (209.8 MB)
Requirement already satisfied: nvidia-nvtx-cu12==12.1.105 in /home/chop/.local/lib/python3.10/site-packages (from torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2)) (12.1.105)
Collecting triton==2.1.0 (from torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2))
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/4d/22/91a8af421c8a8902dde76e6ef3db01b258af16c53d81e8c0d0dc13900a9e/triton-2.1.0-0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (89.2 MB)
Requirement already satisfied: nvidia-nvjitlink-cu12 in /home/chop/.local/lib/python3.10/site-packages (from nvidia-cusolver-cu12==11.4.5.107->torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2)) (12.4.127)
Requirement already satisfied: MarkupSafe>=2.0 in /home/chop/.local/lib/python3.10/site-packages (from jinja2->torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2)) (2.1.5)
Requirement already satisfied: charset-normalizer<4,>=2 in /home/chop/.local/lib/python3.10/site-packages (from requests->transformers<5.0.0,>=4.35.2->-r ./requirements/requirements-convert.txt (line 3)) (3.3.2)
Requirement already satisfied: idna<4,>=2.5 in /home/chop/.local/lib/python3.10/site-packages (from requests->transformers<5.0.0,>=4.35.2->-r ./requirements/requirements-convert.txt (line 3)) (3.7)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/chop/.local/lib/python3.10/site-packages (from requests->transformers<5.0.0,>=4.35.2->-r ./requirements/requirements-convert.txt (line 3)) (2.2.1)
Requirement already satisfied: certifi>=2017.4.17 in /home/chop/.local/lib/python3.10/site-packages (from requests->transformers<5.0.0,>=4.35.2->-r ./requirements/requirements-convert.txt (line 3)) (2024.2.2)
Requirement already satisfied: mpmath>=0.19 in /home/chop/.local/lib/python3.10/site-packages (from sympy->torch~=2.1.1->-r ./requirements/requirements-convert-hf-to-gguf.txt (line 2)) (1.3.0)
Installing collected packages: sentencepiece, triton, pyyaml, protobuf, nvidia-nccl-cu12, numpy, einops, gguf, torch
  Attempting uninstall: sentencepiece
    Found existing installation: sentencepiece 0.2.0
    Uninstalling sentencepiece-0.2.0:
      Successfully uninstalled sentencepiece-0.2.0
  Attempting uninstall: protobuf
    Found existing installation: protobuf 5.26.1
    Uninstalling protobuf-5.26.1:
      Successfully uninstalled protobuf-5.26.1
  Attempting uninstall: numpy
    Found existing installation: numpy 1.26.4
    Uninstalling numpy-1.26.4:
      Successfully uninstalled numpy-1.26.4
ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
matplotlib 3.8.4 requires pyparsing>=2.3.1, which is not installed.
tensorboard 2.16.2 requires six>1.9, which is not installed.
Successfully installed einops-0.7.0 gguf-0.6.0 numpy-1.24.4 nvidia-nccl-cu12-2.18.1 protobuf-4.25.3 pyyaml-6.0.1 sentencepiece-0.1.99 torch-2.1.2 triton-2.1.0
(Llama-7b-Chinese) :~/Chinese-LLaMA-Alpaca/llama.cpp$ pip install pyparsing
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Collecting pyparsing
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/9d/ea/6d76df31432a0e6fdf81681a895f009a4bb47b3c39036db3e1b528191d52/pyparsing-3.1.2-py3-none-any.whl (103 kB)
Installing collected packages: pyparsing
Successfully installed pyparsing-3.1.2
(Llama-7b-Chinese) :~/Chinese-LLaMA-Alpaca/llama.cpp$ pip install matplotlib
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Requirement already satisfied: matplotlib in /home/chop/.local/lib/python3.10/site-packages (3.8.4)
Requirement already satisfied: contourpy>=1.0.1 in /home/chop/.local/lib/python3.10/site-packages (from matplotlib) (1.2.1)
Requirement already satisfied: cycler>=0.10 in /home/chop/.local/lib/python3.10/site-packages (from matplotlib) (0.12.1)
Requirement already satisfied: fonttools>=4.22.0 in /home/chop/.local/lib/python3.10/site-packages (from matplotlib) (4.51.0)
Requirement already satisfied: kiwisolver>=1.3.1 in /home/chop/.local/lib/python3.10/site-packages (from matplotlib) (1.4.5)
Requirement already satisfied: numpy>=1.21 in /home/chop/miniconda3/envs/Llama-7b-Chinese/lib/python3.10/site-packages (from matplotlib) (1.24.4)
Requirement already satisfied: packaging>=20.0 in /home/chop/.local/lib/python3.10/site-packages (from matplotlib) (24.0)
Requirement already satisfied: pillow>=8 in /home/chop/.local/lib/python3.10/site-packages (from matplotlib) (10.3.0)
Requirement already satisfied: pyparsing>=2.3.1 in /home/chop/miniconda3/envs/Llama-7b-Chinese/lib/python3.10/site-packages (from matplotlib) (3.1.2)
Requirement already satisfied: python-dateutil>=2.7 in /home/chop/.local/lib/python3.10/site-packages (from matplotlib) (2.9.0.post0)
Collecting six>=1.5 (from python-dateutil>=2.7->matplotlib)
  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/d9/5a/e7c31adbe875f2abbb91bd84cf2dc52d792b5a01506781dbcf25c91daf11/six-1.16.0-py2.py3-none-any.whl (11 kB)
Installing collected packages: six
Successfully installed six-1.16.0
(Llama-7b-Chinese) :~/Chinese-LLaMA-Alpaca/llama.cpp$ pip install six
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Requirement already satisfied: six in /home/chop/miniconda3/envs/Llama-7b-Chinese/lib/python3.10/site-packages (1.16.0)
(Llama-7b-Chinese) :~/Chinese-LLaMA-Alpaca/llama.cpp$ pip install tensorboard
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Requirement already satisfied: tensorboard in /home/chop/.local/lib/python3.10/site-packages (2.16.2)
Requirement already satisfied: absl-py>=0.4 in /home/chop/.local/lib/python3.10/site-packages (from tensorboard) (2.1.0)
Requirement already satisfied: grpcio>=1.48.2 in /home/chop/.local/lib/python3.10/site-packages (from tensorboard) (1.62.2)
Requirement already satisfied: markdown>=2.6.8 in /home/chop/.local/lib/python3.10/site-packages (from tensorboard) (3.6)
Requirement already satisfied: numpy>=1.12.0 in /home/chop/miniconda3/envs/Llama-7b-Chinese/lib/python3.10/site-packages (from tensorboard) (1.24.4)
Requirement already satisfied: protobuf!=4.24.0,>=3.19.6 in /home/chop/miniconda3/envs/Llama-7b-Chinese/lib/python3.10/site-packages (from tensorboard) (4.25.3)
Requirement already satisfied: setuptools>=41.0.0 in /home/chop/miniconda3/envs/Llama-7b-Chinese/lib/python3.10/site-packages (from tensorboard) (68.2.2)
Requirement already satisfied: six>1.9 in /home/chop/miniconda3/envs/Llama-7b-Chinese/lib/python3.10/site-packages (from tensorboard) (1.16.0)
Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in /home/chop/.local/lib/python3.10/site-packages (from tensorboard) (0.7.2)
Requirement already satisfied: werkzeug>=1.0.1 in /home/chop/.local/lib/python3.10/site-packages (from tensorboard) (3.0.2)
Requirement already satisfied: MarkupSafe>=2.1.1 in /home/chop/.local/lib/python3.10/site-packages (from werkzeug>=1.0.1->tensorboard) (2.1.5)
(Llama-7b-Chinese) :~/Chinese-LLaMA-Alpaca/llama.cpp$ pip list
Package                   Version
------------------------- -----------
absl-py                   2.1.0
accelerate                0.27.2
aiofiles                  23.2.1
aiohttp                   3.9.5
aiosignal                 1.3.1
altair                    5.3.0
annotated-types           0.6.0
anyio                     4.3.0
async-timeout             4.0.3
attrs                     23.2.0
bitsandbytes              0.42.0
certifi                   2024.2.2
charset-normalizer        3.3.2
click                     8.1.7
contourpy                 1.2.1
cycler                    0.12.1
datasets                  2.19.0
dill                      0.3.8
einops                    0.7.0
evaluate                  0.4.1
exceptiongroup            1.2.1
fastapi                   0.110.2
ffmpy                     0.3.2
filelock                  3.13.4
fonttools                 4.51.0
frozenlist                1.4.1
fsspec                    2024.3.1
gekko                     1.0.6
gguf                      0.6.0
gradio                    4.27.0
gradio_client             0.15.1
grpcio                    1.62.2
h11                       0.14.0
httpcore                  1.0.5
httpx                     0.27.0
huggingface-hub           0.22.2
idna                      3.7
importlib_resources       6.4.0
iniconfig                 2.0.0
Jinja2                    3.1.3
joblib                    1.4.0
jsonschema                4.21.1
jsonschema-specifications 2023.12.1
kiwisolver                1.4.5
Markdown                  3.6
markdown-it-py            3.0.0
MarkupSafe                2.1.5
matplotlib                3.8.4
mdurl                     0.1.2
mpmath                    1.3.0
multidict                 6.0.5
multiprocess              0.70.16
networkx                  3.3
numpy                     1.24.4
nvidia-cublas-cu12        12.1.3.1
nvidia-cuda-cupti-cu12    12.1.105
nvidia-cuda-nvrtc-cu12    12.1.105
nvidia-cuda-runtime-cu12  12.1.105
nvidia-cudnn-cu12         8.9.2.26
nvidia-cufft-cu12         11.0.2.54
nvidia-curand-cu12        10.3.2.106
nvidia-cusolver-cu12      11.4.5.107
nvidia-cusparse-cu12      12.1.0.106
nvidia-nccl-cu12          2.18.1
nvidia-nvjitlink-cu12     12.4.127
nvidia-nvtx-cu12          12.1.105
orjson                    3.10.1
packaging                 24.0
pandas                    2.2.2
peft                      0.8.2
pillow                    10.3.0
pip                       23.3.1
pluggy                    1.5.0
protobuf                  4.25.3
psutil                    5.9.8
pyarrow                   16.0.0
pyarrow-hotfix            0.6
pydantic                  2.7.0
pydantic_core             2.18.1
pydub                     0.25.1
Pygments                  2.17.2
pyparsing                 3.1.2
pytest                    8.1.1
python-dateutil           2.9.0.post0
python-multipart          0.0.9
pytz                      2024.1
PyYAML                    6.0.1
referencing               0.34.0
regex                     2024.4.16
requests                  2.31.0
responses                 0.18.0
rich                      13.7.1
rpds-py                   0.18.0
ruff                      0.4.1
safetensors               0.4.3
scikit-learn              1.4.2
scipy                     1.13.0
semantic-version          2.10.0
sentencepiece             0.1.99
setuptools                68.2.2
shellingham               1.5.4
six                       1.16.0
sniffio                   1.3.1
starlette                 0.37.2
sympy                     1.12
tensorboard               2.16.2
tensorboard-data-server   0.7.2
threadpoolctl             3.4.0
tokenizers                0.15.2
tomli                     2.0.1
tomlkit                   0.12.0
toolz                     0.12.1
torch                     2.1.2
torchdata                 0.7.1
tqdm                      4.66.2
transformers              4.39.0
triton                    2.1.0
typer                     0.12.3
typing_extensions         4.11.0
tzdata                    2024.1
urllib3                   2.2.1
uvicorn                   0.29.0
websockets                11.0.3
Werkzeug                  3.0.2
wheel                     0.41.2
xxhash                    3.4.1
yarl                      1.9.4
(Llama-7b-Chinese) :~/Chinese-LLaMA-Alpaca/llama.cpp$


llama.cpp编译

使用GPU编译:


(Llama-7b-Chinese) :~/newmodels/llama.cpp$ make LLAMA_CUBLAS=1 LLAMA_CUDA_NVCC=/usr/local/cuda/bin/nvcc


I llama.cpp build info:
I UNAME_S:   Linux
I UNAME_P:   x86_64
I UNAME_M:   x86_64
I CFLAGS:    -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c11   -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -Werror=implicit-int -Werror=implicit-function-declaration -pthread -march=native -mtune=native -Wdouble-promotion
I CXXFLAGS:  -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi
I NVCCFLAGS: -use_fast_math --forward-unknown-to-host-compiler -arch=native -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_MMV_Y=1 -DK_QUANTS_PER_ITERATION=2 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128
I LDFLAGS:   -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
I CC:        cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
I CXX:       g++ (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0

cc  -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c11   -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -Werror=implicit-int -Werror=implicit-function-declaration -pthread -march=native -mtune=native -Wdouble-promotion    -c ggml.c -o ggml.o
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi -c llama.cpp -o llama.o
llama.cpp:7101:26: warning: no previous declaration for ‘std::vector<std::__cxx11::basic_string<char> > splitString(const string&, const std::vector<std::__cxx11::basic_string<char> >&)[-Wmissing-declarations]
 7101 | std::vector<std::string> splitString(const std::string& input, const std::vector<std::string>& delimiters) {
      |                          ^~~~~~~~~~~
llama.cpp: In function ‘std::vector<std::__cxx11::basic_string<char> > splitString(const string&, const std::vector<std::__cxx11::basic_string<char> >&)’:
llama.cpp:7104:12: warning: unused variable ‘foundPos’ [-Wunused-variable]
 7104 |     size_t foundPos = 0;
      |            ^~~~~~~~
llama.cpp: At global scope:
llama.cpp:7134:6: warning: no previous declaration for ‘bool is_spectial_token(const string&, const std::vector<std::__cxx11::basic_string<char> >&)[-Wmissing-declarations]
 7134 | bool is_spectial_token(const std::string & text, const std::vector<std::string>& delimiters) {
      |      ^~~~~~~~~~~~~~~~~
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi -c common/common.cpp -o common.o
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi -c common/sampling.cpp -o sampling.o
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi -c common/grammar-parser.cpp -o grammar-parser.o
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi -c common/build-info.cpp -o build-info.o
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi -c common/console.cpp -o console.o
/usr/local/cuda/bin/nvcc -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -use_fast_math --forward-unknown-to-host-compiler -arch=native -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_MMV_Y=1 -DK_QUANTS_PER_ITERATION=2 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128  -Wno-pedantic -Xcompiler "-Wno-array-bounds -Wno-format-truncation -Wextra-semi" -c ggml-cuda.cu -o ggml-cuda.o
cc  -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c11   -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -Werror=implicit-int -Werror=implicit-function-declaration -pthread -march=native -mtune=native -Wdouble-promotion    -c ggml-alloc.c -o ggml-alloc.o
cc  -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c11   -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -Werror=implicit-int -Werror=implicit-function-declaration -pthread -march=native -mtune=native -Wdouble-promotion    -c ggml-backend.c -o ggml-backend.o
cc -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c11   -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -Werror=implicit-int -Werror=implicit-function-declaration -pthread -march=native -mtune=native -Wdouble-promotion     -c ggml-quants.c -o ggml-quants.o
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/main/main.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o console.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o main -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib

====  Run ./main -h for help.  ====

g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/quantize/quantize.cpp build-info.o ggml.o llama.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o quantize -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/quantize-stats/quantize-stats.cpp build-info.o ggml.o llama.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o quantize-stats -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/perplexity/perplexity.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o perplexity -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/imatrix/imatrix.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o imatrix -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/embedding/embedding.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o embedding -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi pocs/vdot/vdot.cpp ggml.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o vdot -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi pocs/vdot/q8dot.cpp ggml.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o q8dot -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi -c common/train.cpp -o train.o
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o train.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o train-text-from-scratch -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp ggml.o llama.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o convert-llama2c-to-ggml -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/simple/simple.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o simple -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/batched/batched.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o batched -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/batched-bench/batched-bench.cpp build-info.o ggml.o llama.o common.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o batched-bench -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/save-load-state/save-load-state.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o save-load-state -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi -Iexamples/server examples/server/server.cpp examples/llava/clip.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o server -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib   -Wno-cast-qual
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/gguf/gguf.cpp ggml.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o gguf -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/llama-bench/llama-bench.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o llama-bench -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi -static -fPIC -c examples/llava/llava.cpp -o libllava.a -Wno-cast-qual
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/llava/llava-cli.cpp examples/llava/clip.cpp examples/llava/llava.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o llava-cli -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib  -Wno-cast-qual
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/baby-llama/baby-llama.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o train.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o baby-llama -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/beam-search/beam-search.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o beam-search -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/speculative/speculative.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o speculative -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/infill/infill.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o console.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o infill -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/tokenize/tokenize.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o tokenize -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/benchmark/benchmark-matmult.cpp build-info.o ggml.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o benchmark-matmult -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/parallel/parallel.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o parallel -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/finetune/finetune.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o train.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o finetune -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/export-lora/export-lora.cpp ggml.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o export-lora -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/lookahead/lookahead.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o lookahead -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/lookup/lookup.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o lookup -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
g++ -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -march=native -mtune=native -Wno-array-bounds -Wno-format-truncation -Wextra-semi examples/passkey/passkey.cpp ggml.o llama.o common.o sampling.o grammar-parser.o build-info.o ggml-cuda.o ggml-alloc.o ggml-backend.o ggml-quants.o -o passkey -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
cc -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include  -std=c11   -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -Werror=implicit-int -Werror=implicit-function-declaration -pthread -march=native -mtune=native -Wdouble-promotion  -c tests/test-c.c -o tests/test-c.o
(Llama-7b-Chinese) :~/newmodels/llama.cpp$

下载模型:Llama-7b-Chinese

​ 你可以从以下来源下载Llama-7b-Chinese模型。

https://github.com/LlamaFamily/Llama-Chinese?tab=readme-ov-file

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

(Llama-7b-Chinese) :~/Llama-7b-Chinese$ ls
Llama2中文社区.jpeg  checklist.chk  consolidated.00.pth     params.json              tokenizer.model          tokenizer_config.json
Llama2中文社区.txt   config.json    generation_config.json  special_tokens_map.json  tokenizer_checklist.chk

模型复制

将模型复制到llama.cpp的models目录下
(Llama-7b-Chinese) :~$ cp Llama-7b-Chinese ./newmodels/llama.cpp/models/
(Llama-7b-Chinese) :~/newmodels/llama.cpp/models$ ls
Llama-7b-Chinese          ggml-vocab-falcon.gguf    ggml-vocab-llama.gguf   ggml-vocab-stablelm-3b-4e1t.gguf
ggml-vocab-aquila.gguf    ggml-vocab-gpt-neox.gguf  ggml-vocab-mpt.gguf     ggml-vocab-starcoder.gguf
ggml-vocab-baichuan.gguf  ggml-vocab-gpt2.gguf      ggml-vocab-refact.gguf

模型转换

手动转换模型文件为GGUF格式
(Llama-7b-Chinese) :~/newmodels/llama.cpp$ python convert.py models/Llama-7b-Chinese/
Loading model file models/Llama-7b-Chinese/consolidated.00.pth
params = Params(n_vocab=32000, n_embd=4096, n_layer=32, n_ctx=2048, n_ff=11008, n_head=32, n_head_kv=32, n_experts=None, n_experts_used=None, f_norm_eps=1e-05, rope_scaling_type=None, f_rope_freq_base=None, f_rope_scale=None, n_orig_ctx=None, rope_finetuned=None, ftype=None, path_model=PosixPath('models/Llama-7b-Chinese'))
Found vocab files: {'tokenizer.model': PosixPath('models/Llama-7b-Chinese/tokenizer.model'), 'vocab.json': None, 'tokenizer.json': None}
Loading vocab file 'models/Llama-7b-Chinese/tokenizer.model', type 'spm'
Vocab info: <SentencePieceVocab with 32000 base tokens and 0 added tokens>
Special vocab info: <SpecialVocab with 0 merges, special tokens {'bos': 1, 'eos': 2, 'pad': 0}, add special tokens {'bos': True, 'eos': False}>
tok_embeddings.weight                            -> token_embd.weight                        | BF16   | [32000, 4096]
norm.weight                                      -> output_norm.weight                       | BF16   | [4096]
output.weight                                    -> output.weight                            | BF16   | [32000, 4096]
layers.0.attention.wq.weight                     -> blk.0.attn_q.weight                      | BF16   | [4096, 4096]
layers.0.attention.wk.weight                     -> blk.0.attn_k.weight                      | BF16   | [4096, 4096]
layers.0.attention.wv.weight                     -> blk.0.attn_v.weight                      | BF16   | [4096, 4096]
layers.0.attention.wo.weight                     -> blk.0.attn_output.weight                 | BF16   | [4096, 4096]
layers.0.feed_forward.w1.weight                  -> blk.0.ffn_gate.weight                    | BF16   | [11008, 4096]
layers.0.feed_forward.w2.weight                  -> blk.0.ffn_down.weight                    | BF16   | [4096, 11008]
layers.0.feed_forward.w3.weight                  -> blk.0.ffn_up.weight                      | BF16   | [11008, 4096]
layers.0.attention_norm.weight                   -> blk.0.attn_norm.weight                   | BF16   | [4096]
layers.0.ffn_norm.weight                         -> blk.0.ffn_norm.weight                    | BF16   | [4096]
layers.1.attention.wq.weight                     -> blk.1.attn_q.weight                      | BF16   | [4096, 4096]
layers.1.attention.wk.weight                     -> blk.1.attn_k.weight                      | BF16   | [4096, 4096]
layers.1.attention.wv.weight                     -> blk.1.attn_v.weight                      | BF16   | [4096, 4096]
layers.1.attention.wo.weight                     -> blk.1.attn_output.weight                 | BF16   | [4096, 4096]
layers.1.feed_forward.w1.weight                  -> blk.1.ffn_gate.weight                    | BF16   | [11008, 4096]
layers.1.feed_forward.w2.weight                  -> blk.1.ffn_down.weight                    | BF16   | [4096, 11008]
layers.1.feed_forward.w3.weight                  -> blk.1.ffn_up.weight                      | BF16   | [11008, 4096]
layers.1.attention_norm.weight                   -> blk.1.attn_norm.weight                   | BF16   | [4096]
layers.1.ffn_norm.weight                         -> blk.1.ffn_norm.weight                    | BF16   | [4096]
layers.2.attention.wq.weight                     -> blk.2.attn_q.weight                      | BF16   | [4096, 4096]
layers.2.attention.wk.weight                     -> blk.2.attn_k.weight                      | BF16   | [4096, 4096]
layers.2.attention.wv.weight                     -> blk.2.attn_v.weight                      | BF16   | [4096, 4096]
layers.2.attention.wo.weight                     -> blk.2.attn_output.weight                 | BF16   | [4096, 4096]
layers.2.feed_forward.w1.weight                  -> blk.2.ffn_gate.weight                    | BF16   | [11008, 4096]
layers.2.feed_forward.w2.weight                  -> blk.2.ffn_down.weight                    | BF16   | [4096, 11008]
layers.2.feed_forward.w3.weight                  -> blk.2.ffn_up.weight                      | BF16   | [11008, 4096]
layers.2.attention_norm.weight                   -> blk.2.attn_norm.weight                   | BF16   | [4096]
layers.2.ffn_norm.weight                         -> blk.2.ffn_norm.weight                    | BF16   | [4096]
layers.3.attention.wq.weight                     -> blk.3.attn_q.weight                      | BF16   | [4096, 4096]
layers.3.attention.wk.weight                     -> blk.3.attn_k.weight                      | BF16   | [4096, 4096]
layers.3.attention.wv.weight                     -> blk.3.attn_v.weight                      | BF16   | [4096, 4096]
layers.3.attention.wo.weight                     -> blk.3.attn_output.weight                 | BF16   | [4096, 4096]
layers.3.feed_forward.w1.weight                  -> blk.3.ffn_gate.weight                    | BF16   | [11008, 4096]
layers.3.feed_forward.w2.weight                  -> blk.3.ffn_down.weight                    | BF16   | [4096, 11008]
layers.3.feed_forward.w3.weight                  -> blk.3.ffn_up.weight                      | BF16   | [11008, 4096]
layers.3.attention_norm.weight                   -> blk.3.attn_norm.weight                   | BF16   | [4096]
layers.3.ffn_norm.weight                         -> blk.3.ffn_norm.weight                    | BF16   | [4096]
layers.4.attention.wq.weight                     -> blk.4.attn_q.weight                      | BF16   | [4096, 4096]
layers.4.attention.wk.weight                     -> blk.4.attn_k.weight                      | BF16   | [4096, 4096]
layers.4.attention.wv.weight                     -> blk.4.attn_v.weight                      | BF16   | [4096, 4096]
layers.4.attention.wo.weight                     -> blk.4.attn_output.weight                 | BF16   | [4096, 4096]
layers.4.feed_forward.w1.weight                  -> blk.4.ffn_gate.weight                    | BF16   | [11008, 4096]
layers.4.feed_forward.w2.weight                  -> blk.4.ffn_down.weight                    | BF16   | [4096, 11008]
layers.4.feed_forward.w3.weight                  -> blk.4.ffn_up.weight                      | BF16   | [11008, 4096]
layers.4.attention_norm.weight                   -> blk.4.attn_norm.weight                   | BF16   | [4096]
layers.4.ffn_norm.weight                         -> blk.4.ffn_norm.weight                    | BF16   | [4096]
layers.5.attention.wq.weight                     -> blk.5.attn_q.weight                      | BF16   | [4096, 4096]
layers.5.attention.wk.weight                     -> blk.5.attn_k.weight                      | BF16   | [4096, 4096]
layers.5.attention.wv.weight                     -> blk.5.attn_v.weight                      | BF16   | [4096, 4096]
layers.5.attention.wo.weight                     -> blk.5.attn_output.weight                 | BF16   | [4096, 4096]
layers.5.feed_forward.w1.weight                  -> blk.5.ffn_gate.weight                    | BF16   | [11008, 4096]
layers.5.feed_forward.w2.weight                  -> blk.5.ffn_down.weight                    | BF16   | [4096, 11008]
layers.5.feed_forward.w3.weight                  -> blk.5.ffn_up.weight                      | BF16   | [11008, 4096]
layers.5.attention_norm.weight                   -> blk.5.attn_norm.weight                   | BF16   | [4096]
layers.5.ffn_norm.weight                         -> blk.5.ffn_norm.weight                    | BF16   | [4096]
layers.6.attention.wq.weight                     -> blk.6.attn_q.weight                      | BF16   | [4096, 4096]
layers.6.attention.wk.weight                     -> blk.6.attn_k.weight                      | BF16   | [4096, 4096]
layers.6.attention.wv.weight                     -> blk.6.attn_v.weight                      | BF16   | [4096, 4096]
layers.6.attention.wo.weight                     -> blk.6.attn_output.weight                 | BF16   | [4096, 4096]
layers.6.feed_forward.w1.weight                  -> blk.6.ffn_gate.weight                    | BF16   | [11008, 4096]
layers.6.feed_forward.w2.weight                  -> blk.6.ffn_down.weight                    | BF16   | [4096, 11008]
layers.6.feed_forward.w3.weight                  -> blk.6.ffn_up.weight                      | BF16   | [11008, 4096]
layers.6.attention_norm.weight                   -> blk.6.attn_norm.weight                   | BF16   | [4096]
layers.6.ffn_norm.weight                         -> blk.6.ffn_norm.weight                    | BF16   | [4096]
layers.7.attention.wq.weight                     -> blk.7.attn_q.weight                      | BF16   | [4096, 4096]
layers.7.attention.wk.weight                     -> blk.7.attn_k.weight                      | BF16   | [4096, 4096]
layers.7.attention.wv.weight                     -> blk.7.attn_v.weight                      | BF16   | [4096, 4096]
layers.7.attention.wo.weight                     -> blk.7.attn_output.weight                 | BF16   | [4096, 4096]
layers.7.feed_forward.w1.weight                  -> blk.7.ffn_gate.weight                    | BF16   | [11008, 4096]
layers.7.feed_forward.w2.weight                  -> blk.7.ffn_down.weight                    | BF16   | [4096, 11008]
layers.7.feed_forward.w3.weight                  -> blk.7.ffn_up.weight                      | BF16   | [11008, 4096]
layers.7.attention_norm.weight                   -> blk.7.attn_norm.weight                   | BF16   | [4096]
layers.7.ffn_norm.weight                         -> blk.7.ffn_norm.weight                    | BF16   | [4096]
layers.8.attention.wq.weight                     -> blk.8.attn_q.weight                      | BF16   | [4096, 4096]
layers.8.attention.wk.weight                     -> blk.8.attn_k.weight                      | BF16   | [4096, 4096]
layers.8.attention.wv.weight                     -> blk.8.attn_v.weight                      | BF16   | [4096, 4096]
layers.8.attention.wo.weight                     -> blk.8.attn_output.weight                 | BF16   | [4096, 4096]
layers.8.feed_forward.w1.weight                  -> blk.8.ffn_gate.weight                    | BF16   | [11008, 4096]
layers.8.feed_forward.w2.weight                  -> blk.8.ffn_down.weight                    | BF16   | [4096, 11008]
layers.8.feed_forward.w3.weight                  -> blk.8.ffn_up.weight                      | BF16   | [11008, 4096]
layers.8.attention_norm.weight                   -> blk.8.attn_norm.weight                   | BF16   | [4096]
layers.8.ffn_norm.weight                         -> blk.8.ffn_norm.weight                    | BF16   | [4096]
layers.9.attention.wq.weight                     -> blk.9.attn_q.weight                      | BF16   | [4096, 4096]
layers.9.attention.wk.weight                     -> blk.9.attn_k.weight                      | BF16   | [4096, 4096]
layers.9.attention.wv.weight                     -> blk.9.attn_v.weight                      | BF16   | [4096, 4096]
layers.9.attention.wo.weight                     -> blk.9.attn_output.weight                 | BF16   | [4096, 4096]
layers.9.feed_forward.w1.weight                  -> blk.9.ffn_gate.weight                    | BF16   | [11008, 4096]
layers.9.feed_forward.w2.weight                  -> blk.9.ffn_down.weight                    | BF16   | [4096, 11008]
layers.9.feed_forward.w3.weight                  -> blk.9.ffn_up.weight                      | BF16   | [11008, 4096]
layers.9.attention_norm.weight                   -> blk.9.attn_norm.weight                   | BF16   | [4096]
layers.9.ffn_norm.weight                         -> blk.9.ffn_norm.weight                    | BF16   | [4096]
layers.10.attention.wq.weight                    -> blk.10.attn_q.weight                     | BF16   | [4096, 4096]
layers.10.attention.wk.weight                    -> blk.10.attn_k.weight                     | BF16   | [4096, 4096]
layers.10.attention.wv.weight                    -> blk.10.attn_v.weight                     | BF16   | [4096, 4096]
layers.10.attention.wo.weight                    -> blk.10.attn_output.weight                | BF16   | [4096, 4096]
layers.10.feed_forward.w1.weight                 -> blk.10.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.10.feed_forward.w2.weight                 -> blk.10.ffn_down.weight                   | BF16   | [4096, 11008]
layers.10.feed_forward.w3.weight                 -> blk.10.ffn_up.weight                     | BF16   | [11008, 4096]
layers.10.attention_norm.weight                  -> blk.10.attn_norm.weight                  | BF16   | [4096]
layers.10.ffn_norm.weight                        -> blk.10.ffn_norm.weight                   | BF16   | [4096]
layers.11.attention.wq.weight                    -> blk.11.attn_q.weight                     | BF16   | [4096, 4096]
layers.11.attention.wk.weight                    -> blk.11.attn_k.weight                     | BF16   | [4096, 4096]
layers.11.attention.wv.weight                    -> blk.11.attn_v.weight                     | BF16   | [4096, 4096]
layers.11.attention.wo.weight                    -> blk.11.attn_output.weight                | BF16   | [4096, 4096]
layers.11.feed_forward.w1.weight                 -> blk.11.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.11.feed_forward.w2.weight                 -> blk.11.ffn_down.weight                   | BF16   | [4096, 11008]
layers.11.feed_forward.w3.weight                 -> blk.11.ffn_up.weight                     | BF16   | [11008, 4096]
layers.11.attention_norm.weight                  -> blk.11.attn_norm.weight                  | BF16   | [4096]
layers.11.ffn_norm.weight                        -> blk.11.ffn_norm.weight                   | BF16   | [4096]
layers.12.attention.wq.weight                    -> blk.12.attn_q.weight                     | BF16   | [4096, 4096]
layers.12.attention.wk.weight                    -> blk.12.attn_k.weight                     | BF16   | [4096, 4096]
layers.12.attention.wv.weight                    -> blk.12.attn_v.weight                     | BF16   | [4096, 4096]
layers.12.attention.wo.weight                    -> blk.12.attn_output.weight                | BF16   | [4096, 4096]
layers.12.feed_forward.w1.weight                 -> blk.12.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.12.feed_forward.w2.weight                 -> blk.12.ffn_down.weight                   | BF16   | [4096, 11008]
layers.12.feed_forward.w3.weight                 -> blk.12.ffn_up.weight                     | BF16   | [11008, 4096]
layers.12.attention_norm.weight                  -> blk.12.attn_norm.weight                  | BF16   | [4096]
layers.12.ffn_norm.weight                        -> blk.12.ffn_norm.weight                   | BF16   | [4096]
layers.13.attention.wq.weight                    -> blk.13.attn_q.weight                     | BF16   | [4096, 4096]
layers.13.attention.wk.weight                    -> blk.13.attn_k.weight                     | BF16   | [4096, 4096]
layers.13.attention.wv.weight                    -> blk.13.attn_v.weight                     | BF16   | [4096, 4096]
layers.13.attention.wo.weight                    -> blk.13.attn_output.weight                | BF16   | [4096, 4096]
layers.13.feed_forward.w1.weight                 -> blk.13.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.13.feed_forward.w2.weight                 -> blk.13.ffn_down.weight                   | BF16   | [4096, 11008]
layers.13.feed_forward.w3.weight                 -> blk.13.ffn_up.weight                     | BF16   | [11008, 4096]
layers.13.attention_norm.weight                  -> blk.13.attn_norm.weight                  | BF16   | [4096]
layers.13.ffn_norm.weight                        -> blk.13.ffn_norm.weight                   | BF16   | [4096]
layers.14.attention.wq.weight                    -> blk.14.attn_q.weight                     | BF16   | [4096, 4096]
layers.14.attention.wk.weight                    -> blk.14.attn_k.weight                     | BF16   | [4096, 4096]
layers.14.attention.wv.weight                    -> blk.14.attn_v.weight                     | BF16   | [4096, 4096]
layers.14.attention.wo.weight                    -> blk.14.attn_output.weight                | BF16   | [4096, 4096]
layers.14.feed_forward.w1.weight                 -> blk.14.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.14.feed_forward.w2.weight                 -> blk.14.ffn_down.weight                   | BF16   | [4096, 11008]
layers.14.feed_forward.w3.weight                 -> blk.14.ffn_up.weight                     | BF16   | [11008, 4096]
layers.14.attention_norm.weight                  -> blk.14.attn_norm.weight                  | BF16   | [4096]
layers.14.ffn_norm.weight                        -> blk.14.ffn_norm.weight                   | BF16   | [4096]
layers.15.attention.wq.weight                    -> blk.15.attn_q.weight                     | BF16   | [4096, 4096]
layers.15.attention.wk.weight                    -> blk.15.attn_k.weight                     | BF16   | [4096, 4096]
layers.15.attention.wv.weight                    -> blk.15.attn_v.weight                     | BF16   | [4096, 4096]
layers.15.attention.wo.weight                    -> blk.15.attn_output.weight                | BF16   | [4096, 4096]
layers.15.feed_forward.w1.weight                 -> blk.15.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.15.feed_forward.w2.weight                 -> blk.15.ffn_down.weight                   | BF16   | [4096, 11008]
layers.15.feed_forward.w3.weight                 -> blk.15.ffn_up.weight                     | BF16   | [11008, 4096]
layers.15.attention_norm.weight                  -> blk.15.attn_norm.weight                  | BF16   | [4096]
layers.15.ffn_norm.weight                        -> blk.15.ffn_norm.weight                   | BF16   | [4096]
layers.16.attention.wq.weight                    -> blk.16.attn_q.weight                     | BF16   | [4096, 4096]
layers.16.attention.wk.weight                    -> blk.16.attn_k.weight                     | BF16   | [4096, 4096]
layers.16.attention.wv.weight                    -> blk.16.attn_v.weight                     | BF16   | [4096, 4096]
layers.16.attention.wo.weight                    -> blk.16.attn_output.weight                | BF16   | [4096, 4096]
layers.16.feed_forward.w1.weight                 -> blk.16.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.16.feed_forward.w2.weight                 -> blk.16.ffn_down.weight                   | BF16   | [4096, 11008]
layers.16.feed_forward.w3.weight                 -> blk.16.ffn_up.weight                     | BF16   | [11008, 4096]
layers.16.attention_norm.weight                  -> blk.16.attn_norm.weight                  | BF16   | [4096]
layers.16.ffn_norm.weight                        -> blk.16.ffn_norm.weight                   | BF16   | [4096]
layers.17.attention.wq.weight                    -> blk.17.attn_q.weight                     | BF16   | [4096, 4096]
layers.17.attention.wk.weight                    -> blk.17.attn_k.weight                     | BF16   | [4096, 4096]
layers.17.attention.wv.weight                    -> blk.17.attn_v.weight                     | BF16   | [4096, 4096]
layers.17.attention.wo.weight                    -> blk.17.attn_output.weight                | BF16   | [4096, 4096]
layers.17.feed_forward.w1.weight                 -> blk.17.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.17.feed_forward.w2.weight                 -> blk.17.ffn_down.weight                   | BF16   | [4096, 11008]
layers.17.feed_forward.w3.weight                 -> blk.17.ffn_up.weight                     | BF16   | [11008, 4096]
layers.17.attention_norm.weight                  -> blk.17.attn_norm.weight                  | BF16   | [4096]
layers.17.ffn_norm.weight                        -> blk.17.ffn_norm.weight                   | BF16   | [4096]
layers.18.attention.wq.weight                    -> blk.18.attn_q.weight                     | BF16   | [4096, 4096]
layers.18.attention.wk.weight                    -> blk.18.attn_k.weight                     | BF16   | [4096, 4096]
layers.18.attention.wv.weight                    -> blk.18.attn_v.weight                     | BF16   | [4096, 4096]
layers.18.attention.wo.weight                    -> blk.18.attn_output.weight                | BF16   | [4096, 4096]
layers.18.feed_forward.w1.weight                 -> blk.18.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.18.feed_forward.w2.weight                 -> blk.18.ffn_down.weight                   | BF16   | [4096, 11008]
layers.18.feed_forward.w3.weight                 -> blk.18.ffn_up.weight                     | BF16   | [11008, 4096]
layers.18.attention_norm.weight                  -> blk.18.attn_norm.weight                  | BF16   | [4096]
layers.18.ffn_norm.weight                        -> blk.18.ffn_norm.weight                   | BF16   | [4096]
layers.19.attention.wq.weight                    -> blk.19.attn_q.weight                     | BF16   | [4096, 4096]
layers.19.attention.wk.weight                    -> blk.19.attn_k.weight                     | BF16   | [4096, 4096]
layers.19.attention.wv.weight                    -> blk.19.attn_v.weight                     | BF16   | [4096, 4096]
layers.19.attention.wo.weight                    -> blk.19.attn_output.weight                | BF16   | [4096, 4096]
layers.19.feed_forward.w1.weight                 -> blk.19.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.19.feed_forward.w2.weight                 -> blk.19.ffn_down.weight                   | BF16   | [4096, 11008]
layers.19.feed_forward.w3.weight                 -> blk.19.ffn_up.weight                     | BF16   | [11008, 4096]
layers.19.attention_norm.weight                  -> blk.19.attn_norm.weight                  | BF16   | [4096]
layers.19.ffn_norm.weight                        -> blk.19.ffn_norm.weight                   | BF16   | [4096]
layers.20.attention.wq.weight                    -> blk.20.attn_q.weight                     | BF16   | [4096, 4096]
layers.20.attention.wk.weight                    -> blk.20.attn_k.weight                     | BF16   | [4096, 4096]
layers.20.attention.wv.weight                    -> blk.20.attn_v.weight                     | BF16   | [4096, 4096]
layers.20.attention.wo.weight                    -> blk.20.attn_output.weight                | BF16   | [4096, 4096]
layers.20.feed_forward.w1.weight                 -> blk.20.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.20.feed_forward.w2.weight                 -> blk.20.ffn_down.weight                   | BF16   | [4096, 11008]
layers.20.feed_forward.w3.weight                 -> blk.20.ffn_up.weight                     | BF16   | [11008, 4096]
layers.20.attention_norm.weight                  -> blk.20.attn_norm.weight                  | BF16   | [4096]
layers.20.ffn_norm.weight                        -> blk.20.ffn_norm.weight                   | BF16   | [4096]
layers.21.attention.wq.weight                    -> blk.21.attn_q.weight                     | BF16   | [4096, 4096]
layers.21.attention.wk.weight                    -> blk.21.attn_k.weight                     | BF16   | [4096, 4096]
layers.21.attention.wv.weight                    -> blk.21.attn_v.weight                     | BF16   | [4096, 4096]
layers.21.attention.wo.weight                    -> blk.21.attn_output.weight                | BF16   | [4096, 4096]
layers.21.feed_forward.w1.weight                 -> blk.21.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.21.feed_forward.w2.weight                 -> blk.21.ffn_down.weight                   | BF16   | [4096, 11008]
layers.21.feed_forward.w3.weight                 -> blk.21.ffn_up.weight                     | BF16   | [11008, 4096]
layers.21.attention_norm.weight                  -> blk.21.attn_norm.weight                  | BF16   | [4096]
layers.21.ffn_norm.weight                        -> blk.21.ffn_norm.weight                   | BF16   | [4096]
layers.22.attention.wq.weight                    -> blk.22.attn_q.weight                     | BF16   | [4096, 4096]
layers.22.attention.wk.weight                    -> blk.22.attn_k.weight                     | BF16   | [4096, 4096]
layers.22.attention.wv.weight                    -> blk.22.attn_v.weight                     | BF16   | [4096, 4096]
layers.22.attention.wo.weight                    -> blk.22.attn_output.weight                | BF16   | [4096, 4096]
layers.22.feed_forward.w1.weight                 -> blk.22.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.22.feed_forward.w2.weight                 -> blk.22.ffn_down.weight                   | BF16   | [4096, 11008]
layers.22.feed_forward.w3.weight                 -> blk.22.ffn_up.weight                     | BF16   | [11008, 4096]
layers.22.attention_norm.weight                  -> blk.22.attn_norm.weight                  | BF16   | [4096]
layers.22.ffn_norm.weight                        -> blk.22.ffn_norm.weight                   | BF16   | [4096]
layers.23.attention.wq.weight                    -> blk.23.attn_q.weight                     | BF16   | [4096, 4096]
layers.23.attention.wk.weight                    -> blk.23.attn_k.weight                     | BF16   | [4096, 4096]
layers.23.attention.wv.weight                    -> blk.23.attn_v.weight                     | BF16   | [4096, 4096]
layers.23.attention.wo.weight                    -> blk.23.attn_output.weight                | BF16   | [4096, 4096]
layers.23.feed_forward.w1.weight                 -> blk.23.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.23.feed_forward.w2.weight                 -> blk.23.ffn_down.weight                   | BF16   | [4096, 11008]
layers.23.feed_forward.w3.weight                 -> blk.23.ffn_up.weight                     | BF16   | [11008, 4096]
layers.23.attention_norm.weight                  -> blk.23.attn_norm.weight                  | BF16   | [4096]
layers.23.ffn_norm.weight                        -> blk.23.ffn_norm.weight                   | BF16   | [4096]
layers.24.attention.wq.weight                    -> blk.24.attn_q.weight                     | BF16   | [4096, 4096]
layers.24.attention.wk.weight                    -> blk.24.attn_k.weight                     | BF16   | [4096, 4096]
layers.24.attention.wv.weight                    -> blk.24.attn_v.weight                     | BF16   | [4096, 4096]
layers.24.attention.wo.weight                    -> blk.24.attn_output.weight                | BF16   | [4096, 4096]
layers.24.feed_forward.w1.weight                 -> blk.24.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.24.feed_forward.w2.weight                 -> blk.24.ffn_down.weight                   | BF16   | [4096, 11008]
layers.24.feed_forward.w3.weight                 -> blk.24.ffn_up.weight                     | BF16   | [11008, 4096]
layers.24.attention_norm.weight                  -> blk.24.attn_norm.weight                  | BF16   | [4096]
layers.24.ffn_norm.weight                        -> blk.24.ffn_norm.weight                   | BF16   | [4096]
layers.25.attention.wq.weight                    -> blk.25.attn_q.weight                     | BF16   | [4096, 4096]
layers.25.attention.wk.weight                    -> blk.25.attn_k.weight                     | BF16   | [4096, 4096]
layers.25.attention.wv.weight                    -> blk.25.attn_v.weight                     | BF16   | [4096, 4096]
layers.25.attention.wo.weight                    -> blk.25.attn_output.weight                | BF16   | [4096, 4096]
layers.25.feed_forward.w1.weight                 -> blk.25.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.25.feed_forward.w2.weight                 -> blk.25.ffn_down.weight                   | BF16   | [4096, 11008]
layers.25.feed_forward.w3.weight                 -> blk.25.ffn_up.weight                     | BF16   | [11008, 4096]
layers.25.attention_norm.weight                  -> blk.25.attn_norm.weight                  | BF16   | [4096]
layers.25.ffn_norm.weight                        -> blk.25.ffn_norm.weight                   | BF16   | [4096]
layers.26.attention.wq.weight                    -> blk.26.attn_q.weight                     | BF16   | [4096, 4096]
layers.26.attention.wk.weight                    -> blk.26.attn_k.weight                     | BF16   | [4096, 4096]
layers.26.attention.wv.weight                    -> blk.26.attn_v.weight                     | BF16   | [4096, 4096]
layers.26.attention.wo.weight                    -> blk.26.attn_output.weight                | BF16   | [4096, 4096]
layers.26.feed_forward.w1.weight                 -> blk.26.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.26.feed_forward.w2.weight                 -> blk.26.ffn_down.weight                   | BF16   | [4096, 11008]
layers.26.feed_forward.w3.weight                 -> blk.26.ffn_up.weight                     | BF16   | [11008, 4096]
layers.26.attention_norm.weight                  -> blk.26.attn_norm.weight                  | BF16   | [4096]
layers.26.ffn_norm.weight                        -> blk.26.ffn_norm.weight                   | BF16   | [4096]
layers.27.attention.wq.weight                    -> blk.27.attn_q.weight                     | BF16   | [4096, 4096]
layers.27.attention.wk.weight                    -> blk.27.attn_k.weight                     | BF16   | [4096, 4096]
layers.27.attention.wv.weight                    -> blk.27.attn_v.weight                     | BF16   | [4096, 4096]
layers.27.attention.wo.weight                    -> blk.27.attn_output.weight                | BF16   | [4096, 4096]
layers.27.feed_forward.w1.weight                 -> blk.27.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.27.feed_forward.w2.weight                 -> blk.27.ffn_down.weight                   | BF16   | [4096, 11008]
layers.27.feed_forward.w3.weight                 -> blk.27.ffn_up.weight                     | BF16   | [11008, 4096]
layers.27.attention_norm.weight                  -> blk.27.attn_norm.weight                  | BF16   | [4096]
layers.27.ffn_norm.weight                        -> blk.27.ffn_norm.weight                   | BF16   | [4096]
layers.28.attention.wq.weight                    -> blk.28.attn_q.weight                     | BF16   | [4096, 4096]
layers.28.attention.wk.weight                    -> blk.28.attn_k.weight                     | BF16   | [4096, 4096]
layers.28.attention.wv.weight                    -> blk.28.attn_v.weight                     | BF16   | [4096, 4096]
layers.28.attention.wo.weight                    -> blk.28.attn_output.weight                | BF16   | [4096, 4096]
layers.28.feed_forward.w1.weight                 -> blk.28.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.28.feed_forward.w2.weight                 -> blk.28.ffn_down.weight                   | BF16   | [4096, 11008]
layers.28.feed_forward.w3.weight                 -> blk.28.ffn_up.weight                     | BF16   | [11008, 4096]
layers.28.attention_norm.weight                  -> blk.28.attn_norm.weight                  | BF16   | [4096]
layers.28.ffn_norm.weight                        -> blk.28.ffn_norm.weight                   | BF16   | [4096]
layers.29.attention.wq.weight                    -> blk.29.attn_q.weight                     | BF16   | [4096, 4096]
layers.29.attention.wk.weight                    -> blk.29.attn_k.weight                     | BF16   | [4096, 4096]
layers.29.attention.wv.weight                    -> blk.29.attn_v.weight                     | BF16   | [4096, 4096]
layers.29.attention.wo.weight                    -> blk.29.attn_output.weight                | BF16   | [4096, 4096]
layers.29.feed_forward.w1.weight                 -> blk.29.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.29.feed_forward.w2.weight                 -> blk.29.ffn_down.weight                   | BF16   | [4096, 11008]
layers.29.feed_forward.w3.weight                 -> blk.29.ffn_up.weight                     | BF16   | [11008, 4096]
layers.29.attention_norm.weight                  -> blk.29.attn_norm.weight                  | BF16   | [4096]
layers.29.ffn_norm.weight                        -> blk.29.ffn_norm.weight                   | BF16   | [4096]
layers.30.attention.wq.weight                    -> blk.30.attn_q.weight                     | BF16   | [4096, 4096]
layers.30.attention.wk.weight                    -> blk.30.attn_k.weight                     | BF16   | [4096, 4096]
layers.30.attention.wv.weight                    -> blk.30.attn_v.weight                     | BF16   | [4096, 4096]
layers.30.attention.wo.weight                    -> blk.30.attn_output.weight                | BF16   | [4096, 4096]
layers.30.feed_forward.w1.weight                 -> blk.30.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.30.feed_forward.w2.weight                 -> blk.30.ffn_down.weight                   | BF16   | [4096, 11008]
layers.30.feed_forward.w3.weight                 -> blk.30.ffn_up.weight                     | BF16   | [11008, 4096]
layers.30.attention_norm.weight                  -> blk.30.attn_norm.weight                  | BF16   | [4096]
layers.30.ffn_norm.weight                        -> blk.30.ffn_norm.weight                   | BF16   | [4096]
layers.31.attention.wq.weight                    -> blk.31.attn_q.weight                     | BF16   | [4096, 4096]
layers.31.attention.wk.weight                    -> blk.31.attn_k.weight                     | BF16   | [4096, 4096]
layers.31.attention.wv.weight                    -> blk.31.attn_v.weight                     | BF16   | [4096, 4096]
layers.31.attention.wo.weight                    -> blk.31.attn_output.weight                | BF16   | [4096, 4096]
layers.31.feed_forward.w1.weight                 -> blk.31.ffn_gate.weight                   | BF16   | [11008, 4096]
layers.31.feed_forward.w2.weight                 -> blk.31.ffn_down.weight                   | BF16   | [4096, 11008]
layers.31.feed_forward.w3.weight                 -> blk.31.ffn_up.weight                     | BF16   | [11008, 4096]
layers.31.attention_norm.weight                  -> blk.31.attn_norm.weight                  | BF16   | [4096]
layers.31.ffn_norm.weight                        -> blk.31.ffn_norm.weight                   | BF16   | [4096]
skipping tensor rope_freqs
Writing models/Llama-7b-Chinese/ggml-model-f16.gguf, format 1
Ignoring added_tokens.json since model matches vocab size without it.
gguf: This GGUF file is for Little Endian only
gguf: Setting special token type bos to 1
gguf: Setting special token type eos to 2
gguf: Setting special token type pad to 0
gguf: Setting add_bos_token to True
gguf: Setting add_eos_token to False
[  1/291] Writing tensor token_embd.weight                      | size  32000 x   4096  | type F16  | T+   2
[  2/291] Writing tensor output_norm.weight                     | size   4096           | type F32  | T+   2
[  3/291] Writing tensor output.weight                          | size  32000 x   4096  | type F16  | T+   2
[  4/291] Writing tensor blk.0.attn_q.weight                    | size   4096 x   4096  | type F16  | T+   3
[  5/291] Writing tensor blk.0.attn_k.weight                    | size   4096 x   4096  | type F16  | T+   3
[  6/291] Writing tensor blk.0.attn_v.weight                    | size   4096 x   4096  | type F16  | T+   3
[  7/291] Writing tensor blk.0.attn_output.weight               | size   4096 x   4096  | type F16  | T+   3
[  8/291] Writing tensor blk.0.ffn_gate.weight                  | size  11008 x   4096  | type F16  | T+   3
[  9/291] Writing tensor blk.0.ffn_down.weight                  | size   4096 x  11008  | type F16  | T+   3
[ 10/291] Writing tensor blk.0.ffn_up.weight                    | size  11008 x   4096  | type F16  | T+   3
[ 11/291] Writing tensor blk.0.attn_norm.weight                 | size   4096           | type F32  | T+   3
[ 12/291] Writing tensor blk.0.ffn_norm.weight                  | size   4096           | type F32  | T+   3
[ 13/291] Writing tensor blk.1.attn_q.weight                    | size   4096 x   4096  | type F16  | T+   3
[ 14/291] Writing tensor blk.1.attn_k.weight                    | size   4096 x   4096  | type F16  | T+   3
[ 15/291] Writing tensor blk.1.attn_v.weight                    | size   4096 x   4096  | type F16  | T+   3
[ 16/291] Writing tensor blk.1.attn_output.weight               | size   4096 x   4096  | type F16  | T+   3
[ 17/291] Writing tensor blk.1.ffn_gate.weight                  | size  11008 x   4096  | type F16  | T+   3
[ 18/291] Writing tensor blk.1.ffn_down.weight                  | size   4096 x  11008  | type F16  | T+   3
[ 19/291] Writing tensor blk.1.ffn_up.weight                    | size  11008 x   4096  | type F16  | T+   3
[ 20/291] Writing tensor blk.1.attn_norm.weight                 | size   4096           | type F32  | T+   3
[ 21/291] Writing tensor blk.1.ffn_norm.weight                  | size   4096           | type F32  | T+   3
[ 22/291] Writing tensor blk.2.attn_q.weight                    | size   4096 x   4096  | type F16  | T+   3
[ 23/291] Writing tensor blk.2.attn_k.weight                    | size   4096 x   4096  | type F16  | T+   3
[ 24/291] Writing tensor blk.2.attn_v.weight                    | size   4096 x   4096  | type F16  | T+   3
[ 25/291] Writing tensor blk.2.attn_output.weight               | size   4096 x   4096  | type F16  | T+   4
[ 26/291] Writing tensor blk.2.ffn_gate.weight                  | size  11008 x   4096  | type F16  | T+   4
[ 27/291] Writing tensor blk.2.ffn_down.weight                  | size   4096 x  11008  | type F16  | T+   4
[ 28/291] Writing tensor blk.2.ffn_up.weight                    | size  11008 x   4096  | type F16  | T+   4
[ 29/291] Writing tensor blk.2.attn_norm.weight                 | size   4096           | type F32  | T+   4
[ 30/291] Writing tensor blk.2.ffn_norm.weight                  | size   4096           | type F32  | T+   4
[ 31/291] Writing tensor blk.3.attn_q.weight                    | size   4096 x   4096  | type F16  | T+   4
[ 32/291] Writing tensor blk.3.attn_k.weight                    | size   4096 x   4096  | type F16  | T+   4
[ 33/291] Writing tensor blk.3.attn_v.weight                    | size   4096 x   4096  | type F16  | T+   5
[ 34/291] Writing tensor blk.3.attn_output.weight               | size   4096 x   4096  | type F16  | T+   5
[ 35/291] Writing tensor blk.3.ffn_gate.weight                  | size  11008 x   4096  | type F16  | T+   5
[ 36/291] Writing tensor blk.3.ffn_down.weight                  | size   4096 x  11008  | type F16  | T+   5
[ 37/291] Writing tensor blk.3.ffn_up.weight                    | size  11008 x   4096  | type F16  | T+   5
[ 38/291] Writing tensor blk.3.attn_norm.weight                 | size   4096           | type F32  | T+   5
[ 39/291] Writing tensor blk.3.ffn_norm.weight                  | size   4096           | type F32  | T+   5
[ 40/291] Writing tensor blk.4.attn_q.weight                    | size   4096 x   4096  | type F16  | T+   5
[ 41/291] Writing tensor blk.4.attn_k.weight                    | size   4096 x   4096  | type F16  | T+   6
[ 42/291] Writing tensor blk.4.attn_v.weight                    | size   4096 x   4096  | type F16  | T+   6
[ 43/291] Writing tensor blk.4.attn_output.weight               | size   4096 x   4096  | type F16  | T+   6
[ 44/291] Writing tensor blk.4.ffn_gate.weight                  | size  11008 x   4096  | type F16  | T+   6
[ 45/291] Writing tensor blk.4.ffn_down.weight                  | size   4096 x  11008  | type F16  | T+   6
[ 46/291] Writing tensor blk.4.ffn_up.weight                    | size  11008 x   4096  | type F16  | T+   6
[ 47/291] Writing tensor blk.4.attn_norm.weight                 | size   4096           | type F32  | T+   6
[ 48/291] Writing tensor blk.4.ffn_norm.weight                  | size   4096           | type F32  | T+   6
[ 49/291] Writing tensor blk.5.attn_q.weight                    | size   4096 x   4096  | type F16  | T+   6
[ 50/291] Writing tensor blk.5.attn_k.weight                    | size   4096 x   4096  | type F16  | T+   6
[ 51/291] Writing tensor blk.5.attn_v.weight                    | size   4096 x   4096  | type F16  | T+   6
[ 52/291] Writing tensor blk.5.attn_output.weight               | size   4096 x   4096  | type F16  | T+   7
[ 53/291] Writing tensor blk.5.ffn_gate.weight                  | size  11008 x   4096  | type F16  | T+   7
[ 54/291] Writing tensor blk.5.ffn_down.weight                  | size   4096 x  11008  | type F16  | T+   7
[ 55/291] Writing tensor blk.5.ffn_up.weight                    | size  11008 x   4096  | type F16  | T+   7
[ 56/291] Writing tensor blk.5.attn_norm.weight                 | size   4096           | type F32  | T+   7
[ 57/291] Writing tensor blk.5.ffn_norm.weight                  | size   4096           | type F32  | T+   7
[ 58/291] Writing tensor blk.6.attn_q.weight                    | size   4096 x   4096  | type F16  | T+   7
[ 59/291] Writing tensor blk.6.attn_k.weight                    | size   4096 x   4096  | type F16  | T+   7
[ 60/291] Writing tensor blk.6.attn_v.weight                    | size   4096 x   4096  | type F16  | T+   7
[ 61/291] Writing tensor blk.6.attn_output.weight               | size   4096 x   4096  | type F16  | T+   7
[ 62/291] Writing tensor blk.6.ffn_gate.weight                  | size  11008 x   4096  | type F16  | T+   7
[ 63/291] Writing tensor blk.6.ffn_down.weight                  | size   4096 x  11008  | type F16  | T+   8
[ 64/291] Writing tensor blk.6.ffn_up.weight                    | size  11008 x   4096  | type F16  | T+   8
[ 65/291] Writing tensor blk.6.attn_norm.weight                 | size   4096           | type F32  | T+   8
[ 66/291] Writing tensor blk.6.ffn_norm.weight                  | size   4096           | type F32  | T+   8
[ 67/291] Writing tensor blk.7.attn_q.weight                    | size   4096 x   4096  | type F16  | T+   8
[ 68/291] Writing tensor blk.7.attn_k.weight                    | size   4096 x   4096  | type F16  | T+   8
[ 69/291] Writing tensor blk.7.attn_v.weight                    | size   4096 x   4096  | type F16  | T+   8
[ 70/291] Writing tensor blk.7.attn_output.weight               | size   4096 x   4096  | type F16  | T+   8
[ 71/291] Writing tensor blk.7.ffn_gate.weight                  | size  11008 x   4096  | type F16  | T+   8
[ 72/291] Writing tensor blk.7.ffn_down.weight                  | size   4096 x  11008  | type F16  | T+   9
[ 73/291] Writing tensor blk.7.ffn_up.weight                    | size  11008 x   4096  | type F16  | T+   9
[ 74/291] Writing tensor blk.7.attn_norm.weight                 | size   4096           | type F32  | T+   9
[ 75/291] Writing tensor blk.7.ffn_norm.weight                  | size   4096           | type F32  | T+   9
[ 76/291] Writing tensor blk.8.attn_q.weight                    | size   4096 x   4096  | type F16  | T+   9
[ 77/291] Writing tensor blk.8.attn_k.weight                    | size   4096 x   4096  | type F16  | T+   9
[ 78/291] Writing tensor blk.8.attn_v.weight                    | size   4096 x   4096  | type F16  | T+   9
[ 79/291] Writing tensor blk.8.attn_output.weight               | size   4096 x   4096  | type F16  | T+   9
[ 80/291] Writing tensor blk.8.ffn_gate.weight                  | size  11008 x   4096  | type F16  | T+   9
[ 81/291] Writing tensor blk.8.ffn_down.weight                  | size   4096 x  11008  | type F16  | T+   9
[ 82/291] Writing tensor blk.8.ffn_up.weight                    | size  11008 x   4096  | type F16  | T+  10
[ 83/291] Writing tensor blk.8.attn_norm.weight                 | size   4096           | type F32  | T+  10
[ 84/291] Writing tensor blk.8.ffn_norm.weight                  | size   4096           | type F32  | T+  10
[ 85/291] Writing tensor blk.9.attn_q.weight                    | size   4096 x   4096  | type F16  | T+  10
[ 86/291] Writing tensor blk.9.attn_k.weight                    | size   4096 x   4096  | type F16  | T+  10
[ 87/291] Writing tensor blk.9.attn_v.weight                    | size   4096 x   4096  | type F16  | T+  10
[ 88/291] Writing tensor blk.9.attn_output.weight               | size   4096 x   4096  | type F16  | T+  10
[ 89/291] Writing tensor blk.9.ffn_gate.weight                  | size  11008 x   4096  | type F16  | T+  10
[ 90/291] Writing tensor blk.9.ffn_down.weight                  | size   4096 x  11008  | type F16  | T+  10
[ 91/291] Writing tensor blk.9.ffn_up.weight                    | size  11008 x   4096  | type F16  | T+  10
[ 92/291] Writing tensor blk.9.attn_norm.weight                 | size   4096           | type F32  | T+  10
[ 93/291] Writing tensor blk.9.ffn_norm.weight                  | size   4096           | type F32  | T+  10
[ 94/291] Writing tensor blk.10.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  10
[ 95/291] Writing tensor blk.10.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  10
[ 96/291] Writing tensor blk.10.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  10
[ 97/291] Writing tensor blk.10.attn_output.weight              | size   4096 x   4096  | type F16  | T+  10
[ 98/291] Writing tensor blk.10.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  10
[ 99/291] Writing tensor blk.10.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  11
[100/291] Writing tensor blk.10.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  11
[101/291] Writing tensor blk.10.attn_norm.weight                | size   4096           | type F32  | T+  11
[102/291] Writing tensor blk.10.ffn_norm.weight                 | size   4096           | type F32  | T+  11
[103/291] Writing tensor blk.11.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  11
[104/291] Writing tensor blk.11.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  11
[105/291] Writing tensor blk.11.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  11
[106/291] Writing tensor blk.11.attn_output.weight              | size   4096 x   4096  | type F16  | T+  11
[107/291] Writing tensor blk.11.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  11
[108/291] Writing tensor blk.11.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  12
[109/291] Writing tensor blk.11.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  12
[110/291] Writing tensor blk.11.attn_norm.weight                | size   4096           | type F32  | T+  12
[111/291] Writing tensor blk.11.ffn_norm.weight                 | size   4096           | type F32  | T+  12
[112/291] Writing tensor blk.12.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  12
[113/291] Writing tensor blk.12.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  12
[114/291] Writing tensor blk.12.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  12
[115/291] Writing tensor blk.12.attn_output.weight              | size   4096 x   4096  | type F16  | T+  12
[116/291] Writing tensor blk.12.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  12
[117/291] Writing tensor blk.12.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  12
[118/291] Writing tensor blk.12.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  13
[119/291] Writing tensor blk.12.attn_norm.weight                | size   4096           | type F32  | T+  13
[120/291] Writing tensor blk.12.ffn_norm.weight                 | size   4096           | type F32  | T+  13
[121/291] Writing tensor blk.13.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  13
[122/291] Writing tensor blk.13.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  13
[123/291] Writing tensor blk.13.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  13
[124/291] Writing tensor blk.13.attn_output.weight              | size   4096 x   4096  | type F16  | T+  13
[125/291] Writing tensor blk.13.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  13
[126/291] Writing tensor blk.13.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  13
[127/291] Writing tensor blk.13.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  13
[128/291] Writing tensor blk.13.attn_norm.weight                | size   4096           | type F32  | T+  13
[129/291] Writing tensor blk.13.ffn_norm.weight                 | size   4096           | type F32  | T+  13
[130/291] Writing tensor blk.14.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  13
[131/291] Writing tensor blk.14.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  13
[132/291] Writing tensor blk.14.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  13
[133/291] Writing tensor blk.14.attn_output.weight              | size   4096 x   4096  | type F16  | T+  13
[134/291] Writing tensor blk.14.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  13
[135/291] Writing tensor blk.14.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  13
[136/291] Writing tensor blk.14.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  14
[137/291] Writing tensor blk.14.attn_norm.weight                | size   4096           | type F32  | T+  14
[138/291] Writing tensor blk.14.ffn_norm.weight                 | size   4096           | type F32  | T+  14
[139/291] Writing tensor blk.15.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  14
[140/291] Writing tensor blk.15.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  14
[141/291] Writing tensor blk.15.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  14
[142/291] Writing tensor blk.15.attn_output.weight              | size   4096 x   4096  | type F16  | T+  14
[143/291] Writing tensor blk.15.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  14
[144/291] Writing tensor blk.15.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  14
[145/291] Writing tensor blk.15.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  14
[146/291] Writing tensor blk.15.attn_norm.weight                | size   4096           | type F32  | T+  14
[147/291] Writing tensor blk.15.ffn_norm.weight                 | size   4096           | type F32  | T+  14
[148/291] Writing tensor blk.16.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  14
[149/291] Writing tensor blk.16.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  14
[150/291] Writing tensor blk.16.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  14
[151/291] Writing tensor blk.16.attn_output.weight              | size   4096 x   4096  | type F16  | T+  14
[152/291] Writing tensor blk.16.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  14
[153/291] Writing tensor blk.16.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  14
[154/291] Writing tensor blk.16.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  15
[155/291] Writing tensor blk.16.attn_norm.weight                | size   4096           | type F32  | T+  15
[156/291] Writing tensor blk.16.ffn_norm.weight                 | size   4096           | type F32  | T+  15
[157/291] Writing tensor blk.17.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  15
[158/291] Writing tensor blk.17.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  15
[159/291] Writing tensor blk.17.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  15
[160/291] Writing tensor blk.17.attn_output.weight              | size   4096 x   4096  | type F16  | T+  15
[161/291] Writing tensor blk.17.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  15
[162/291] Writing tensor blk.17.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  15
[163/291] Writing tensor blk.17.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  15
[164/291] Writing tensor blk.17.attn_norm.weight                | size   4096           | type F32  | T+  15
[165/291] Writing tensor blk.17.ffn_norm.weight                 | size   4096           | type F32  | T+  15
[166/291] Writing tensor blk.18.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  15
[167/291] Writing tensor blk.18.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  15
[168/291] Writing tensor blk.18.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  15
[169/291] Writing tensor blk.18.attn_output.weight              | size   4096 x   4096  | type F16  | T+  15
[170/291] Writing tensor blk.18.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  15
[171/291] Writing tensor blk.18.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  16
[172/291] Writing tensor blk.18.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  16
[173/291] Writing tensor blk.18.attn_norm.weight                | size   4096           | type F32  | T+  16
[174/291] Writing tensor blk.18.ffn_norm.weight                 | size   4096           | type F32  | T+  16
[175/291] Writing tensor blk.19.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  16
[176/291] Writing tensor blk.19.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  16
[177/291] Writing tensor blk.19.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  16
[178/291] Writing tensor blk.19.attn_output.weight              | size   4096 x   4096  | type F16  | T+  16
[179/291] Writing tensor blk.19.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  16
[180/291] Writing tensor blk.19.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  16
[181/291] Writing tensor blk.19.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  16
[182/291] Writing tensor blk.19.attn_norm.weight                | size   4096           | type F32  | T+  16
[183/291] Writing tensor blk.19.ffn_norm.weight                 | size   4096           | type F32  | T+  16
[184/291] Writing tensor blk.20.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  16
[185/291] Writing tensor blk.20.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  16
[186/291] Writing tensor blk.20.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  16
[187/291] Writing tensor blk.20.attn_output.weight              | size   4096 x   4096  | type F16  | T+  16
[188/291] Writing tensor blk.20.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  16
[189/291] Writing tensor blk.20.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  17
[190/291] Writing tensor blk.20.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  17
[191/291] Writing tensor blk.20.attn_norm.weight                | size   4096           | type F32  | T+  17
[192/291] Writing tensor blk.20.ffn_norm.weight                 | size   4096           | type F32  | T+  17
[193/291] Writing tensor blk.21.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  17
[194/291] Writing tensor blk.21.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  17
[195/291] Writing tensor blk.21.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  17
[196/291] Writing tensor blk.21.attn_output.weight              | size   4096 x   4096  | type F16  | T+  17
[197/291] Writing tensor blk.21.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  17
[198/291] Writing tensor blk.21.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  17
[199/291] Writing tensor blk.21.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  17
[200/291] Writing tensor blk.21.attn_norm.weight                | size   4096           | type F32  | T+  17
[201/291] Writing tensor blk.21.ffn_norm.weight                 | size   4096           | type F32  | T+  17
[202/291] Writing tensor blk.22.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  17
[203/291] Writing tensor blk.22.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  17
[204/291] Writing tensor blk.22.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  17
[205/291] Writing tensor blk.22.attn_output.weight              | size   4096 x   4096  | type F16  | T+  17
[206/291] Writing tensor blk.22.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  17
[207/291] Writing tensor blk.22.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  17
[208/291] Writing tensor blk.22.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  18
[209/291] Writing tensor blk.22.attn_norm.weight                | size   4096           | type F32  | T+  18
[210/291] Writing tensor blk.22.ffn_norm.weight                 | size   4096           | type F32  | T+  18
[211/291] Writing tensor blk.23.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  18
[212/291] Writing tensor blk.23.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  18
[213/291] Writing tensor blk.23.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  18
[214/291] Writing tensor blk.23.attn_output.weight              | size   4096 x   4096  | type F16  | T+  18
[215/291] Writing tensor blk.23.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  18
[216/291] Writing tensor blk.23.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  18
[217/291] Writing tensor blk.23.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  18
[218/291] Writing tensor blk.23.attn_norm.weight                | size   4096           | type F32  | T+  18
[219/291] Writing tensor blk.23.ffn_norm.weight                 | size   4096           | type F32  | T+  18
[220/291] Writing tensor blk.24.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  18
[221/291] Writing tensor blk.24.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  18
[222/291] Writing tensor blk.24.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  18
[223/291] Writing tensor blk.24.attn_output.weight              | size   4096 x   4096  | type F16  | T+  18
[224/291] Writing tensor blk.24.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  18
[225/291] Writing tensor blk.24.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  18
[226/291] Writing tensor blk.24.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  18
[227/291] Writing tensor blk.24.attn_norm.weight                | size   4096           | type F32  | T+  18
[228/291] Writing tensor blk.24.ffn_norm.weight                 | size   4096           | type F32  | T+  18
[229/291] Writing tensor blk.25.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  18
[230/291] Writing tensor blk.25.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  18
[231/291] Writing tensor blk.25.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  18
[232/291] Writing tensor blk.25.attn_output.weight              | size   4096 x   4096  | type F16  | T+  18
[233/291] Writing tensor blk.25.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  19
[234/291] Writing tensor blk.25.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  19
[235/291] Writing tensor blk.25.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  19
[236/291] Writing tensor blk.25.attn_norm.weight                | size   4096           | type F32  | T+  19
[237/291] Writing tensor blk.25.ffn_norm.weight                 | size   4096           | type F32  | T+  19
[238/291] Writing tensor blk.26.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  19
[239/291] Writing tensor blk.26.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  19
[240/291] Writing tensor blk.26.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  19
[241/291] Writing tensor blk.26.attn_output.weight              | size   4096 x   4096  | type F16  | T+  19
[242/291] Writing tensor blk.26.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  19
[243/291] Writing tensor blk.26.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  19
[244/291] Writing tensor blk.26.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  19
[245/291] Writing tensor blk.26.attn_norm.weight                | size   4096           | type F32  | T+  19
[246/291] Writing tensor blk.26.ffn_norm.weight                 | size   4096           | type F32  | T+  19
[247/291] Writing tensor blk.27.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  19
[248/291] Writing tensor blk.27.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  19
[249/291] Writing tensor blk.27.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  19
[250/291] Writing tensor blk.27.attn_output.weight              | size   4096 x   4096  | type F16  | T+  19
[251/291] Writing tensor blk.27.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  19
[252/291] Writing tensor blk.27.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  20
[253/291] Writing tensor blk.27.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  20
[254/291] Writing tensor blk.27.attn_norm.weight                | size   4096           | type F32  | T+  20
[255/291] Writing tensor blk.27.ffn_norm.weight                 | size   4096           | type F32  | T+  20
[256/291] Writing tensor blk.28.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  20
[257/291] Writing tensor blk.28.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  20
[258/291] Writing tensor blk.28.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  20
[259/291] Writing tensor blk.28.attn_output.weight              | size   4096 x   4096  | type F16  | T+  20
[260/291] Writing tensor blk.28.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  20
[261/291] Writing tensor blk.28.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  20
[262/291] Writing tensor blk.28.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  20
[263/291] Writing tensor blk.28.attn_norm.weight                | size   4096           | type F32  | T+  20
[264/291] Writing tensor blk.28.ffn_norm.weight                 | size   4096           | type F32  | T+  20
[265/291] Writing tensor blk.29.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  20
[266/291] Writing tensor blk.29.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  20
[267/291] Writing tensor blk.29.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  20
[268/291] Writing tensor blk.29.attn_output.weight              | size   4096 x   4096  | type F16  | T+  20
[269/291] Writing tensor blk.29.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  20
[270/291] Writing tensor blk.29.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  20
[271/291] Writing tensor blk.29.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  21
[272/291] Writing tensor blk.29.attn_norm.weight                | size   4096           | type F32  | T+  21
[273/291] Writing tensor blk.29.ffn_norm.weight                 | size   4096           | type F32  | T+  21
[274/291] Writing tensor blk.30.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  21
[275/291] Writing tensor blk.30.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  21
[276/291] Writing tensor blk.30.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  21
[277/291] Writing tensor blk.30.attn_output.weight              | size   4096 x   4096  | type F16  | T+  21
[278/291] Writing tensor blk.30.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  21
[279/291] Writing tensor blk.30.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  21
[280/291] Writing tensor blk.30.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  21
[281/291] Writing tensor blk.30.attn_norm.weight                | size   4096           | type F32  | T+  21
[282/291] Writing tensor blk.30.ffn_norm.weight                 | size   4096           | type F32  | T+  21
[283/291] Writing tensor blk.31.attn_q.weight                   | size   4096 x   4096  | type F16  | T+  21
[284/291] Writing tensor blk.31.attn_k.weight                   | size   4096 x   4096  | type F16  | T+  21
[285/291] Writing tensor blk.31.attn_v.weight                   | size   4096 x   4096  | type F16  | T+  21
[286/291] Writing tensor blk.31.attn_output.weight              | size   4096 x   4096  | type F16  | T+  21
[287/291] Writing tensor blk.31.ffn_gate.weight                 | size  11008 x   4096  | type F16  | T+  21
[288/291] Writing tensor blk.31.ffn_down.weight                 | size   4096 x  11008  | type F16  | T+  21
[289/291] Writing tensor blk.31.ffn_up.weight                   | size  11008 x   4096  | type F16  | T+  21
[290/291] Writing tensor blk.31.attn_norm.weight                | size   4096           | type F32  | T+  21
[291/291] Writing tensor blk.31.ffn_norm.weight                 | size   4096           | type F32  | T+  21
Wrote models/Llama-7b-Chinese/ggml-model-f16.gguf
(Llama-7b-Chinese) :~/newmodels/llama.cpp$

量化操作


(Llama-7b-Chinese) :~/newmodels/llama.cpp$ ./quantize ./models/Llama-7b-Chinese/ggml-model-f16.gguf ./models/Llama-7b-Chinese/ggml-model-q4_0.gguf q4_0
ggml_init_cublas: GGML_CUDA_FORCE_MMQ:   no
ggml_init_cublas: CUDA_USE_TENSOR_CORES: yes
ggml_init_cublas: found 1 CUDA devices:
  Device 0: NVIDIA GeForce RTX 3080 Ti Laptop GPU, compute capability 8.6, VMM: yes
main: build = 2038 (7013716)
main: built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
main: quantizing './models/Llama-7b-Chinese/ggml-model-f16.gguf' to './models/Llama-7b-Chinese/ggml-model-q4_0.gguf' as Q4_0
llama_model_loader: loaded meta data with 20 key-value pairs and 291 tensors from ./models/Llama-7b-Chinese/ggml-model-f16.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.name str              = models
llama_model_loader: - kv   2:                       llama.context_length u32              = 2048
llama_model_loader: - kv   3:                     llama.embedding_length u32              = 4096
llama_model_loader: - kv   4:                          llama.block_count u32              = 32
llama_model_loader: - kv   5:                  llama.feed_forward_length u32              = 11008
llama_model_loader: - kv   6:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv   7:                 llama.attention.head_count u32              = 32
llama_model_loader: - kv   8:              llama.attention.head_count_kv u32              = 32
llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  10:                          general.file_type u32              = 1
llama_model_loader: - kv  11:                       tokenizer.ggml.model str              = llama
llama_model_loader: - kv  12:                      tokenizer.ggml.tokens arr[str,32000]   = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv  13:                      tokenizer.ggml.scores arr[f32,32000]   = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv  14:                  tokenizer.ggml.token_type arr[i32,32000]   = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv  15:                tokenizer.ggml.bos_token_id u32              = 1
llama_model_loader: - kv  16:                tokenizer.ggml.eos_token_id u32              = 2
llama_model_loader: - kv  17:            tokenizer.ggml.padding_token_id u32              = 0
llama_model_loader: - kv  18:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  19:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - type  f32:   65 tensors
llama_model_loader: - type  f16:  226 tensors
llama_model_quantize_internal: meta size = 741120 bytes
[   1/ 291]                    token_embd.weight - [ 4096, 32000,     1,     1], type =    f16, quantizing to q4_0 .. size =   250.00 MiB ->    70.31 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[   2/ 291]                   output_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[   3/ 291]                        output.weight - [ 4096, 32000,     1,     1], type =    f16, quantizing to q6_K .. size =   250.00 MiB ->   102.54 MiB
[   4/ 291]                  blk.0.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.034 0.008 0.012 0.019 0.031 0.050 0.084 0.149 0.256 0.150 0.084 0.051 0.031 0.019 0.012 0.010
[   5/ 291]                  blk.0.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.034 0.008 0.013 0.021 0.033 0.054 0.089 0.150 0.226 0.151 0.089 0.054 0.033 0.021 0.013 0.011
[   6/ 291]                  blk.0.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.024 0.036 0.053 0.074 0.096 0.117 0.129 0.117 0.096 0.074 0.053 0.036 0.024 0.020
[   7/ 291]             blk.0.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.035 0.011 0.017 0.028 0.044 0.068 0.100 0.135 0.155 0.135 0.100 0.068 0.044 0.028 0.017 0.014
[   8/ 291]                blk.0.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[   9/ 291]                blk.0.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.076 0.097 0.112 0.118 0.112 0.097 0.077 0.056 0.038 0.025 0.021
[  10/ 291]                  blk.0.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.076 0.096 0.111 0.117 0.111 0.096 0.077 0.056 0.039 0.025 0.021
[  11/ 291]               blk.0.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  12/ 291]                blk.0.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  13/ 291]                  blk.1.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.013 0.022 0.034 0.052 0.074 0.098 0.121 0.132 0.121 0.098 0.074 0.052 0.034 0.022 0.018
[  14/ 291]                  blk.1.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.013 0.022 0.034 0.051 0.074 0.099 0.121 0.132 0.121 0.099 0.074 0.051 0.034 0.022 0.018
[  15/ 291]                  blk.1.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.014 0.023 0.035 0.052 0.073 0.097 0.119 0.130 0.119 0.097 0.074 0.052 0.035 0.023 0.019
[  16/ 291]             blk.1.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.035 0.012 0.020 0.031 0.047 0.070 0.098 0.129 0.146 0.129 0.099 0.070 0.047 0.031 0.020 0.016
[  17/ 291]                blk.1.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.117 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[  18/ 291]                blk.1.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.056 0.039 0.025 0.021
[  19/ 291]                  blk.1.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.076 0.096 0.112 0.118 0.112 0.096 0.077 0.056 0.039 0.025 0.021
[  20/ 291]               blk.1.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  21/ 291]                blk.1.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  22/ 291]                  blk.2.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.024 0.038 0.055 0.076 0.096 0.114 0.122 0.114 0.097 0.076 0.055 0.038 0.024 0.020
[  23/ 291]                  blk.2.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.024 0.037 0.055 0.075 0.097 0.115 0.124 0.115 0.097 0.075 0.055 0.037 0.024 0.020
[  24/ 291]                  blk.2.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.076 0.096 0.112 0.120 0.112 0.096 0.076 0.056 0.039 0.025 0.021
[  25/ 291]             blk.2.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.112 0.117 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[  26/ 291]                blk.2.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[  27/ 291]                blk.2.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[  28/ 291]                  blk.2.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[  29/ 291]               blk.2.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  30/ 291]                blk.2.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  31/ 291]                  blk.3.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.076 0.096 0.113 0.120 0.113 0.097 0.076 0.056 0.038 0.025 0.020
[  32/ 291]                  blk.3.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.076 0.096 0.113 0.120 0.113 0.096 0.076 0.056 0.038 0.025 0.020
[  33/ 291]                  blk.3.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.076 0.096 0.112 0.119 0.112 0.096 0.076 0.056 0.039 0.025 0.021
[  34/ 291]             blk.3.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.077 0.097 0.112 0.118 0.112 0.097 0.077 0.056 0.038 0.025 0.021
[  35/ 291]                blk.3.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[  36/ 291]                blk.3.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.097 0.111 0.117 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[  37/ 291]                  blk.3.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.056 0.039 0.025 0.021
[  38/ 291]               blk.3.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  39/ 291]                blk.3.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  40/ 291]                  blk.4.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.076 0.096 0.112 0.119 0.112 0.096 0.076 0.056 0.038 0.025 0.021
[  41/ 291]                  blk.4.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.076 0.096 0.113 0.120 0.113 0.096 0.076 0.056 0.038 0.025 0.020
[  42/ 291]                  blk.4.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.076 0.096 0.112 0.119 0.112 0.096 0.076 0.056 0.039 0.025 0.021
[  43/ 291]             blk.4.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[  44/ 291]                blk.4.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[  45/ 291]                blk.4.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.112 0.096 0.077 0.056 0.039 0.025 0.021
[  46/ 291]                  blk.4.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[  47/ 291]               blk.4.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  48/ 291]                blk.4.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  49/ 291]                  blk.5.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.076 0.097 0.112 0.119 0.112 0.097 0.076 0.056 0.038 0.025 0.021
[  50/ 291]                  blk.5.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.076 0.097 0.113 0.119 0.113 0.096 0.076 0.056 0.038 0.025 0.020
[  51/ 291]                  blk.5.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.076 0.096 0.112 0.119 0.112 0.096 0.076 0.056 0.039 0.025 0.021
[  52/ 291]             blk.5.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.112 0.117 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[  53/ 291]                blk.5.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[  54/ 291]                blk.5.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.097 0.111 0.117 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[  55/ 291]                  blk.5.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.056 0.039 0.025 0.021
[  56/ 291]               blk.5.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  57/ 291]                blk.5.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  58/ 291]                  blk.6.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.097 0.112 0.118 0.112 0.096 0.076 0.056 0.039 0.025 0.021
[  59/ 291]                  blk.6.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.097 0.112 0.118 0.112 0.096 0.077 0.056 0.039 0.025 0.021
[  60/ 291]                  blk.6.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.076 0.096 0.112 0.119 0.112 0.096 0.076 0.056 0.039 0.025 0.021
[  61/ 291]             blk.6.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.097 0.111 0.117 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[  62/ 291]                blk.6.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[  63/ 291]                blk.6.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[  64/ 291]                  blk.6.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[  65/ 291]               blk.6.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  66/ 291]                blk.6.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  67/ 291]                  blk.7.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.112 0.118 0.112 0.097 0.076 0.056 0.039 0.025 0.021
[  68/ 291]                  blk.7.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.112 0.118 0.112 0.096 0.077 0.056 0.039 0.025 0.021
[  69/ 291]                  blk.7.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.076 0.096 0.112 0.119 0.112 0.096 0.076 0.056 0.039 0.025 0.021
[  70/ 291]             blk.7.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.111 0.117 0.111 0.097 0.077 0.056 0.039 0.025 0.021
[  71/ 291]                blk.7.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[  72/ 291]                blk.7.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.111 0.117 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[  73/ 291]                  blk.7.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[  74/ 291]               blk.7.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  75/ 291]                blk.7.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  76/ 291]                  blk.8.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.076 0.097 0.112 0.118 0.112 0.096 0.077 0.056 0.039 0.025 0.021
[  77/ 291]                  blk.8.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.112 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[  78/ 291]                  blk.8.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.076 0.096 0.112 0.119 0.112 0.096 0.076 0.056 0.039 0.025 0.021
[  79/ 291]             blk.8.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[  80/ 291]                blk.8.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[  81/ 291]                blk.8.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.112 0.117 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[  82/ 291]                  blk.8.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[  83/ 291]               blk.8.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  84/ 291]                blk.8.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  85/ 291]                  blk.9.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.096 0.112 0.118 0.112 0.096 0.077 0.056 0.039 0.025 0.021
[  86/ 291]                  blk.9.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.076 0.097 0.112 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[  87/ 291]                  blk.9.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.076 0.096 0.112 0.119 0.112 0.096 0.076 0.056 0.039 0.025 0.021
[  88/ 291]             blk.9.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[  89/ 291]                blk.9.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[  90/ 291]                blk.9.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.112 0.117 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[  91/ 291]                  blk.9.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[  92/ 291]               blk.9.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  93/ 291]                blk.9.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[  94/ 291]                 blk.10.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.112 0.096 0.077 0.056 0.039 0.025 0.021
[  95/ 291]                 blk.10.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.096 0.112 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[  96/ 291]                 blk.10.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.076 0.096 0.112 0.119 0.112 0.096 0.076 0.056 0.039 0.025 0.021
[  97/ 291]            blk.10.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.026 0.021
[  98/ 291]               blk.10.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.117 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[  99/ 291]               blk.10.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.077 0.097 0.112 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 100/ 291]                 blk.10.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.056 0.039 0.025 0.021
[ 101/ 291]              blk.10.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 102/ 291]               blk.10.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 103/ 291]                 blk.11.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 104/ 291]                 blk.11.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.096 0.112 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 105/ 291]                 blk.11.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.076 0.096 0.112 0.119 0.112 0.096 0.076 0.056 0.038 0.025 0.021
[ 106/ 291]            blk.11.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 107/ 291]               blk.11.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[ 108/ 291]               blk.11.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.112 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 109/ 291]                 blk.11.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.056 0.039 0.025 0.021
[ 110/ 291]              blk.11.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 111/ 291]               blk.11.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 112/ 291]                 blk.12.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.112 0.117 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[ 113/ 291]                 blk.12.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.096 0.112 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 114/ 291]                 blk.12.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.076 0.096 0.112 0.119 0.112 0.096 0.076 0.056 0.039 0.025 0.021
[ 115/ 291]            blk.12.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 116/ 291]               blk.12.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 117/ 291]               blk.12.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.112 0.117 0.112 0.097 0.077 0.056 0.038 0.025 0.021
[ 118/ 291]                 blk.12.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 119/ 291]              blk.12.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 120/ 291]               blk.12.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 121/ 291]                 blk.13.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.076 0.097 0.112 0.117 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 122/ 291]                 blk.13.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.096 0.112 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 123/ 291]                 blk.13.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.076 0.096 0.112 0.118 0.112 0.096 0.076 0.056 0.039 0.025 0.021
[ 124/ 291]            blk.13.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 125/ 291]               blk.13.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 126/ 291]               blk.13.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.077 0.097 0.112 0.118 0.112 0.097 0.077 0.056 0.038 0.025 0.021
[ 127/ 291]                 blk.13.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 128/ 291]              blk.13.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 129/ 291]               blk.13.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 130/ 291]                 blk.14.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.056 0.039 0.025 0.021
[ 131/ 291]                 blk.14.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.096 0.112 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 132/ 291]                 blk.14.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.076 0.096 0.112 0.119 0.112 0.096 0.076 0.056 0.039 0.025 0.021
[ 133/ 291]            blk.14.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[ 134/ 291]               blk.14.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 135/ 291]               blk.14.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.077 0.097 0.112 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 136/ 291]                 blk.14.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 137/ 291]              blk.14.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 138/ 291]               blk.14.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 139/ 291]                 blk.15.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.097 0.112 0.117 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 140/ 291]                 blk.15.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.112 0.117 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 141/ 291]                 blk.15.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.076 0.096 0.112 0.119 0.112 0.096 0.076 0.056 0.039 0.025 0.021
[ 142/ 291]            blk.15.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 143/ 291]               blk.15.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 144/ 291]               blk.15.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.077 0.097 0.112 0.118 0.112 0.097 0.077 0.056 0.038 0.025 0.021
[ 145/ 291]                 blk.15.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 146/ 291]              blk.15.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 147/ 291]               blk.15.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 148/ 291]                 blk.16.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.112 0.096 0.077 0.056 0.039 0.025 0.021
[ 149/ 291]                 blk.16.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.112 0.117 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 150/ 291]                 blk.16.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.076 0.096 0.112 0.118 0.112 0.096 0.076 0.056 0.039 0.025 0.021
[ 151/ 291]            blk.16.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.026 0.021
[ 152/ 291]               blk.16.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 153/ 291]               blk.16.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.112 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 154/ 291]                 blk.16.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 155/ 291]              blk.16.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 156/ 291]               blk.16.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 157/ 291]                 blk.17.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.056 0.039 0.025 0.021
[ 158/ 291]                 blk.17.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.096 0.112 0.117 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 159/ 291]                 blk.17.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.076 0.096 0.112 0.118 0.112 0.096 0.076 0.056 0.039 0.025 0.021
[ 160/ 291]            blk.17.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 161/ 291]               blk.17.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 162/ 291]               blk.17.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.097 0.111 0.117 0.111 0.097 0.077 0.056 0.039 0.025 0.021
[ 163/ 291]                 blk.17.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 164/ 291]              blk.17.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 165/ 291]               blk.17.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 166/ 291]                 blk.18.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.097 0.111 0.117 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[ 167/ 291]                 blk.18.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.112 0.117 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 168/ 291]                 blk.18.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.096 0.111 0.118 0.112 0.096 0.077 0.056 0.039 0.025 0.021
[ 169/ 291]            blk.18.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 170/ 291]               blk.18.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 171/ 291]               blk.18.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.097 0.111 0.117 0.111 0.097 0.077 0.056 0.039 0.025 0.021
[ 172/ 291]                 blk.18.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 173/ 291]              blk.18.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 174/ 291]               blk.18.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 175/ 291]                 blk.19.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.097 0.111 0.117 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[ 176/ 291]                 blk.19.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.096 0.112 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 177/ 291]                 blk.19.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.076 0.096 0.111 0.118 0.112 0.096 0.077 0.056 0.039 0.025 0.021
[ 178/ 291]            blk.19.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 179/ 291]               blk.19.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 180/ 291]               blk.19.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.117 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[ 181/ 291]                 blk.19.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 182/ 291]              blk.19.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 183/ 291]               blk.19.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 184/ 291]                 blk.20.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.111 0.117 0.111 0.097 0.077 0.056 0.039 0.025 0.021
[ 185/ 291]                 blk.20.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.112 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 186/ 291]                 blk.20.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.076 0.096 0.112 0.118 0.112 0.096 0.076 0.056 0.039 0.025 0.021
[ 187/ 291]            blk.20.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.097 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 188/ 291]               blk.20.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 189/ 291]               blk.20.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.117 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[ 190/ 291]                 blk.20.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 191/ 291]              blk.20.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 192/ 291]               blk.20.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 193/ 291]                 blk.21.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.112 0.118 0.112 0.096 0.077 0.056 0.039 0.025 0.021
[ 194/ 291]                 blk.21.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.096 0.112 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 195/ 291]                 blk.21.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.118 0.111 0.096 0.077 0.056 0.039 0.025 0.021
[ 196/ 291]            blk.21.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 197/ 291]               blk.21.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 198/ 291]               blk.21.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[ 199/ 291]                 blk.21.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 200/ 291]              blk.21.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 201/ 291]               blk.21.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 202/ 291]                 blk.22.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.097 0.112 0.118 0.111 0.096 0.077 0.056 0.039 0.025 0.021
[ 203/ 291]                 blk.22.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.077 0.097 0.112 0.118 0.112 0.097 0.076 0.056 0.039 0.025 0.021
[ 204/ 291]                 blk.22.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.118 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 205/ 291]            blk.22.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[ 206/ 291]               blk.22.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 207/ 291]               blk.22.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[ 208/ 291]                 blk.22.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 209/ 291]              blk.22.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 210/ 291]               blk.22.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 211/ 291]                 blk.23.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.111 0.118 0.112 0.096 0.077 0.056 0.039 0.025 0.021
[ 212/ 291]                 blk.23.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.096 0.112 0.118 0.112 0.096 0.077 0.056 0.039 0.025 0.021
[ 213/ 291]                 blk.23.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.118 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 214/ 291]            blk.23.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.026 0.021
[ 215/ 291]               blk.23.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 216/ 291]               blk.23.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 217/ 291]                 blk.23.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 218/ 291]              blk.23.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 219/ 291]               blk.23.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 220/ 291]                 blk.24.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.096 0.112 0.118 0.112 0.096 0.077 0.056 0.039 0.025 0.021
[ 221/ 291]                 blk.24.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.076 0.097 0.112 0.118 0.112 0.097 0.076 0.056 0.039 0.025 0.021
[ 222/ 291]                 blk.24.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.118 0.111 0.096 0.077 0.056 0.039 0.025 0.021
[ 223/ 291]            blk.24.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.097 0.077 0.057 0.039 0.026 0.021
[ 224/ 291]               blk.24.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 225/ 291]               blk.24.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 226/ 291]                 blk.24.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 227/ 291]              blk.24.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 228/ 291]               blk.24.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 229/ 291]                 blk.25.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.112 0.118 0.111 0.096 0.077 0.056 0.039 0.025 0.021
[ 230/ 291]                 blk.25.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.112 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 231/ 291]                 blk.25.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.056 0.039 0.025 0.021
[ 232/ 291]            blk.25.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 233/ 291]               blk.25.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 234/ 291]               blk.25.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 235/ 291]                 blk.25.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 236/ 291]              blk.25.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 237/ 291]               blk.25.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 238/ 291]                 blk.26.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.096 0.112 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 239/ 291]                 blk.26.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.077 0.097 0.112 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 240/ 291]                 blk.26.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.118 0.111 0.096 0.077 0.056 0.039 0.025 0.021
[ 241/ 291]            blk.26.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 242/ 291]               blk.26.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 243/ 291]               blk.26.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.097 0.111 0.117 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[ 244/ 291]                 blk.26.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 245/ 291]              blk.26.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 246/ 291]               blk.26.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 247/ 291]                 blk.27.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.096 0.112 0.118 0.112 0.096 0.077 0.056 0.039 0.025 0.021
[ 248/ 291]                 blk.27.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.112 0.117 0.111 0.096 0.077 0.056 0.039 0.025 0.021
[ 249/ 291]                 blk.27.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.056 0.039 0.025 0.021
[ 250/ 291]            blk.27.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 251/ 291]               blk.27.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 252/ 291]               blk.27.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.097 0.111 0.117 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[ 253/ 291]                 blk.27.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 254/ 291]              blk.27.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 255/ 291]               blk.27.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 256/ 291]                 blk.28.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.076 0.096 0.111 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 257/ 291]                 blk.28.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.112 0.118 0.111 0.096 0.077 0.056 0.039 0.025 0.021
[ 258/ 291]                 blk.28.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.118 0.111 0.096 0.077 0.056 0.039 0.025 0.021
[ 259/ 291]            blk.28.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 260/ 291]               blk.28.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 261/ 291]               blk.28.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.112 0.117 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 262/ 291]                 blk.28.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 263/ 291]              blk.28.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 264/ 291]               blk.28.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 265/ 291]                 blk.29.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.096 0.112 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 266/ 291]                 blk.29.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.097 0.112 0.118 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 267/ 291]                 blk.29.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.118 0.112 0.096 0.077 0.056 0.039 0.025 0.021
[ 268/ 291]            blk.29.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 269/ 291]               blk.29.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[ 270/ 291]               blk.29.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.076 0.097 0.112 0.118 0.112 0.097 0.077 0.056 0.038 0.025 0.021
[ 271/ 291]                 blk.29.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.117 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[ 272/ 291]              blk.29.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 273/ 291]               blk.29.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 274/ 291]                 blk.30.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.076 0.096 0.112 0.119 0.112 0.096 0.076 0.056 0.039 0.025 0.021
[ 275/ 291]                 blk.30.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.039 0.056 0.077 0.096 0.112 0.118 0.112 0.096 0.077 0.056 0.039 0.025 0.021
[ 276/ 291]                 blk.30.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.118 0.111 0.096 0.077 0.056 0.039 0.025 0.021
[ 277/ 291]            blk.30.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.037 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.116 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 278/ 291]               blk.30.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 279/ 291]               blk.30.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.015 0.024 0.038 0.055 0.076 0.097 0.114 0.120 0.114 0.097 0.076 0.055 0.038 0.024 0.020
[ 280/ 291]                 blk.30.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.096 0.111 0.117 0.111 0.096 0.077 0.057 0.039 0.025 0.021
[ 281/ 291]              blk.30.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 282/ 291]               blk.30.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 283/ 291]                 blk.31.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.076 0.097 0.112 0.119 0.112 0.097 0.077 0.056 0.038 0.025 0.021
[ 284/ 291]                 blk.31.attn_k.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.076 0.097 0.112 0.118 0.112 0.097 0.076 0.056 0.038 0.025 0.021
[ 285/ 291]                 blk.31.attn_v.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.015 0.025 0.038 0.056 0.076 0.097 0.112 0.119 0.112 0.096 0.076 0.056 0.039 0.025 0.021
[ 286/ 291]            blk.31.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    32.00 MiB ->     9.00 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.096 0.111 0.117 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[ 287/ 291]               blk.31.ffn_gate.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.057 0.077 0.097 0.111 0.117 0.111 0.097 0.077 0.057 0.039 0.025 0.021
[ 288/ 291]               blk.31.ffn_down.weight - [11008,  4096,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.015 0.023 0.036 0.054 0.075 0.098 0.116 0.124 0.116 0.098 0.075 0.054 0.036 0.023 0.019
[ 289/ 291]                 blk.31.ffn_up.weight - [ 4096, 11008,     1,     1], type =    f16, quantizing to q4_0 .. size =    86.00 MiB ->    24.19 MiB | hist: 0.036 0.016 0.025 0.039 0.056 0.077 0.097 0.112 0.117 0.112 0.097 0.077 0.056 0.039 0.025 0.021
[ 290/ 291]              blk.31.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
[ 291/ 291]               blk.31.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
llama_model_quantize_internal: model size  = 12853.02 MB
llama_model_quantize_internal: quant size  =  3647.87 MB
llama_model_quantize_internal: hist: 0.036 0.015 0.025 0.039 0.056 0.076 0.096 0.112 0.118 0.112 0.096 0.077 0.056 0.039 0.025 0.021

main: quantize time =  4430.95 ms
main:    total time =  4430.95 ms

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

执行命令(ggml-model-f16.gguf)

(Llama-7b-Chinese) :~/newmodels/llama.cpp$ ./main -m ./models/Llama-7b-Chinese/ggml-model-f16.gguf -n 512 --n-gpu-layers 100 --prompt "我给大家介绍一下中国"
Log start
main: build = 2038 (7013716)
main: built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
main: seed  = 1713953724
ggml_init_cublas: GGML_CUDA_FORCE_MMQ:   no
ggml_init_cublas: CUDA_USE_TENSOR_CORES: yes
ggml_init_cublas: found 1 CUDA devices:
  Device 0: NVIDIA GeForce RTX 3080 Ti Laptop GPU, compute capability 8.6, VMM: yes
llama_model_loader: loaded meta data with 20 key-value pairs and 291 tensors from ./models/Llama-7b-Chinese/ggml-model-f16.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.name str              = models
llama_model_loader: - kv   2:                       llama.context_length u32              = 2048
llama_model_loader: - kv   3:                     llama.embedding_length u32              = 4096
llama_model_loader: - kv   4:                          llama.block_count u32              = 32
llama_model_loader: - kv   5:                  llama.feed_forward_length u32              = 11008
llama_model_loader: - kv   6:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv   7:                 llama.attention.head_count u32              = 32
llama_model_loader: - kv   8:              llama.attention.head_count_kv u32              = 32
llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  10:                          general.file_type u32              = 1
llama_model_loader: - kv  11:                       tokenizer.ggml.model str              = llama
llama_model_loader: - kv  12:                      tokenizer.ggml.tokens arr[str,32000]   = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv  13:                      tokenizer.ggml.scores arr[f32,32000]   = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv  14:                  tokenizer.ggml.token_type arr[i32,32000]   = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv  15:                tokenizer.ggml.bos_token_id u32              = 1
llama_model_loader: - kv  16:                tokenizer.ggml.eos_token_id u32              = 2
llama_model_loader: - kv  17:            tokenizer.ggml.padding_token_id u32              = 0
llama_model_loader: - kv  18:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  19:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - type  f32:   65 tensors
llama_model_loader: - type  f16:  226 tensors
llm_load_vocab: special tokens definition check successful ( 259/32000 ).
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = SPM
llm_load_print_meta: n_vocab          = 32000
llm_load_print_meta: n_merges         = 0
llm_load_print_meta: n_ctx_train      = 2048
llm_load_print_meta: n_embd           = 4096
llm_load_print_meta: n_head           = 32
llm_load_print_meta: n_head_kv        = 32
llm_load_print_meta: n_layer          = 32
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 1
llm_load_print_meta: n_embd_k_gqa     = 4096
llm_load_print_meta: n_embd_v_gqa     = 4096
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: n_ff             = 11008
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx  = 2048
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: model type       = 7B
llm_load_print_meta: model ftype      = F16
llm_load_print_meta: model params     = 6.74 B
llm_load_print_meta: model size       = 12.55 GiB (16.00 BPW)
llm_load_print_meta: general.name     = models
llm_load_print_meta: BOS token        = 1 '<s>'
llm_load_print_meta: EOS token        = 2 '</s>'
llm_load_print_meta: UNK token        = 0 '<unk>'
llm_load_print_meta: PAD token        = 0 '<unk>'
llm_load_print_meta: LF token         = 13 '<0x0A>'
llm_load_tensors: ggml ctx size =    0.22 MiB
llm_load_tensors: offloading 32 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 33/33 layers to GPU
llm_load_tensors:        CPU buffer size =   250.00 MiB
llm_load_tensors:      CUDA0 buffer size = 12603.02 MiB
...................................................................................................
llama_new_context_with_model: n_ctx      = 512
llama_new_context_with_model: freq_base  = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init:      CUDA0 KV buffer size =   256.00 MiB
llama_new_context_with_model: KV self size  =  256.00 MiB, K (f16):  128.00 MiB, V (f16):  128.00 MiB
llama_new_context_with_model:  CUDA_Host input buffer size   =     9.01 MiB
llama_new_context_with_model:      CUDA0 compute buffer size =    77.55 MiB
llama_new_context_with_model:  CUDA_Host compute buffer size =     8.80 MiB
llama_new_context_with_model: graph splits (measure): 3

system_info: n_threads = 10 / 20 | AVX = 1 | AVX_VNNI = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 |
sampling:
        repeat_last_n = 64, repeat_penalty = 1.100, frequency_penalty = 0.000, presence_penalty = 0.000
        top_k = 40, tfs_z = 1.000, top_p = 0.950, min_p = 0.050, typical_p = 1.000, temp = 0.800
        mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
sampling order:
CFG -> Penalties -> top_k -> tfs_z -> typical_p -> top_p -> min_p -> temp
generate: n_ctx = 512, n_batch = 512, n_predict = 512, n_keep = 0


  我给大家介绍一下中国的奢侈品,让大家更加了解中国的文化吧。
  - 静电洗头器(一种高科技尽管相对较新的设备)
  - 自动牌纸机(手抓是最古老的方式)
  - 梦译术士(即将变成一种科技,但目前还有很多人在这上市风险高)
  - 纸牌(现在的童子军也不是只用石头了,因为我们并不是满洲里的一个文化,所以学习方式和思想都不同)
  - 钢琴(中国人最喜欢弹箱子,所以我们在家中经常会有这种东西,当然如果你去中国见过老人仍是使用打铃招待的时候,那不可能是钢琴)
  - 牛皮(一些高档的餐馆会给客人赠送牛皮来进行卫生保健,或者说我们现在还是喜欢看假面貌而不是真面目)
  - 手表(这里要特意注明:中国人喜欢装饰自己的手上的东西,所以我们绝对不会只买一只手表)
  - 美甲、化妆品、肤脓(中国古代人的时候拿木头去除蛀牙或者切开颊口来休息,如果你在北京一旁看到了老人们都是这样的)
  - 手机、电视(中国有些地
llama_print_timings:        load time =    2104.31 ms
llama_print_timings:      sample time =      88.61 ms /   512 runs   (    0.17 ms per token,  5777.93 tokens per second)
llama_print_timings: prompt eval time =      44.33 ms /    14 tokens (    3.17 ms per token,   315.80 tokens per second)
llama_print_timings:        eval time =   22674.35 ms /   511 runs   (   44.37 ms per token,    22.54 tokens per second)
llama_print_timings:       total time =   22960.52 ms /   525 tokens
Log end
(Llama-7b-Chinese) :~/newmodels/llama.cpp$

nvidia-smi命令实时查看指定GPU使用情况


watch -n 1 nvidia-smi  # 1代表每隔1秒刷新一次GPU使用情况

NVIDIA-SMI 550.76.01   #GRID版本
Driver Version: 552.22  #驱动版本
CUDA Version: 12.4   #CUDA最高支持的版本
GPU:本机中的GPU编号,从0开始,本机只有一块GPU
Fan:风扇转速(0%-100%),N/A表示没有风扇
Name:GPU名字/类型,NVIDIA GeForce RTX 3080TI
Temp:GPU温度(GPU温度过高会导致GPU频率下降) 63C
Perf:性能状态,从P0(最大性能)到P12(最小性能),显示P0,最大性能
Pwr:Usager/Cap:GPU功耗,Usage表示用了多少,Cap表示总共多少 ,  79W /   80W
Persistence-M:持续模式状态,持续模式耗能大,为On
Bus-Id:GPU总线  00000000:01:00.0 
Disp.A:Display Active,表示GPU是否初始化 Off
Memory-Usage:显存使用率    13140MiB /  16384MiB,表示已接近占满
Volatile GPU-UTil:GPU使用率,92%
Uncorr. ECC:是否开启错误检查和纠错技术,0/DISABLED,1/ENABLED,为N/A
Compute M:计算模式,0/DEFAULT,1/EXCLUSIVE_PROCESS,2/PROHIBITED,为Default
Processes:显示每个进程占用的显存使用率、进程号、占用的哪个GPU,/python3.10
GPU Memory Usage   #该进程占用的显存。
Every 1.0s: nvidia-smi                                                                                       

Wed Apr 24 20:14:20 2024
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 550.76.01              Driver Version: 552.22         CUDA Version: 12.4     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce RTX 3080 ...    On  |   00000000:01:00.0 Off |                  N/A |
| N/A   63C    P3             79W /   80W |   13140MiB /  16384MiB |     92%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+

+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI        PID   Type   Process name                              GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
|    0   N/A  N/A    140468      C   /main                                       N/A      |
+-----------------------------------------------------------------------------------------+

执行命令(ggml-model-q4_0.gguf)

(Llama-7b-Chinese) :~/newmodels/llama.cpp$ ./main -m ./models/Llama-7b-Chinese/ggml-model-q4_0.gguf -n 512 --prompt "我给大家介绍一下中国"
Log start
main: build = 2038 (7013716)
main: built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
main: seed  = 1713953984
ggml_init_cublas: GGML_CUDA_FORCE_MMQ:   no
ggml_init_cublas: CUDA_USE_TENSOR_CORES: yes
ggml_init_cublas: found 1 CUDA devices:
  Device 0: NVIDIA GeForce RTX 3080 Ti Laptop GPU, compute capability 8.6, VMM: yes
llama_model_loader: loaded meta data with 21 key-value pairs and 291 tensors from ./models/Llama-7b-Chinese/ggml-model-q4_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.name str              = models
llama_model_loader: - kv   2:                       llama.context_length u32              = 2048
llama_model_loader: - kv   3:                     llama.embedding_length u32              = 4096
llama_model_loader: - kv   4:                          llama.block_count u32              = 32
llama_model_loader: - kv   5:                  llama.feed_forward_length u32              = 11008
llama_model_loader: - kv   6:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv   7:                 llama.attention.head_count u32              = 32
llama_model_loader: - kv   8:              llama.attention.head_count_kv u32              = 32
llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  10:                          general.file_type u32              = 2
llama_model_loader: - kv  11:                       tokenizer.ggml.model str              = llama
llama_model_loader: - kv  12:                      tokenizer.ggml.tokens arr[str,32000]   = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv  13:                      tokenizer.ggml.scores arr[f32,32000]   = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv  14:                  tokenizer.ggml.token_type arr[i32,32000]   = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv  15:                tokenizer.ggml.bos_token_id u32              = 1
llama_model_loader: - kv  16:                tokenizer.ggml.eos_token_id u32              = 2
llama_model_loader: - kv  17:            tokenizer.ggml.padding_token_id u32              = 0
llama_model_loader: - kv  18:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  19:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  20:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:   65 tensors
llama_model_loader: - type q4_0:  225 tensors
llama_model_loader: - type q6_K:    1 tensors
llm_load_vocab: special tokens definition check successful ( 259/32000 ).
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = SPM
llm_load_print_meta: n_vocab          = 32000
llm_load_print_meta: n_merges         = 0
llm_load_print_meta: n_ctx_train      = 2048
llm_load_print_meta: n_embd           = 4096
llm_load_print_meta: n_head           = 32
llm_load_print_meta: n_head_kv        = 32
llm_load_print_meta: n_layer          = 32
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 1
llm_load_print_meta: n_embd_k_gqa     = 4096
llm_load_print_meta: n_embd_v_gqa     = 4096
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: n_ff             = 11008
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx  = 2048
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: model type       = 7B
llm_load_print_meta: model ftype      = Q4_0
llm_load_print_meta: model params     = 6.74 B
llm_load_print_meta: model size       = 3.56 GiB (4.54 BPW)
llm_load_print_meta: general.name     = models
llm_load_print_meta: BOS token        = 1 '<s>'
llm_load_print_meta: EOS token        = 2 '</s>'
llm_load_print_meta: UNK token        = 0 '<unk>'
llm_load_print_meta: PAD token        = 0 '<unk>'
llm_load_print_meta: LF token         = 13 '<0x0A>'
llm_load_tensors: ggml ctx size =    0.11 MiB
llm_load_tensors: offloading 0 repeating layers to GPU
llm_load_tensors: offloaded 0/33 layers to GPU
llm_load_tensors:        CPU buffer size =  3647.87 MiB
..................................................................................................
llama_new_context_with_model: n_ctx      = 512
llama_new_context_with_model: freq_base  = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init:  CUDA_Host KV buffer size =   256.00 MiB
llama_new_context_with_model: KV self size  =  256.00 MiB, K (f16):  128.00 MiB, V (f16):  128.00 MiB
llama_new_context_with_model:  CUDA_Host input buffer size   =     9.01 MiB
llama_new_context_with_model:  CUDA_Host compute buffer size =    77.55 MiB
llama_new_context_with_model: graph splits (measure): 1

system_info: n_threads = 10 / 20 | AVX = 1 | AVX_VNNI = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 |
sampling:
        repeat_last_n = 64, repeat_penalty = 1.100, frequency_penalty = 0.000, presence_penalty = 0.000
        top_k = 40, tfs_z = 1.000, top_p = 0.950, min_p = 0.050, typical_p = 1.000, temp = 0.800
        mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
sampling order:
CFG -> Penalties -> top_k -> tfs_z -> typical_p -> top_p -> min_p -> temp
generate: n_ctx = 512, n_batch = 512, n_predict = 512, n_keep = 0


  我给大家介绍一下中国国内的许多电商平台,可是很多人都不知道什么时候会出现新的电商平台,因此为了方便大家使用,
 Hinweis:虽然这些电商平台大部分都是在中国开始推出,但它们还是可以到达全球的。

### 1. 京东JD.com

![](https://img2022.cnblogs.com/blog/576439/202208/202208_79a0cfbf-4dfb-4c2d-aa12-eecfcd6fd764.jpg)

京东JD.com是中国的最大电商平台,在中国开始推出的时候就已经有着相当较高的市场份领,为了保持这一状态,京东JD.com也不断投入资金去吸引更多的用户进来,现在他们已经成功地将自己从电子商务平台发展到了中国第一大的全线物流服务商。
京东JD.com也有相当较高的国际客户份领,可是由于他们的官网还没有支持外语版本,所以只能通过代理人来进行投放,这样就会导致外国用户很难了进行交易。

### 2. 微信小程序

![](https://img2022.cnblogs.com/blog/576439/202208/202208_d1aafbc6-f6e3-41db-ba57-18cf1decdffb.jpg)

微信小程序也是在中国最为人所知的一款
llama_print_timings:        load time =     359.18 ms
llama_print_timings:      sample time =     125.12 ms /   512 runs   (    0.24 ms per token,  4091.91 tokens per second)
llama_print_timings: prompt eval time =    1128.84 ms /    14 tokens (   80.63 ms per token,    12.40 tokens per second)
llama_print_timings:        eval time =   51984.61 ms /   511 runs   (  101.73 ms per token,     9.83 tokens per second)
llama_print_timings:       total time =   53440.98 ms /   525 tokens
Log end

nvidia-smi命令实时查看指定GPU使用情况


Every 1.0s: nvidia-smi                                                                                                  : Wed Apr 24 18:19:59 2024

Wed Apr 24 18:19:59 2024
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 550.76.01              Driver Version: 552.22         CUDA Version: 12.4     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce RTX 3080 ...    On  |   00000000:01:00.0 Off |                  N/A |
| N/A   61C    P8             13W /   80W |     198MiB /  16384MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+

+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI        PID   Type   Process name                              GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
|    0   N/A  N/A    160829      C   /main                                       N/A      |
+-----------------------------------------------------------------------------------------+


(Llama-7b-Chinese) :~/newmodels/llama.cpp$ ./main -m ./models/Llama-7b-Chinese/ggml-model-q4_0.gguf -n 512 --n-gpu-layers 100 --prompt "我给 大家介绍一下中国"
Log start
main: build = 2038 (7013716)
main: built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
main: seed  = 1713954147
ggml_init_cublas: GGML_CUDA_FORCE_MMQ:   no
ggml_init_cublas: CUDA_USE_TENSOR_CORES: yes
ggml_init_cublas: found 1 CUDA devices:
  Device 0: NVIDIA GeForce RTX 3080 Ti Laptop GPU, compute capability 8.6, VMM: yes
llama_model_loader: loaded meta data with 21 key-value pairs and 291 tensors from ./models/Llama-7b-Chinese/ggml-model-q4_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.name str              = models
llama_model_loader: - kv   2:                       llama.context_length u32              = 2048
llama_model_loader: - kv   3:                     llama.embedding_length u32              = 4096
llama_model_loader: - kv   4:                          llama.block_count u32              = 32
llama_model_loader: - kv   5:                  llama.feed_forward_length u32              = 11008
llama_model_loader: - kv   6:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv   7:                 llama.attention.head_count u32              = 32
llama_model_loader: - kv   8:              llama.attention.head_count_kv u32              = 32
llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  10:                          general.file_type u32              = 2
llama_model_loader: - kv  11:                       tokenizer.ggml.model str              = llama
llama_model_loader: - kv  12:                      tokenizer.ggml.tokens arr[str,32000]   = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv  13:                      tokenizer.ggml.scores arr[f32,32000]   = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv  14:                  tokenizer.ggml.token_type arr[i32,32000]   = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv  15:                tokenizer.ggml.bos_token_id u32              = 1
llama_model_loader: - kv  16:                tokenizer.ggml.eos_token_id u32              = 2
llama_model_loader: - kv  17:            tokenizer.ggml.padding_token_id u32              = 0
llama_model_loader: - kv  18:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  19:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  20:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:   65 tensors
llama_model_loader: - type q4_0:  225 tensors
llama_model_loader: - type q6_K:    1 tensors
llm_load_vocab: special tokens definition check successful ( 259/32000 ).
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = SPM
llm_load_print_meta: n_vocab          = 32000
llm_load_print_meta: n_merges         = 0
llm_load_print_meta: n_ctx_train      = 2048
llm_load_print_meta: n_embd           = 4096
llm_load_print_meta: n_head           = 32
llm_load_print_meta: n_head_kv        = 32
llm_load_print_meta: n_layer          = 32
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 1
llm_load_print_meta: n_embd_k_gqa     = 4096
llm_load_print_meta: n_embd_v_gqa     = 4096
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: n_ff             = 11008
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx  = 2048
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: model type       = 7B
llm_load_print_meta: model ftype      = Q4_0
llm_load_print_meta: model params     = 6.74 B
llm_load_print_meta: model size       = 3.56 GiB (4.54 BPW)
llm_load_print_meta: general.name     = models
llm_load_print_meta: BOS token        = 1 '<s>'
llm_load_print_meta: EOS token        = 2 '</s>'
llm_load_print_meta: UNK token        = 0 '<unk>'
llm_load_print_meta: PAD token        = 0 '<unk>'
llm_load_print_meta: LF token         = 13 '<0x0A>'
llm_load_tensors: ggml ctx size =    0.22 MiB
llm_load_tensors: offloading 32 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 33/33 layers to GPU
llm_load_tensors:        CPU buffer size =    70.31 MiB
llm_load_tensors:      CUDA0 buffer size =  3577.56 MiB
..................................................................................................
llama_new_context_with_model: n_ctx      = 512
llama_new_context_with_model: freq_base  = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init:      CUDA0 KV buffer size =   256.00 MiB
llama_new_context_with_model: KV self size  =  256.00 MiB, K (f16):  128.00 MiB, V (f16):  128.00 MiB
llama_new_context_with_model:  CUDA_Host input buffer size   =     9.01 MiB
llama_new_context_with_model:      CUDA0 compute buffer size =    77.55 MiB
llama_new_context_with_model:  CUDA_Host compute buffer size =     8.80 MiB
llama_new_context_with_model: graph splits (measure): 3

system_info: n_threads = 10 / 20 | AVX = 1 | AVX_VNNI = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 |
sampling:
        repeat_last_n = 64, repeat_penalty = 1.100, frequency_penalty = 0.000, presence_penalty = 0.000
        top_k = 40, tfs_z = 1.000, top_p = 0.950, min_p = 0.050, typical_p = 1.000, temp = 0.800
        mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
sampling order:
CFG -> Penalties -> top_k -> tfs_z -> typical_p -> top_p -> min_p -> temp
generate: n_ctx = 512, n_batch = 512, n_predict = 512, n_keep = 0


  我给大家介绍一下中国的很多文化。 everybody knows about the chinese culture, but only a few people know about our traditional folk custom.

    Today i want to tell you about one of China's traditional folk custom and its significance.

### 问题:
我今天要讲一个很多人都不知道的中国传统文化,该什么?这个文化是什么意思?

    Today i want to tell you about one of China's traditional folk custom and its significance.

### 解题:
我们家族的很多年代以来,每逢某一月中有些天气特别质疑,家人都会举行一种活动,就是在桌子上放上大量的白发和胎光。我们称之为“寻骷髅”。

这个儿童时代的我对这件事情并不了解,后来才知道这是一种传统文化,由此揭开了一层中国古老的神话故事幽静的面纱。

在现代社会,人们如何在生产时间下保持职业操守?还有人如何在家庭裡保持教育作用和推动儿童成长?

这是我想说的那个传统文化。

### 解题:
我们家族的很多年代以来,每逢某一月中有些天气特别质疑,家人都会举行一种活动,就是在桌子上放上大量的白发和胎光。我们称之为“寻骷髅”。

这个儿童时代的我对这件事情并不
llama_print_timings:        load time =     638.00 ms
llama_print_timings:      sample time =      88.82 ms /   512 runs   (    0.17 ms per token,  5764.60 tokens per second)
llama_print_timings: prompt eval time =      59.77 ms /    14 tokens (    4.27 ms per token,   234.23 tokens per second)
llama_print_timings:        eval time =    8798.01 ms /   511 runs   (   17.22 ms per token,    58.08 tokens per second)
llama_print_timings:       total time =    9093.05 ms /   525 tokens
Log end

nvidia-smi命令实时查看指定GPU使用情况


Wed Apr 24 18:21:54 2024
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 550.76.01              Driver Version: 552.22         CUDA Version: 12.4     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce RTX 3080 ...    On  |   00000000:01:00.0 Off |                  N/A |
| N/A   68C    P0             78W /   80W |    4114MiB /  16384MiB |     77%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+

+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI        PID   Type   Process name                              GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
|    0   N/A  N/A    166223      C   /main                                       N/A      |
+-----------------------------------------------------------------------------------------+





eval time = 8798.01 ms / 511 runs ( 17.22 ms per token, 58.08 tokens per second)
llama_print_timings: total time = 9093.05 ms / 525 tokens
Log end


nvidia-smi命令实时查看指定GPU使用情况

Wed Apr 24 18:21:54 2024
±----------------------------------------------------------------------------------------+
| NVIDIA-SMI 550.76.01 Driver Version: 552.22 CUDA Version: 12.4 |
|-----------------------------------------±-----------------------±---------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=++======|
| 0 NVIDIA GeForce RTX 3080 … On | 00000000:01:00.0 Off | N/A |
| N/A 68C P0 78W / 80W | 4114MiB / 16384MiB | 77% Default |
| | | N/A |
±----------------------------------------±-----------------------±---------------------+

±----------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=========================================================================================|
| 0 N/A N/A 166223 C /main N/A |
±----------------------------------------------------------------------------------------+


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1630105.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【MySQL精炼宝库】数据库的约束 | 表的设计 | 聚合查询 | 联合查询

目录 一、数据库约束 1.1 约束类型&#xff1a; 1.2 案例演示&#xff1a; 二、表的设计 2.1 一对一: 2.2 一对多: 2.3 多对多: 2.4 内容小结&#xff1a; 三、新增 四、查询 4.1 聚合查询&#xff1a; 4.1.1 聚合函数&#xff1a; 4.1.2 GROUP BY子句&#xff1a…

nginx配置ip_hash负载均衡策略

一、nginx配置ip_hash负载均衡策略 nginx默认的负载均衡策略为轮询&#xff0c;某些场景需要使用ip_hash负载策略&#xff0c;即&#xff1a;同一个ip地址&#xff0c;永远访问nginx后面同一台tomcat。配置示例如下&#xff0c;主要是设置ip_hash&#xff1a; upstream www.ab…

B站美化插件,支持自定义,太酷辣~

大公司的软件和网站通常具有优雅的默认界面设计。 以国内二次元聚集地B站为例&#xff0c;可以说它的UI设计非常吸引人。与其他视频网站繁复的设计相比&#xff0c;B站的界面设计可以说是遥遥领先 然而&#xff0c;总有些人对默认的用户界面感到不满意&#xff0c;他们渴望尝试…

Arm功耗管理精讲与实战

安全之安全(security)博客目录导读 思考 1、为什么要功耗管理&#xff1f;SOC架构中功耗管理示例&#xff1f;功耗管理挑战&#xff1f; 2、从单核->多核->big.LITTLE->DynamIQ&#xff0c;功耗管理架构演进? 3、什么是电压域&#xff1f;什么是电源域&#xff1f…

C#上位机与S7-200Smart通信注意事项

S7-200SMART连接 问题描述 我们使用C#开发上位机和S7-200Smart系列PLC交互数据时&#xff0c;大多会用到Sharp7、Snap7之类的通信类库。有些通信类库默认的使用的是PG连接资源&#xff0c;而对于S7-200Smart来说&#xff0c;它的PG连接资源只有1个。 官网200smart提到的连接数…

smart200 做client,modbus_tcp读取modbus_slave

这里还隐藏一个重要的设置&#xff0c;就是站地址。这个在库函数里。不同plc位置会不一样&#xff0c;我这里是vb1651对应modbus的地址为255&#xff0c;这个值我们可以自己更改&#xff0c;范围为1-247. 打开modbus_slave 软件&#xff0c;

MySQL recursive 递归

MySQL 从最内的select开始执行&#xff0c;但是同一个select clause可以在查询的结果上继续查询。 SELECT menu_id,parent_id,(SELECT m1.parent_id FROM sys_menu AS m1 WHERE m1.menu_idm.parent_id) FROM sys_menu AS m WHERE m.menu_id 89 方案1.通过recursive递归 使用…

Matlab 使用subplot绘制多个子图,一元拟合

实现效果&#xff1a; clc; clear;filename sri.xlsx; % 确认文件路径data readtable(filename); datavalue data{:,2:end}; datavalue datavalue;fig figure(Position, [0, 0, 1500, 900]); indexString ["(a)","(b)","(c)","(d)&qu…

科技感十足特效源码

源码介绍 科技感十足特效源码&#xff0c;源码由HTMLCSSJS组成&#xff0c;记事本打开源码文件可以进行内容文字之类的修改&#xff0c;双击html文件可以本地运行效果&#xff0c;也可以上传到服务器里面 源码截图 源码下载 科技感十足特效源码

十大常见B端管理系统,经常用,未必能叫上名字。

常见的B端管理系统有以下几种&#xff1a; 客户关系管理系统&#xff08;CRM&#xff09;&#xff1a; CRM系统帮助企业管理与客户相关的信息&#xff0c;包括客户联系信息、销售机会、市场活动等。它提供了客户数据整合、销售流程管理、客户沟通跟进等功能&#xff0c;帮助企…

【人工智能基础】逻辑回归实验分析

实验环境&#xff1a;anaconda、jutpyter Notebook 实验使用的库&#xff1a;numpy、matplotlib 一、逻辑回归 逻辑回归是一个常用于二分类的分类模型。本质是&#xff1a;假设数据服从这个分布&#xff0c;然后使用极大似然估计做参数的估计。 二、实验准备 引入库、预设值…

【三】Spring Cloud Ribbon 实战

Spring Cloud Ribbon 实战 概述 一直在构思写一个spring cloud系列文章&#xff0c;一方面是对自己实践经验进行一次完整的梳理&#xff0c;另一方面也是希望能够给初学者一些借鉴&#xff0c;让初学者少走些弯路&#xff0c;看到本系列博客就能够很好的把微服务系列组件用好。…

字符函数·字符串函数·C语言内存函数—使用和模拟实现

字符函数字符串函数C语言内存函数 1.字符分类函数2. 字符转换函数3. strlen的使用和模拟实现4.strcpy的使用和模拟实现5.strcat的使用和模拟实现6.strcmp的使用和模拟实现7.strncpy的模拟和实现8.strncat的实现和模拟实现9.strncmp函数使用10.strstr的使用和模拟实现11.strtok函…

【python技术】akshare爬取A股最新业绩预告保存进excel的简单示例

最近A股上市公司陆续在出年报和一季度报了&#xff0c; 心里寻思着要不用python把这些数据爬取下来分析下&#xff0c;说干就干。 数据来源网站东方财富&#xff1a;https://data.eastmoney.com/bbsj/ 我这个人比较懒&#xff0c;直接用akshare封装的方法来搞定 之前用aksha…

嵌入式单总线详解

单总线介绍 单总线&#xff0c;就像是电子世界里的“超级水管工”&#xff0c;它以一根线的简洁&#xff0c;完成了数据传输、设备供电乃至设备识别的多重任务&#xff0c;展现了极简主义的智慧与效率。想象一下&#xff0c;你住在一个高科技社区&#xff0c;所有的家电——冰…

【while循环】

目录 什么是循环 while语句的执行过程 编程求1*2*3*...*n 所有不超过1000的数中含有数字3的自然数 求数 求数II 编程求1平方2平方...n平方 什么是循环 循环就是重复做同样的事儿使用while语句循环输出1到100 int i 1; while( i < 100 ){cout <<…

C++各种排序算法详解及示例源码

1、排序算法 排序算法&#xff08;sorting algorithm&#xff09;用于对一组数据按照特定顺序进行排列。排序算法有着广泛的应用&#xff0c;因为有序数据通常能够被更高效地查找、分析和处理。 1.1 评价维度 运行效率&#xff1a;我们期望排序算法的时间复杂度尽量低&#xf…

opencv_17_翻转与旋转

一、图像翻转 1&#xff09;void flip_test(Mat& image); 2&#xff09;void ColorInvert::flip_test(Mat& image) { Mat dst; //flip(image, dst, 0); //上下翻转 flip(image, dst, 1); //左右翻转 // flip(image, dst, -1); //180度翻转 imsho…

软件测试笔记_习题_面经

软件测试------按测试阶段划分有几个阶段? 单元测试、集成测试、系统测试、验收测试 软件测试------按是否查看源代码划分有几种测试方法? 黑盒、白盒、灰盒 软件测试------按是否运行划分有几种测试方法? 静态测试、动态测试 软件测试------按是否自动化划分有几种测试方…

chrome 查看版本安装路径、cmd命令行启动浏览器

chrome 查看版本安装路径 浏览器输入 chrome://version/cmd命令行启动浏览器 "C:\Program Files\Google\Chrome\Application\chrome.exe" www.baidu.com