paddle ocr模型量化实践

news2024/12/23 13:44:17

参考:https://github.com/PaddlePaddle/PaddleOCR/blob/main/deploy/slim/quantization/README.md

https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.7.1/doc/doc_ch/FAQ.md

蒸馏 剪枝 量化

参考:https://blog.csdn.net/mddCSDN/article/details/134644869
https://blog.csdn.net/mddCSDN/article/details/134644869
https://github.com/PaddlePaddle/PaddleOCR

在这里插入图片描述

CML知识蒸馏策略
知识蒸馏的方法在部署中非常常用,通过使用大模型指导小模型学习的方式,在通常情况下可以使得小模型 在预测耗时不变的情况下,精度得到进一步的提升,从而进一步提升实际部署的体验。 标准的蒸馏方法是通过一个大模型作为 Teacher 模型来指导 Student 模型提升效果,而后来又发展出 DML 互 学习蒸馏方法,即通过两个结构相同的模型互相学习,相比于前者,DML 脱离了对大的 Teacher 模型的依赖, 蒸馏训练的流程更加简单,模型产出效率也要更高一些。 PP-OCRv2 文字检测模型中使用的是三个模型之间的 CML (Collaborative Mutual Learning) 协同互蒸馏方法,既 包含两个相同结构的 Student 模型之间互学习,同时还引入了较大模型结构的 Teacher 模型。
在这里插入图片描述

量化

复杂的模型有利于提高模型的性能,但也导致模型中存在一定冗余,模型量化将全精度缩减到定点数减少这种冗余,达到减少模型计算复杂度,提高模型推理性能的目的。 模型量化可以在基本不损失模型的精度的情况下,将FP32精度的模型参数转换为Int8精度,减小模型参数大小并加速计算,使用量化后的模型在移动端等部署时更具备速度优势。

模型量化主要包括五个步骤:

安装 https://github.com/PaddlePaddle/PaddleSlim

pip3 install paddleslim==2.3.2

1.准备训练好的模型
2.量化训练
3.导出量化推理模型
4.量化模型预测部署

  1. 模型列表:https://github.com/PaddlePaddle/PaddleOCR/blob/main/doc/doc_ch/models_list.md
    可以下载预训练模型
  python deploy/slim/quantization/quant.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml -o Global.pretrained_model='./ch_PP-OCRv3_det_distill_train/best_accuracy'   Global.save_model_dir=./output/quant_model_distill_det/

报错:

Traceback (most recent call last):
  File "/data1/Projects/OCR_Online/PaddleOCR/deploy/slim/quantization/quant.py", line 42, in <module>
    from paddleslim.dygraph.quant import QAT
  File "/data1/miniconda/envs/OCR/lib/python3.9/site-packages/paddleslim/__init__.py", line 20, in <module>
    from paddleslim import quant
  File "/data1/miniconda/envs/OCR/lib/python3.9/site-packages/paddleslim/quant/__init__.py", line 42, in <module>
    from . import nn
  File "/data1/miniconda/envs/OCR/lib/python3.9/site-packages/paddleslim/quant/nn/__init__.py", line 15, in <module>
    from .conv_bn import QuantedConv2DBatchNorm, Conv2DBatchNormWrapper
  File "/data1/miniconda/envs/OCR/lib/python3.9/site-packages/paddleslim/quant/nn/conv_bn.py", line 21, in <module>
    from paddle.nn.quant.format import ConvertibleQuantedLayer
ModuleNotFoundError: No module named 'paddle.nn.quant.format'

2.4.2版本中还未支持paddle.nn.quant.format,建议升级到2.5或者 develop

2.命令:
识别模型:

python deploy/slim/quantization/quant.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml -o Global.pretrained_model='./ch_PP-OCRv3_det_distill_train/best_accuracy'   Global.save_model_dir=./output/quant_model_distill_det/

FileNotFoundError: [Errno 2] No such file or directory: ‘./train_data/icdar2015/text_localization/train_icdar2015_label.txt’
下载数据集:https://gitee.com/paddlepaddle/PaddleOCR/blob/release/2.4/doc/doc_ch/detection.md

在这里插入图片描述
检测模型量化类似:

 python deploy/slim/quantization/quant.py -c configs/rec/PP-OCRv4/ch_PP-OCRv4_rec.yml -o Global.pretrained_model='./ch_PP-OCRv3_rec_slim_train/best_accuracy'   Global.save_model_dir=./output/quant_model_distill_rec/

3.导出模型

在得到量化训练保存的模型后,我们可以将其导出为inference_model,用于预测部署:

python deploy/slim/quantization/export_model.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml -o Global.checkpoints=output/quant_model_distill/best_accuracy Global.save_inference_dir=./output/quant_inference_model

为了方便,只训练了10轮
在这里插入图片描述4.预测数据:

下载量化好的模型

python tools/infer/predict_system.py  --image_dir="./doc/demo/build.png" --rec_model_dir="/root/.paddleocr/whl/rec/ch/ch_PP-OCRv3_rec_infer" --det_model_dir="output/ch_PP-OCRv3_det_slim_infer"

使用自己的模型

python tools/infer/predict_system.py  --image_dir="./doc/demo/build.png" --rec_model_dir="./output/quant_inference_model/Teacher" --det_model_dir="/root/.paddleocr/whl/det/ch/ch_PP-OCRv3_det_infer"

报错:

ValueError: (InvalidArgument) input and filter data type should be consistent, but received input data type is float and filter type is int8_t
  [Hint: Expected input_data_type == filter_data_type, but received input_data_type:5 != filter_data_type:21.] (at ../paddle/fluid/operators/generator/get_expected_kernel_func.cc:431)
  [operator < conv2d > error]

模型精度是float32,大小是int8,不匹配。

转换为移动端nb类型

paddle_lite_opt  --model_dir="./output/quant_model_distill"  --optimize_out= "./output/quant_model_distill_opt" --enable_fp16= true   --quant_model= true   --quant_type= QUANT_INT8 

https://www.paddlepaddle.org.cn/lite/develop/api_reference/python_api_doc.html
在这里插入图片描述

from PIL import Image
from paddlelite.lite import *
import numpy as np
# 1. Set config information
config = MobileConfig()
# 2. Set the path to the model generated by opt tools
config.set_model_from_file("./output/quant_model_distill_opt.nb")
# 3. Create predictor by config
predictor = create_paddle_predictor(config)
input_tensor = predictor.get_input(0)
image = Image.open('./doc/imgs/11.jpg')
resized_image = image.resize((224, 224), Image.BILINEAR)
image_data = np.array(resized_image).transpose(2, 0, 1).reshape(1, 3, 224, 224).astype(float)

input_tensor.from_numpy(image_data)#.to(dtype=torch.float)
predictor.run()
output_tensor = predictor.get_output(0)
output_data = output_tensor.numpy()
print(output_data)

在这里插入图片描述

部署到服务器cpu上参考:https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/zh_cn/FAQ/quantization_FAQ.md
在这里插入图片描述
https://github.com/PaddlePaddle/PaddleSlim/blob/release/2.6/demo/mkldnn_quant/README.md

在这里插入图片描述

模型剪裁

复杂的模型有利于提高模型的性能,但也导致模型中存在一定冗余,模型裁剪通过移出网络模型中的子模型来减少这种冗余,达到减少模型计算复杂度,提高模型推理性能的目的。
教程参考:https://github.com/PaddlePaddle/PaddleSlim/blob/release%2F2.0.0/docs/zh_cn/tutorials/pruning/dygraph/filter_pruning.md

模型裁剪主要包括四个步骤:
1.安装 PaddleSlim
2.准备训练好的模型
3.敏感度分析、裁剪训练

python  deploy/slim/prune/sensitivity_anal.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrained_model="ch_PP-OCRv3_det_distill_train" Global.save_model_dir=./output/prune_model/

报错:ValueError: The size of input is too big. Please consider saving it to file and ‘load_op’ to load it

输入太大,待解决

4.导出模型、预测部署

python deploy/slim/prune/export_prune_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrained_model=./output/det_db/best_accuracy  Global.save_inference_dir=./prune/prune_inference_model

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1627892.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

医院手术室麻醉信息管理系统源码 自动生成麻醉的各种医疗文书(手术风险评估表、手术安全核查表)

目录 手术风险评估表 一、患者基本信息 二、既往病史 三、手术相关信息 四、风险评估因素 五、风险评估结果 手术安全核查表 一、患者身份与手术信息核对 二、术前准备核查 三、手术团队与职责确认 四、手术物品与设备核查 五、术中关键步骤核查 六、术后核查 七…

星融元加入超以太网联盟(UEC),推动智算网络创新实践

近日&#xff0c;星融元正式加入超以太网联盟(Ultra Ethernet Consortium,UEC)&#xff0c;该联盟是在 Linux 基金会的牵头下由多家全球头部科技企业联合成立&#xff0c;目标是突破传统以太网性能瓶颈&#xff0c;使其适用于人工智能&#xff08;AI&#xff09;和高性能计算&a…

Linux下基本指令-掌握

目录 为什么要学命令行 Linux下基本指令-掌握 ls 指令 pwd命令 cd 指令 touch指令 mkdir指令&#xff08;重要&#xff09;&#xff1a; rmdir指令 && rm 指令&#xff08;重要&#xff09;&#xff1a; man指令&#xff08;重要&#xff09;&#xff1a; cp指…

ARCGIS PRO3 三维模型OSGB转SLPK场景数据集

1.前言 因项目工作&#xff0c;需要将三维模型发布到arcgisserver上&#xff0c;但arcgisserver只支持slpk格式的模型&#xff0c;于是我开启了漫长的三维模型格式转换之旅&#xff0c;在这里记录下本人踩过的坑。 2.三维模型数据情况 2.1 模型大小&#xff1a;在20GB以上&a…

施耐德 Unity Pro 编程软件导入导出变量

适用范围 施耐德中高端PLC&#xff0c;使用的编程软件为 UnityPro &#xff08;最新版更名为 Ecostructure Control Expert&#xff09; 中端 PLC&#xff1a;Premium&#xff0c;M340高端 PLC&#xff1a;Quantum&#xff0c;M580 导出/导入变量 导出变量可导出【变量和 FB…

表演型人格的症状和起因,表演型人格测试和应对方法

都说人生不易&#xff0c;全靠演技&#xff0c;在生活这个大舞台上&#xff0c;每个人都在诠释自己的角色&#xff0c;在不同的人面前展现出了不一样的形象。面对父母&#xff0c;面对孩子&#xff0c;面对老板&#xff0c;面对同事&#xff0c;面对朋友&#xff0c;他们好像有…

BIM为电力、供水和道路工程无缝集成,助力智慧城市计划

在道路和公用事业工程中利用 Bentley Open 系列应用程序&#xff0c;项目进度加快 10%&#xff0c;节省成本 1,000 万印度卢比 推动基础设施现代化&#xff0c;实现智慧城市愿景 Dholera特别投资区位于印度艾哈迈达巴德西南 100 公里处&#xff0c;毗邻古吉拉特邦的贸易中心&a…

目标检测的mAP、PR指标含义

基本概念 什么是一个任务的度量标准。对于目标检测任务来说&#xff0c;它的首要目标是确定目标的位置并判别出目标类别。这里已医学图像为例&#xff0c;我们需要计算出血液红细胞&#xff08;RBC&#xff09;、白细胞&#xff08;WBC&#xff09;和血小板的数量。为了实现这一…

【目标检测】FPN特征金字塔完整流程详解

学习视频&#xff1a;1.1.2 FPN结构详解 对比 可以看到FPN是自上而下、自下而上并且可以进行多尺度特征融合的的层级结构。 具体结构 1x1 conv: 对通道数进行调整&#xff0c;不同大小的特征图通道数不同&#xff0c;越高层次的特征图通道数越大&#xff0c;论文中使用256个1…

上位机图像处理和嵌入式模块部署(树莓派4b用skynet实现进程通信)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 前面我们说过&#xff0c;在工业系统上面一般都是使用多进程来代替多线程。这后面&#xff0c;主要的原因还是基于安全的考虑。毕竟一个系统里面&a…

Docker常用命令(镜像、容器)

一、镜像 1.1 存出镜像 1.2 载入镜像 1.3 上传镜像 二、容器 2.1 容器创建 2.2 查看容器的运行状态 ​2.3 启动容器 2.4 创建并启动容器 2.5 在后台持续运行 docker run 创建的容器 2.6 终止容器运行 2.7 容器的进入 ​2.8把宿主机的文件传入到容器内部 2.9 从容器…

Swift-31-泛型和类型操作

泛型 Swift泛型(generics) 让我们写出的类型和函数可以使用对于我们或编译器都未知的类型。 很多内建类型(包括可空类型、数组和字典)都是用泛型实现的&#xff0c;比如数组和一些集合就是用泛型方式来实现的。 一种运行时进行类型检查的技术&#xff0c;效率高但是不安全。在…

11.JAVAEE之网络原理1

1.应用层(和程序员接触最密切) 应用程序 在应用层这里,很多时候, 都是程序员"自定义"应用层协议的,(当然,也是有一些现成的应用层协议)&#xff08;这里的自定义协议,其实是非常简单的~~协议 >约定,程序员在代码中规定好,数据如何进行传输) 1.根据需求, 明确要传…

使用mapinfo软件的在线地图插件运行错误解决

使用mapinfo软件的在线地图插件运行错误解决 一、如何解决win10/win11家庭版运行MapInfo中的在线地图插件报错【unexpected error&#xff1b;quitting】问题&#xff1f;二、如何解决在线地图切换地图源时的报错问题&#xff1f; 一、如何解决win10/win11家庭版运行MapInfo中的…

C# WinForm —— 10 单选按钮与复选框的介绍与使用

单选按钮 RadioButton 一组单选按钮中&#xff0c;只能选择一个&#xff0c;互相排斥 常用属性、事件&#xff1a; 属性用途(Name)单选按钮的ID&#xff0c;在代码里引用的时候会用到,一般以 rb开头Text单选按钮旁边显示的 文本信息Checked单选按钮的勾选状态Appearance控制单…

JetBrains CLion v2023.3.4 激活版 (C/C++ 集成开发IDE)

前言 JetBrains CLion是一款跨平台的C/C集成开发环境&#xff0c;由JetBrains公司推出。其最新版本支持C14几乎完全&#xff0c;并初步支持C17&#xff0c;使得编写代码更加便捷。CLion还提供了Disassembly view&#xff08;反汇编视图&#xff09;&#xff0c;即使没有源代码…

Unity类银河恶魔城学习记录15-1,2 p153 Audio Manager p154 Audio distance limiter

Alex教程每一P的教程原代码加上我自己的理解初步理解写的注释&#xff0c;可供学习Alex教程的人参考 此代码仅为较上一P有所改变的代码 【Unity教程】从0编程制作类银河恶魔城游戏_哔哩哔哩_bilibili AudioManager.cs using System.Collections; using System.Collections.Gen…

Python游戏工具包pygame

当你涉及游戏开发时&#xff0c;Pygame是一个强大的工具包&#xff0c;它提供了一系列功能丰富的模块和工具&#xff0c;让你可以轻松地创建各种类型的游戏。在本文中&#xff0c;我将介绍Pygame的依赖以及其详细属性&#xff0c;同时提供一些示例代码来说明其用法。 目录 一…

关于discuz论坛网址优化的一些记录(伪静态)

最近网站刚上线&#xff0c;针对SEO做了些操作&#xff0c;为了方便网站网页被收录&#xff0c;特此记录下 1.开启伪静态 按照操作勾选所有项&#xff0c;然后点击查看伪静态规则 2.打开宝塔&#xff0c;找到左侧列表的网站&#xff0c;然后找到相应站点的设置。把discuz自动…

1、Qt简介

文章目录 前言一、pySide2 / pySide6 ,PyQt5 / PyQt6二、安装包1 安装pyside22 安装pyqt5三、从一个简单的例子开始三、界面动作处理---信号(signal)与槽(slot)(Qt最核心的机制)--- 绑定事件封装到类中总结前言 参考文章:Qt简介 本文开始就开始进入到qt的开发笔记书写…