【R语言实战】——kNN和朴素贝叶斯方法实战

news2024/10/6 8:28:31

🍉CSDN小墨&晓末:https://blog.csdn.net/jd1813346972

   个人介绍: 研一|统计学|干货分享
         擅长Python、Matlab、R等主流编程软件
         累计十余项国家级比赛奖项,参与研究经费10w、40w级横向

文章目录

  • 1问题背景
  • 2 整体步骤
  • 3 操作实战
    • 3.1 第一步——加载包并读取数据
    • 3.2 第二步——探索和准备数据
    • 3.3 第三步——基于数据训练模型KNN模型并进行模型效果评估
    • 3.4 第四步——基于数据训练模型朴素贝叶斯模型并进行模型效果评估
  • 4 完整代码

该篇文章主要针对葡萄酒数据,分别采用KNN和朴素贝叶斯算法实现葡萄酒品种的多分类预测,其中涉及数据集的描述性统计、标准化处理、训练集测试集的随机划分,模型效果评估,特征主成分提取,预测效果可视化等内容。

1问题背景

  对于葡萄酒数据(wine.csv),请分别使用kNN和朴素贝叶斯方法构建分类器来预测第1列中给出的品种。在50%数据的随机子集上训练分类器。然后预测其余50%数据的品种,并将其绘制在二维空间中(使用不同的pch),同时评估分类器效果。

2 整体步骤

  1.加载实验所需的相关包,并读取数据文件;2.对原始数据的数据类型,数据指标情况进行探索;3.创建标准化函数,对解释变量进行标准化,并通过设置随机种子的方式,将数据集随机划分为训练集、测试集分别约占50%的两个数据集;4.分别通过训练集数据训练KNN和朴素贝叶斯模型,然后将测试集预测的葡萄酒种类绘制到前两个主成分的二维空间中(使用不同的pch);5.使用准确率和混淆矩阵的结果评估分类器效果,其中KNN模型在测试集中预测准确率达到93.18%,朴素贝叶斯模型在测试集中预测准确率达到95.45%。总体上看,在葡萄酒品种预测中,朴素贝叶斯模型的表现更好。

3 操作实战

3.1 第一步——加载包并读取数据

  运行程序:

1.	#加载包  
2.	library("class")    
3.	library("caret")   
4.	library("gmodels")             
5.	#读取数据  
6.	data<- read.csv("D:\\研\\机器学习与R语言\\wine.csv",header = T)  

3.2 第二步——探索和准备数据

  1)使用str()发现,该数据集共有178个观测值,14个特征(变量),同时,其涉及的数据类型有整型(int)和数值型(num),其中“cultivars”为目标变量。

> str(data)                              #查看数据类型
'data.frame':	178 obs. of  14 variables:
 $ cultivars                   : int  1 1 1 1 1 1 1 1 1 1 ...
 $ Alcohol                     : num  14.2 13.2 13.2 14.4 13.2 ...
 $ Malic.acid                  : num  1.71 1.78 2.36 1.95 2.59 1.76 1.87 2.15 1.64 1.35 ...
 $ Ash                         : num  2.43 2.14 2.67 2.5 2.87 2.45 2.45 2.61 2.17 2.27 ...
 $ Alcalinity.of.ash.          : num  15.6 11.2 18.6 16.8 21 15.2 14.6 17.6 14 16 ...
  $ Magnesium                   : int  127 100 101 113 118 112 96 121 97 98 ...
 $ Total.phenols               : num  2.8 2.65 2.8 3.85 2.8 3.27 2.5 2.6 2.8 2.98 ...
 $ Flavanoids                  : num  3.06 2.76 3.24 3.49 2.69 3.39 2.52 2.51 2.98 3.15 ...
 $ Nonflavanoid.phenols        : num  0.28 0.26 0.3 0.24 0.39 0.34 0.3 0.31 0.29 0.22 ...
 $ Proanthocyanins             : num  2.29 1.28 2.81 2.18 1.82 1.97 1.98 1.25 1.98 1.85 ...
 $ Color.intensity             : num  5.64 4.38 5.68 7.8 4.32 6.75 5.25 5.05 5.2 7.22 ...
 $ Hue                         : num  1.04 1.05 1.03 0.86 1.04 1.05 1.02 1.06 1.08 1.01 ...
 $ OD280.OD315.of.diluted.wines: num  3.92 3.4 3.17 3.45 2.93 2.85 3.58 3.58 2.85 3.55 ...
 $ Proline                     : int  1065 1050 1185 1480 735 1450 1290 1295 1045 1045 ...

  2)使用table()函数输出数据集葡萄酒品种情况,发现,该数据集中,葡萄酒品种共有三种,数据量分别为59,71,48。

> table(data$cultivars)

 1  2  3 
59 71 48 

  3)使用factor()将目标属性(葡萄酒品种)编码为因子类型。

> data$cultivars<-factor(data$cultivars,levels=c('1','2','3'),
+                        labels=c('第一类','第二类','第三类'))
> 
> str(data$cultivars)
 Factor w/ 3 levels "第一类","第二类",..: 1 1 1 1 1 1 1 1 1 1 ...

  4)查看不同葡萄酒品种占数据集比例,三种品种比例分别为33.1%,39.9%,27.0%。

> round(prop.table(table(data$cultivars))*100,digits = 1)

第一类 第二类 第三类 
  33.1   39.9   27.0 

  5)利用summary()查看各特征数据情况,见下图,包括每个特征的最小值,1/4分位数,中位数,均值,3/4分位数,最大值。由于KNN的距离计算很大程度上依赖输入特征的测量尺度,特征“Proline”的值范围为278~1680。可能导致后续分类存在问题,所以,应用min-max将这些特征进行标准化,将其调整到一个标准范围内。

> summary(data[c('Alcohol','Malic.acid','Ash','Alcalinity.of.ash.',
+                'Magnesium','Total.phenols','Flavanoids','Nonflavanoid.phenols',
+                'Proanthocyanins','Color.intensity','Hue','OD280.OD315.of.diluted.wines',
+                'Proline')])
    Alcohol        Malic.acid         Ash        Alcalinity.of.ash.
 Min.   :11.03   Min.   :0.740   Min.   :1.360   Min.   :10.60     
 1st Qu.:12.36   1st Qu.:1.603   1st Qu.:2.210   1st Qu.:17.20     
 Median :13.05   Median :1.865   Median :2.360   Median :19.50     
 Mean   :13.00   Mean   :2.336   Mean   :2.367   Mean   :19.49     
 3rd Qu.:13.68   3rd Qu.:3.083   3rd Qu.:2.558   3rd Qu.:21.50     
 Max.   :14.83   Max.   :5.800   Max.   :3.230   Max.   :30.00     
   Magnesium      Total.phenols     Flavanoids    Nonflavanoid.phenols
 Min.   : 70.00   Min.   :0.980   Min.   :0.340   Min.   :0.1300      
 1st Qu.: 88.00   1st Qu.:1.742   1st Qu.:1.205   1st Qu.:0.2700      
 Median : 98.00   Median :2.355   Median :2.135   Median :0.3400      
 Mean   : 99.74   Mean   :2.295   Mean   :2.029   Mean   :0.3619      
 3rd Qu.:107.00   3rd Qu.:2.800   3rd Qu.:2.875   3rd Qu.:0.4375      
 Max.   :162.00   Max.   :3.880   Max.   :5.080   Max.   :0.6600      
 Proanthocyanins Color.intensity       Hue        
 Min.   :0.410   Min.   : 1.280   Min.   :0.4800  
 1st Qu.:1.250   1st Qu.: 3.220   1st Qu.:0.7825  
 Median :1.555   Median : 4.690   Median :0.9650  
 Mean   :1.591   Mean   : 5.058   Mean   :0.9574  
 3rd Qu.:1.950   3rd Qu.: 6.200   3rd Qu.:1.1200  
 Max.   :3.580   Max.   :13.000   Max.   :1.7100  
 OD280.OD315.of.diluted.wines    Proline      
 Min.   :1.270                Min.   : 278.0  
 1st Qu.:1.938                1st Qu.: 500.5  
 Median :2.780                Median : 673.5  
 Mean   :2.612                Mean   : 746.9  
 3rd Qu.:3.170                3rd Qu.: 985.0  
 Max.   :4.000                Max.   :1680.0

  6)创建normalize函数,并利用lapply()将葡萄酒的各特征进行标准化处理,代码如下:

1.	normalize<-function(x){  
2.	  return ((x-min(x))/(max(x)-min(x)))  
3.	}  
4.	features<-as.data.frame(lapply(data[2:14],normalize))  

  7)随机化创建训练集和测试集。通过seed()设置随机种子,利sample()随机的从1~178的整数序列中选一般的值构成一个整数向量,通过使用该向量将数据集分割为50%的训练集和50%的测试数据集。同时,查看训练集和测试集数据的分割情况,发现两个数据集各葡萄酒类别占比相似,可以建立模型进行训练预测。

  运行程序:

1.	# 将数据集划分为训练集和测试集    
2.	set.seed(123) # 设置随机种子以确保结果的可重复性    
3.	trainIndex <- sample(178,178/2)    
4.	data_train<-features[trainingIndex,]             #创建训练集    
5.	data_test<-features[-trainingIndex,]             #创建测试集    
6.	data_train_lables<-data[trainingIndex,1]         #存储因子向量型训练集类签    
7.	data_test_lables<-data[-trainingIndex,1]         #存储因子向量型测试集类标签 

  运行结果:

> round(prop.table(table(data_train_lables))*100,digits = 1)
data_train_lables
第一类 第二类 第三类 
  33.3   40.0   26.7 
> round(prop.table(table(data_test_lables))*100,digits = 1)
data_test_lables
第一类 第二类 第三类 
  33.0   39.8   27.3 

3.3 第三步——基于数据训练模型KNN模型并进行模型效果评估

  1)使用knn()函数对测试数据进行分类,初始值k设置为3,函数knn()返回一个因子向量,为测试集中每一个案例返回一个预测标签,将其命名为data_test_pred。

  运行程序:

1.	##KNN分类器  
2.	# 使用kNN构建分类器    
3.	data_test_pred<-knn(train = data_train,test = data_test,cl<-data_train_lables,k=3)  

  2)首先利用prcomp()提取所有解释变量的前两个主成分,将其分别作为葡萄酒预测类型的X轴和Y轴进行可视化。从下图可以看出三种类别的葡萄酒数据位置存在明显的聚集现象,说明同一类别数据具有较高相似性。

  运行程序:

1.	##预测结果绘图:KNN模型  
2.	# 选择前两个主成分进行绘图  
3.	pca_results <- prcomp(data_test, scale = F)  
4.	plot_features <- pca_results$x[, 1:2]  
5.	plot_data <- data.frame(plot_features, Actual =data_test_lables, Predicted_kNN =data_test_pred, Predicted_GNB=nb_pred)  
6.	ggplot(plot_data, aes(x = plot_data[, 1], y = plot_data[, 2], color = Predicted_kNN, shape = Predicted_kNN)) +    
7.	  geom_point(size = 3, alpha = 0.6) +    
8.	  scale_color_manual(values = c("red", "blue", "green")) + # 假设有三个品种,使用不同颜色    
9.	  scale_shape_manual(values = c(1, 2, 3)) + # 使用默认的三种形状,并设置图例标题    
10.	  labs(title = "kNN Predictions on Test Set", x = "Feature 1", y = "Feature 2") + # 删除color参数,因为我们在scale_shape_manual中设置了name    
11.	  theme_minimal()  

  运行结果:

  3)使用正确率和混淆矩阵评估模型优劣。根据计算KNN模型预测结果发现,在测试集中,模型预测准确率达到93.18%。具体结果如下:

> cat("kNN Accuracy:", knn_accuracy, "\n")  
kNN Accuracy: 0.9318182 
> #混淆矩阵
> CrossTable(x=data_test_lables,y=data_test_pred,prop.chisq = F)

 
   Cell Contents
|-------------------------|
|                       N |
|           N / Row Total |
|           N / Col Total |
|         N / Table Total |
|-------------------------|

 
Total Observations in Table:  88 

 
                 | data_test_pred 
data_test_lables |    第一类 |    第二类 |    第三类 | Row Total | 
--------------|-----------|-----------|-----------|-----------|
          第一类 |        29 |         0 |         0 |        29 | 
                 |     1.000 |     0.000 |     0.000 |     0.330 | 
                 |     0.967 |     0.000 |     0.000 |           | 
                 |     0.330 |     0.000 |     0.000 |           | 
-----------------|-----------|-----------|-----------|-----------|
          第二类 |         1 |        30 |         4 |        35 | 
                 |     0.029 |     0.857 |     0.114 |     0.398 | 
                 |     0.033 |     0.968 |     0.148 |           | 
                 |     0.011 |     0.341 |     0.045 |           | 
-----------------|-----------|-----------|-----------|-----------|
          第三类 |         0 |         1 |        23 |        24 | 
                 |     0.000 |     0.042 |     0.958 |     0.273 | 
                 |     0.000 |     0.032 |     0.852 |           | 
                 |     0.000 |     0.011 |     0.261 |           | 
-----------------|-----------|-----------|-----------|-----------|
    Column Total |        30 |        31 |        27 |        88 | 
                 |     0.341 |     0.352 |     0.307 |           | 
-----------------|-----------|-----------|-----------|-----------|

  通过KNN模型预测效果的混淆矩阵,发现,第一类葡萄酒完全预测正确,第二类葡萄酒有一个被预测为第一类,4个被预测为第三类,有一个被预测为第一类,第三类葡萄酒有1个被预测为第二类,总体预测效果良好。

3.4 第四步——基于数据训练模型朴素贝叶斯模型并进行模型效果评估

  1)使用naiveBayes()函数训练数据,将模型保存到nb_model,并使用predict将预测结果保存到nb_pred。

  运行程序:

1.	##朴素贝叶斯分类器  
2.	nb_model <- naiveBayes(data_train, data_train_lables)    
3.	nb_pred <- predict(nb_model, data_test)   

  2)将朴素贝叶斯预测结果,绘制到二维平面发现,各类别葡萄酒分类效果明显。

  运行程序:

1.	ggplot(plot_data, aes(x = plot_data[, 1], y = plot_data[, 2], color = Predicted_GNB, shape = Predicted_GNB)) +    
2.	  geom_point(size = 3, alpha = 0.6) +    
3.	  scale_color_manual(values = c("red", "blue", "green")) + # 假设有三个品种,使用不同颜色    
4.	  scale_shape_manual(values = c(1, 2, 3)) + # 使用默认的三种形状,并设置图例标题    
5.	  labs(title = "kNN Predictions on Test Set", x = "Feature 1", y = "Feature 2") + # 删除color参数,因为我们在scale_shape_manual中设置了name    
6.	  theme_minimal()  

  运行结果:

  3)使用正确率和混淆矩阵评估模型优劣。根据计算朴素贝叶斯模型预测结果发现,在测试集中,模型预测准确率达到95.45%。具体结果如下:

> # 评估朴素贝叶斯分类器  
> nb_confusion_matrix <- table(data_test_lables, nb_pred)  
> nb_accuracy <- sum(diag(nb_confusion_matrix)) / sum(nb_confusion_matrix)  
> cat("Naive Bayes Accuracy:", nb_accuracy, "\n")
Naive Bayes Accuracy: 0.9545455 
> 
> ##评估分类器:朴素贝叶斯
> ##混淆矩阵
> CrossTable(x=nb_pred,y=data_test_pred,prop.chisq = F) 

 
   Cell Contents
|-------------------------|
|                       N |
|           N / Row Total |
|           N / Col Total |
|         N / Table Total |
|-------------------------|

 
Total Observations in Table:  88 

 
             | data_test_pred 
     nb_pred |    第一类 |    第二类 |    第三类 | Row Total | 
-------------|-----------|-----------|-----------|-----------|
      第一类 |        30 |         1 |         0 |        31 | 
             |     0.968 |     0.032 |     0.000 |     0.352 | 
             |     1.000 |     0.032 |     0.000 |           | 
             |     0.341 |     0.011 |     0.000 |           | 
-------------|-----------|-----------|-----------|-----------|
      第二类 |         0 |        28 |         3 |        31 | 
             |     0.000 |     0.903 |     0.097 |     0.352 | 
             |     0.000 |     0.903 |     0.111 |           | 
             |     0.000 |     0.318 |     0.034 |           | 
-------------|-----------|-----------|-----------|-----------|
      第三类 |         0 |         2 |        24 |        26 | 
             |     0.000 |     0.077 |     0.923 |     0.295 | 
             |     0.000 |     0.065 |     0.889 |           | 
             |     0.000 |     0.023 |     0.273 |           | 
-------------|-----------|-----------|-----------|-----------|
Column Total |        30 |        31 |        27 |        88 | 
             |     0.341 |     0.352 |     0.307 |           | 
-------------|-----------|-----------|-----------|-----------|

  通过朴素贝叶斯模型预测效果的混淆矩阵,发现,第一类葡萄酒有一个被预测为第二类,第二类葡萄酒有3个被预测为第三类,第三类葡萄酒有两个被预测为第2类,总体预测效果良好。

4 完整代码

1.	#加载包  
2.	library("class")    
3.	library("caret")   
4.	library("gmodels")             
5.	#读取数据  
6.	data<- read.csv("D:\\研\\机器学习与R语言\\wine.csv",header = T)  
7.	str(data)                       #查看数据类型  
8.	  
9.	table(data$cultivars)           #查看葡萄酒品种情况  
10.	  
11.	data$cultivars<-factor(data$cultivars,levels=c('1','2','3'),  
12.	                       labels=c('第一类','第二类','第三类'))  
13.	  
14.	str(data$cultivars)  
15.	  
16.	round(prop.table(table(data$cultivars))*100,digits = 1)  
17.	colnames(data)  
18.	summary(data[c('Alcohol','Malic.acid','Ash','Alcalinity.of.ash.',  
19.	               'Magnesium','Total.phenols','Flavanoids','Nonflavanoid.phenols',  
20.	               'Proanthocyanins','Color.intensity','Hue','OD280.OD315.of.diluted.wines',  
21.	               'Proline')])  
22.	  
23.	normalize<-function(x){  
24.	  return ((x-min(x))/(max(x)-min(x)))  
25.	}  
26.	features<-as.data.frame(lapply(data[2:14],normalize))  
27.	  
28.	  
29.	  
30.	# 将数据集划分为训练集和测试集    
31.	set.seed(123) # 设置随机种子以确保结果的可重复性    
32.	trainIndex <- sample(178,178/2)    
33.	data_train<-features[trainingIndex,]                    #创建训练集    
34.	data_test<-features[-trainingIndex,]              #创建测试集    
35.	data_train_lables<-data[trainingIndex,1]              #存储因子向量型训练集类标签    
36.	data_test_lables<-data[-trainingIndex,1]              #存储因子向量型测试集类标签     
37.	  
38.	##查看分割情况  
39.	round(prop.table(table(data_train_lables))*100,digits = 1)  
40.	round(prop.table(table(data_test_lables))*100,digits = 1)  
41.	  
42.	  
43.	##KNN分类器  
44.	# 使用kNN构建分类器    
45.	data_test_pred<-knn(train = data_train,test = data_test,cl<-data_train_lables,k=3)  
46.	  
47.	##朴素贝叶斯分类器  
48.	nb_model <- naiveBayes(data_train, data_train_lables)    
49.	nb_pred <- predict(nb_model, data_test)  
50.	  
51.	##预测结果绘图:KNN模型  
52.	# 选择前两个主成分进行绘图  
53.	pca_results <- prcomp(data_test, scale = F)  
54.	plot_features <- pca_results$x[, 1:2]  
55.	plot_data <- data.frame(plot_features, Actual =data_test_lables, Predicted_kNN =data_test_pred, Predicted_GNB=nb_pred)  
56.	ggplot(plot_data, aes(x = plot_data[, 1], y = plot_data[, 2], color = Predicted_kNN, shape = Predicted_kNN)) +    
57.	  geom_point(size = 3, alpha = 0.6) +    
58.	  scale_color_manual(values = c("red", "blue", "green")) + # 假设有三个品种,使用不同颜色    
59.	  scale_shape_manual(values = c(1, 2, 3)) + # 使用默认的三种形状,并设置图例标题    
60.	  labs(title = "kNN Predictions on Test Set", x = "Feature 1", y = "Feature 2") + # 删除color参数,因为我们在scale_shape_manual中设置了name    
61.	  theme_minimal()  
62.	  
63.	  
64.	##评估分类器:KNN  
65.	# 评估kNN分类器    
66.	knn_confusion_matrix <- table(data_test_lables, data_test_pred)    
67.	knn_accuracy <- sum(diag(knn_confusion_matrix)) / sum(knn_confusion_matrix)    
68.	cat("kNN Accuracy:", knn_accuracy, "\n")    
69.	#混淆矩阵  
70.	CrossTable(x=data_test_lables,y=data_test_pred,prop.chisq = F)   
71.	  
72.	  
73.	  
74.	  
75.	ggplot(plot_data, aes(x = plot_data[, 1], y = plot_data[, 2], color = Predicted_GNB, shape = Predicted_GNB)) +    
76.	  geom_point(size = 3, alpha = 0.6) +    
77.	  scale_color_manual(values = c("red", "blue", "green")) + # 假设有三个品种,使用不同颜色    
78.	  scale_shape_manual(values = c(1, 2, 3)) + # 使用默认的三种形状,并设置图例标题    
79.	  labs(title = "kNN Predictions on Test Set", x = "Feature 1", y = "Feature 2") + # 删除color参数,因为我们在scale_shape_manual中设置了name    
80.	  theme_minimal()  

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1627495.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

wifi可以连接但是上不了网该怎么解决?

上网的过程中&#xff0c;我们有时候会遇到wifi可以连接但是上不了网的情况&#xff0c;打开电脑浏览器&#xff0c;显示域名解析错误。遇到这种情况&#xff0c;一般说明IP与站点的解析过程出现了错误。 在网络中的主机都是IP地址来标识的&#xff0c;如果在浏览器输入此IP地…

美国言语听力学会(ASHA)关于非处方 (OTC) 助听器的媒体声明(翻译稿)

美国国会于 2021 年 4 月 13 日批准美国听力学会积极提供建议&#xff0c;并一直积极参与制定FDA关于非处方助听器销售的拟议法规。根据2017年通过的立法授权。学院积极参与帮助塑造授权立法&#xff0c;并就即将出台的条例分享了建议。 根据美国卫生与公众服务部NIH / NIDCD的…

数据分析:扩增子-16s rRNA分析snakemake流程

介绍 扩增子测序是分析环境微生物的常见手段&#xff0c;通常使用的是16s rRNA片段。16srRNA分析主要有质控、去冗余、聚类OTU、去嵌合体、生成OTU表和物种注释等步骤。更多知识分享请到 https://zouhua.top/。 先看看前期数据处理的可视化图。 数据 18份来自宏基因组公众号…

C# WinForm —— 08 Form初始化、布局、注册事件

Form 初始化 Form初始化的时候会调用 Designer.cs 里的 InitializeComponent(); 函数&#xff0c;在InitializeComponent(); 函数里面有Load Form语句时会调用 FrmLogin_Load()函数 Form布局 两种方式&#xff1a; 拖控件到窗体&#xff0c;设置属性在Load事件中写代码添加…

线性神经网络示例

通过5个条件判定一件事情是否会发生&#xff0c;5个条件对这件事情是否发生的影响力不同&#xff0c;计算每个条件对这件事情发生的影响力多大&#xff0c;写一个线性神经网络模型pytorch程序,最后打印5个条件分别的影响力。 一 在这个场景中&#xff0c;一个线性神经网络&…

knife4j swagger 使用笔记

1.接口访问的端口跟后台设置的不一致&#xff0c;接口请求无反应 处理办法 2.响应参数不显示问题 &#xff08;1&#xff09;返回的参数里面一定要有响应的参数对象&#xff0c;如下&#xff1a; &#xff08;2&#xff09;TableDataInfo 定义成泛型类 TableDataInfo package…

Int4:Lucene 中的更多标量量化

作者&#xff1a;来自 Elastic Benjamin Trent, Thomas Veasey 在 Lucene 中引入 Int4 量化 在之前的博客中&#xff0c;我们全面介绍了 Lucene 中标量量化的实现。 我们还探索了两种具体的量化优化。 现在我们遇到了一个问题&#xff1a;int4 量化在 Lucene 中是如何工作的以…

软件需求管理规程(Word原件2024)

软件开发人员及用户往往容易忽略信息沟通&#xff0c;这导致软件开发出来后不能很好地满足用户的需要&#xff0c;从而造成返工。而返工不仅在技术上给开发人员带来巨大的麻烦&#xff0c;造成人力、物力的浪费&#xff0c;而且软件的性能也深受影响。所以在软件项目开发周期的…

单片机为什么有多组VDD?

以前我在画尺寸小的PCB时&#xff0c;比较头痛&#xff0c;特别是芯片引脚又多的&#xff0c;芯片底下&#xff0c;又不能打太多过孔。 可能有些老铁也比较好奇&#xff0c;为什么一个单片机芯片&#xff0c;有这么多组VDD和VSS。 比如下面这个100个引脚的STM32单片机。 有5组…

前端实现将当前页面内容下载成图片(图片可做到高清画质)

插件背景&#xff1a; html2canvas可以把你想要转变的元素变为图片&#xff0c;使用file-saver下载图片。 1、安装html2canvas、file-saver npm install html2canvasnpm install file-saver --save 2、在Vue组件中引入并使用html2canvas、file-saver import html2canvas fro…

智慧旅游开启智慧出行新时代,科技引领旅行新风尚:以科技为引领,推动旅游业智慧化升级,为旅行者提供更加便捷、高效的旅行服务

一、引言 随着信息技术的飞速发展&#xff0c;智慧旅游作为一种全新的旅游形态&#xff0c;正逐渐改变着人们的出行方式。它利用现代科技手段&#xff0c;实现旅游资源的智能化管理、旅游信息的智能化传播和旅游服务的智能化提供&#xff0c;为旅行者带来更加便捷、高效的旅行…

Qt下使用OpenCV截取图像并在QtableWidget表格上显示

文章目录 前言一、在QLabel上显示图片并绘制矩形框二、保存矩形框数据为CSV文件三、保存截取图像四、将截取图像填充到表格五、图形视图框架显示图像六、示例完整代码总结 前言 本文主要讲述了在Qt下使用OpenCV截取绘制的矩形框图像&#xff0c;并将矩形框数据保存为CSV文件&a…

气膜仓库:现代化仓储新选择—轻空间

气膜仓库&#xff0c;作为现代化仓储的新选择&#xff0c;越来越受到人们的青睐。相比传统料仓&#xff0c;气膜仓库具有诸多优势&#xff0c;使其成为各行各业的首选储存解决方案。 1. 高效节能 气膜仓库的建设周期短&#xff0c;基础简单&#xff0c;安装快捷&#xff0c;能耗…

C#命名空间常用函数

在C#中&#xff0c;不同命名空间下有各种常用函数&#xff0c;下面列举一些常见的函数及其对应的命名空间&#xff1a; System命名空间&#xff1a; Console.WriteLine()&#xff1a;用于向控制台输出信息。Convert.ToInt32()&#xff1a;用于将其他数据类型转换为整数类型。 S…

Kafka 3.x.x 入门到精通(05)——对标尚硅谷Kafka教程

Kafka 3.x.x 入门到精通&#xff08;05&#xff09;——对标尚硅谷Kafka教程 2. Kafka基础2.1 集群部署2.2 集群启动2.3 创建主题2.4 生产消息2.5 存储消息2.6 消费消息2.6.1 消费消息的基本步骤2.6.2 消费消息的基本代码2.6.3 消费消息的基本原理2.6.3.1消费者组2.6.3.1.1 消费…

凹凸技术揭秘·羚珑智能设计平台·逐梦设计数智化

从技术和功能形态层面&#xff0c;我们把设计数智化分成了两个方向&#xff0c;一个方向是「模板化设计」&#xff0c;另一个方向是「程序化设计」。 2、模板化设计— 「模板化设计」的核心目标&#xff1a;是实现线下设计物料的数字化&#xff0c;在数字化设计资产的基础之上…

WildCard开通GitHub Copilot

更多AI内容请关注我的专栏&#xff1a;《体验AI》 期待您的点赞&#x1f44d;收藏⭐评论✍ WildCard开通GitHub Copilot GitHub Copilot 简介主要功能工作原理 开通过程1、注册Github账号2、准备一张信用卡或虚拟卡3、进入github copilot页4、选择试用5、选择支付方式6、填写卡…

C语言:插入排序

插入排序 1.解释2.步骤3.举例分析示例结果分析 1.解释 插入排序是一种简单直观的排序算法&#xff0c;它的工作原理是通过构建有序序列&#xff0c;对于未排序数据&#xff0c;在已排序序列中从后向前扫描&#xff0c;找到相应位置并插入。插入排序在实现上&#xff0c;通常采…

SSH新功能揭秘:远程工作提升指南【AI写作】

首先&#xff0c;这篇文章是基于笔尖AI写作进行文章创作的&#xff0c;喜欢的宝子&#xff0c;也可以去体验下&#xff0c;解放双手&#xff0c;上班直接摸鱼~ 按照惯例&#xff0c;先介绍下这款笔尖AI写作&#xff0c;宝子也可以直接下滑跳过看正文~ 笔尖Ai写作&#xff1a;…

如何实现直播声卡反向给手机充电功能呢?

在数字化时代的浪潮中&#xff0c;声卡作为多媒体系统的核心组件&#xff0c;扮演着声波与数字信号相互转换的关键角色。它不仅能够将来自各类音源的原始声音信号转换为数字信号&#xff0c;进而输出到各类声响设备&#xff0c;更能够通过音乐设备数字接口(MIDI)发出合成乐器的…