神经网络的激活函数

news2024/10/6 0:28:54

目录

神经网络 

激活函数 

sigmoid 激活函数

tanh 激活函数

backward方法 

relu 激活函数 

softmax 激活函数


神经网络 

人工神经网络( Artificial Neural Network, 简写为ANN)也简称为神经网络(NN),是一种模仿生物神经网络结构和功能的 计算模型。人脑可以看做是一个生物神经网络,由众多的神经元连接而成。各个神经元传递复杂的电信号,树突接收到输入信号,然后对信号进行处理,通过轴突输出信号。

人工神经网络

每一个神经元都是=g(w1x1 + w2x2 + w3x3...) ,即先对输入求和,再对其激活

💎这个流程就像,来源不同树突(树突都会有不同的权重)的信息, 进行的加权计算, 输入到细胞中做加和,再通过激活函数输出细胞值。我们使用多个神经元来构建神经网络,相邻层之间的神经元相互连接,并给每一个连接分配一个强度 w,机器学习的目的就是求这些 w 值

  • 输入层: 即输入 x 的那一层
  • 输出层: 即输出 y 的那一层
  • 隐藏层: 输入层和输出层之间都是隐藏层

激活函数 

💎激活函数用于对每层的输出数据进行变换, 进而为整个网络结构结构注入了非线性因素。此时, 神经网络就可以拟合各种曲线。如果不使用激活函数,整个网络虽然看起来复杂,其本质还相当于一种线性模型。

假设有一个单层的神经网络,其输入为𝑥x,权重为𝑤w,偏置为𝑏b,那么该层的输出𝑦y可以表示为:𝑦=𝑤⋅𝑥+𝑏y=w⋅x+b

对于多层的神经网络,如果每一层都不使用激活函数,那么无论网络有多少层,最终的输出都可以表示为输入𝑥x的一个线性组合 y=wn​⋅(wn−1​⋅(…(w2​⋅(w1​⋅x+b1​)+b2​)…)+bn−1​)+bn​

通过给网络输出增加激活函数, 实现引入非线性因素, 使得网络模型可以逼近任意函数。

激活函数能够向神经网络引入非线性因素,使得网络可以拟合各种曲线。没有激活函数时,无论神经网络有多少层,其输出都是输入的线性组合,这样的网络称为感知机,它只能解决线性可分问题,无法处理非线性问题。 

增加激活函数之后, 对于线性不可分的场景,神经网络的拟合能力更强:

🔎我们可以发现如果只使用线性函数Lnear,则模型永远不会区分两种小球(不管多少次Epochs)

🔎但当我们引入非线性激活函数后,仅仅100次就可以完美区分两种小球。

激活函数主要用来向神经网络中加入非线性因素,以解决线性模型表达能力不足的问题,它对神经网络有着极其重要的作用。我们的网络参数在更新时,使用的反向传播算法(BP),这就要求我们的激活函数必须可微。

sigmoid 激活函数

f(x) = 1 / (1 + e^(-x))

Sigmoid函数,也称为逻辑斯蒂激活函数,是早期神经网络中最常用的激活函数之一。它的特点是能够将任何实数值映射到介于0和1之间的值,这使得它在二分类问题中尤其有用,可以将输出解释为概率或者激活程度。

这个函数的图形呈现出一个S形曲线,它在中心点(x=0)增长缓慢,而在两端则增长迅速接近水平。这种特性使得Sigmoid函数在早期的神经网络中非常受欢迎,因为它可以帮助网络学习非线性关系。然而,它也存在梯度消失的问题,这意味着在训练过程中,当输入值非常大或非常小的时候,梯度几乎为零,这会导致权重更新变得非常缓慢,从而影响网络的学习效率。 

一般来说, sigmoid 网络在 5 层之内就会产生梯度消失现象。而且,该激活函数并不是以 0 为中心的,所以在实践中这种激活函数使用的很少。sigmoid函数一般只用于二分类的输出层。

 📀绘制Sigmoid函数图像

import torch
import matplotlib.pyplot as plt
import torch.nn.functional as F


def test():
    _, axes = plt.subplots(1, 2)

    
    x = torch.linspace(-20, 20, 1000)
    y = F.tanh(x)
    axes[0].plot(x, y)
    axes[0].grid()
    axes[0].set_title('Sigmoid 函数图像')

    
    x = torch.linspace(-20, 20, 1000, requires_grad=True)
    torch.sigmoid(x).sum().backward()

    axes[1].plot(x.detach(), x.grad)
    axes[1].grid()
    axes[1].set_title('Sigmoid 导数图像')

    plt.show()


if __name__ == '__main__':
    test()

📀在神经网络中,一个神经元的输出可以通过Sigmoid函数来表示其被激活的概率,接近1的值表示高度激活,而接近0的值则表示低激活。这种特性使得Sigmoid函数特别适合用于二分类问题的输出层,因为它可以表示两个类别的概率分布。

tanh 激活函数

Tanh 的函数图像、导数图像 :

Tanh 函数将输入映射到 (-1, 1) 之间,图像以 0 为中心,在 0 点对称,当输入 大概<-3 或者 >3 时将被映射为 -1 或者 1。与 Sigmoid 相比,它是以 0 为中心的,使得其收敛速度要比 Sigmoid 快,减少迭代次数。然而,从图中可以看出,Tanh 两侧的导数也为 0,同样会造成梯度消失。 

  • 💡由于tanh函数的输出均值是0,这与许多样本数据的分布均值相近,因此在训练过程中,权重和偏差的更新可以更快地接近最优值。
  • 💡tanh函数的导数在0到1之间变化,而Sigmoid函数的导数最大值仅为0.25,这意味着在反向传播过程中,tanh函数能够提供相对较大的梯度,从而减缓梯度消失的问题,有助于网络更快地收敛。 
  • 💡由于tanh函数的对称性和输出范围,它在正向传播时能够更好地处理正负输入值,这有助于在反向传播时进行更有效的权重更新,减少迭代次数。
import torch
import matplotlib.pyplot as plt
import torch.nn.functional as F


def test():

    _, axes = plt.subplots(1, 2)

    # 函数图像
    x = torch.linspace(-20, 20, 1000)
    y = F.tanh(x)
    axes[0].plot(x, y)
    axes[0].grid()
    axes[0].set_title('Tanh 函数图像')

    # 导数图像
    x = torch.linspace(-20, 20, 1000, requires_grad=True)
    F.tanh(x).sum().backward()

    axes[1].plot(x.detach(), x.grad)
    axes[1].grid()
    axes[1].set_title('Tanh 导数图像')

    plt.show()

🔎F.tanh(x)计算了输入张量x的tanh值,然后.sum()将这些tanh值相加得到一个标量值。接下来,.backward()方法会计算这个标量值关于输入张量x的梯度,即tanh函数的导数。这样,我们就可以得到tanh函数在每个输入点上的导数值,从而绘制出tanh导数图像。

backward方法 

  • 通用性backward()方法不限于计算损失函数的梯度,它可以用于任何需要进行梯度计算的张量。例如,如果你在进行一些非神经网络的任务,比如简单的数学运算,你也可以使用backward()来计算梯度。
  • 要使用backward()计算梯度,必须满足几个条件。首先,需要计算梯度的张量必须是叶子节点,即它们不是任何其他张量的计算结果。其次,这些张量必须设置requires_grad=True以表明需要跟踪它们的梯度。最后,所有依赖于这些叶子节点的张量也必须设置requires_grad=True,以确保梯度可以传播到整个计算图中。

relu 激活函数 

ReLU激活函数的公式是 ReLU(x)=max(0, x)

ReLU激活函数(Rectified Linear Unit)在神经网络中用于引入非线性特性,其特点是计算简单且能够加速训练过程。对于正值,它直接输出输入值(即 𝑓(𝑥)=𝑥f(x)=x),对于负值,输出为零(即 𝑓(𝑥)=0f(x)=0)。这种简单的阈值操作避免了复杂的指数或乘法运算,从而显著减少了计算量。

由于ReLU在正值区间内具有不变的梯度(即梯度为1),它有助于维持信号的传播,使得基于梯度的优化算法(如SGD、Adam等)能够更有效地更新网络权重。 

函数图像如下: 

ReLU 能够在x>0时保持梯度不衰减,从而缓解梯度消失问题。随着训练的推进,部分输入会落入小于0区域,导致对应权重无法更新。 

与sigmoid相比,RELU的优势是:

采用sigmoid函数,计算量大(指数运算),反向传播求误差梯度时,求导涉及除法,计算量相对大,而采用Relu激活函数,整个过程的计算量节省很多。 sigmoid函数反向传播时,很容易就会出现梯度消失的情况,从而无法完成深层网络的训练。 Relu会使一部分神经元的输出为0,这样就造成了网络的稀疏性,并且减少了参数的相互依存关系,缓解了过拟合问题的发生。

在神经网络的前向传播过程中,每个隐藏层的神经元都会对其输入执行线性变换(通过权重和偏差),然后应用激活函数。例如,一个神经元的输出y可以通过以下方式计算 y=ReLU(W^Tx+b),其中W是权重矩阵,x是输入向量,b是偏置项。 

在前向传播后,如果输出与实际值存在差距,则使用反向传播算法根据误差来更新网络中的权重和偏差。这个过程中,ReLU函数的梯度(导数)也会被计算出来,用于调整连接权重。

softmax 激活函数

这里,( K ) 是类别的总数,( e ) 是自然对数的底数(约等于2.71828)。 

softmax用于多分类过程中,它是二分类函数sigmoid在多分类上的推广,目的是将多分类的结果以概率的形式展现出来。 SoftMax 函数将每个输入元素 ( z_i ) 映射到 (0,1) 区间内,并且所有输出值的总和为1,这使它成为一个有效的概率分布。

Softmax 直白来说就是将网络输出的 logits 通过 softmax 函数,就映射成为(0,1)的值,而这些值的累和为1(满足概率的性质),那么我们将它理解成概率,选取概率最大(也就是值对应最大的)节点,作为我们的预测目标类别。 

import torch
scores = torch.tensor([0.2, 0.02, 0.15, 0.15, 1.3, 0.5, 0.06, 1.1, 0.05, 3.75])
probabilities = torch.softmax(scores, dim=0)
print(probabilities)

# 结果:tensor([0.0212, 0.0177, 0.0202, 0.0202, 0.0638, 0.0287, 0.0185, 0.0522, 0.0183,
        0.7392])

🍳对于隐藏层:

  1. 优先选择RELU激活函数

  2. 如果ReLu效果不好,那么尝试其他激活,如Leaky ReLu等。

  3. 如果你使用了Relu, 需要注意一下Dead Relu问题, 避免出现大的梯度从而导致过多的神经元死亡。

  4. 不要使用sigmoid激活函数,可以尝试使用tanh激活函数

🍳对于输出层:

  1. 二分类问题选择sigmoid激活函数

  2. 多分类问题选择softmax激活函数

  3. 回归问题选择identity激活函数

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1627196.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

FANUC机器人SOCKET连接指令编写

一、创建一个.KL文件编写连接指令 创建一个KL文本来编写FANUC机器人socket连接指令 二、KAREL指令代码 fanuc机器人karel编辑器编辑的karel代码如下&#xff1a; PROGRAM SM_CON %COMMENT SOCKET连接 %STACKSIZE 4000 --堆栈大小 %INCLUDE klevccdfVAR status,data_type,in…

Unreal Engine创建Plugin

打开UE工程&#xff0c;点击编辑&#xff0c;选择插件 点击“新插件”按钮&#xff0c;选择“空白选项”填入插件名字"MultiPlayerPlugin"&#xff0c;填入插件作者、描述&#xff0c;点击“创建插件”按钮打开C工程&#xff0c;即可看到插件目录&#xff0c;编译C工…

【介绍下如何使用CocoaPods】

&#x1f3a5;博主&#xff1a;程序员不想YY啊 &#x1f4ab;CSDN优质创作者&#xff0c;CSDN实力新星&#xff0c;CSDN博客专家 &#x1f917;点赞&#x1f388;收藏⭐再看&#x1f4ab;养成习惯 ✨希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出…

vue与Spring boot数据交互例子【简单版】

文章目录 什么是Vue&#xff1f;快速体验Vueaxios是什么&#xff1f;向Springboot后端发送数据接收Springboot后端数据小结 什么是Vue&#xff1f; 官网解释&#xff1a;Vue 是一套用于构建用户界面的渐进式框架。与其它大型框架不同的是&#xff0c;Vue 被设计为可以自底向上…

BUUCTF_[BSidesCF 2020]Had a bad day

[BSidesCF 2020]Had a bad day 1.一看题目直接尝试文件包含 2.直接报错&#xff0c;确实是存在文件包含漏洞 http://307b4461-36d6-443f-879a-68803a57f721.node5.buuoj.cn:81/index.php?categoryphp://filter/convert.base64-encode/resourceindex strpos() 函数查找字符串…

【Linux】:文件查看 stat、cat、more、less、head、tail、uniq、wc

&#x1f3a5; 屿小夏 &#xff1a; 个人主页 &#x1f525;个人专栏 &#xff1a; Linux深造日志 &#x1f304; 莫道桑榆晚&#xff0c;为霞尚满天&#xff01; 文章目录 &#x1f4d1;前言一、stat&#xff08;查看文件详细属性信息&#xff09;1.1 内容解析&#xff1a;1.2…

【基础篇】Git 基础命令与核心概念

✅作者简介&#xff1a;大家好&#xff0c;我是小杨 &#x1f4c3;个人主页&#xff1a;「小杨」的csdn博客 &#x1f433;希望大家多多支持&#x1f970;一起进步呀&#xff01; 一&#xff0c;Git 初识 1.1&#xff0c;问题引入 不知道你工作或学习时&#xff0c;有没有遇到…

JAVA前端快速入门基础_javascript入门(01)

写在前面:本文用于快速学会简易的JS&#xff0c;仅做扫盲和参考作用 1.JS是什么 JavaScript是一门跨平台&#xff0c;面向对象的脚本语言(即不需要编译&#xff0c;可以直接通过浏览器进行解释)。JS和Java是两门完全不相同的语言&#xff0c;但是基础的语法是类似的 2.JS的引…

uniapp 微信小程序 分享海报的实现

主页面 <template><view class"page"><!-- 自定义导航栏--><Navbar title"我的海报"></Navbar><view class"container"><poster ref"poster" :imageUrl"image" :imageWidth"7…

【MHA】MySQL高可用MHA源码1-主库故障监控

1 阅读之前的准备工作 1 一个IDE工具 &#xff0c;博主自己尝试了vscode安装perl的插件&#xff0c;但是函数 、变量 、模块等都不能跳转&#xff0c;阅读起来不是很方便。后来尝试使用了pycharm安装perl插件&#xff0c;阅读支持跳转&#xff0c;自己也能写一些简单的测试样例…

达梦(DM) SQL日期操作及分析函数

达梦DM SQL日期操作及分析函数 日期操作SYSDATEEXTRACT判断一年是否为闰年周的计算确定某月内第一个和最后一个周末某天的日期确定指定年份季度的开始日期和结束日期补充范围内丢失的值按照给定的时间单位查找使用日期的特殊部分比较记录 范围处理分析函数定位连续值的范围查找…

【定制化体验:使用Spring Boot自动配置,打造个性化Starter】

项目结构 Pom <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.org/POM/4…

LabVIEW高效目标跟踪系统

LabVIEW高效目标跟踪系统 随着机器视觉技术的飞速发展&#xff0c;设计和实现高效的目标跟踪系统成为了众多领域关注的焦点。基于LabVIEW平台&#xff0c;结合NI Vision机器视觉库&#xff0c;开发了一种既高效又灵活的目标跟踪系统。通过面向对象编程方法和队列消息处理器程序…

【CTF Crypto】CTFShow 萌新 密码3 Writeup(摩尔斯电码+培根密码)

萌新 密码3 3 题目名称&#xff1a;我想吃培根 题目描述&#xff1a; – — .-. … . …–.- … … …–.- -.-. — — .-… …–.- -… …- - …–.- -… .- -.-. — -. …–.- … … …–.- -.-. — — .-… . .-. …–.- – – -… -… – -… – -… – – – -… -… -……

鸿蒙(HarmonyOS)性能优化实战-Trace使用教程

概述 OpenHarmony的DFX子系统提供了为应用框架以及系统底座核心模块的性能打点能力&#xff0c;每一处打点即是一个Trace&#xff0c;其上附带了记录执行时间、运行时格式化数据、进程或线程信息等。开发者可以使用SmartPerf-Host调试工具对Trace进行解析&#xff0c;在其绘制…

yudao-cloud微服务系统系统模块+后台管理系统成功运行

&#x1f339;作者主页&#xff1a;青花锁 &#x1f339;简介&#xff1a;Java领域优质创作者&#x1f3c6;、Java微服务架构公号作者&#x1f604; &#x1f339;简历模板、学习资料、面试题库、技术互助 &#x1f339;文末获取联系方式 &#x1f4dd; 系列文章目录 第一章 芋…

精酿啤酒:酿造工艺的自动化与智能化发展

随着科技的不断进步&#xff0c;自动化与智能化已成为啤酒酿造工艺的重要发展方向。Fendi Club啤酒紧跟时代潮流&#xff0c;积极推动酿造工艺的自动化与智能化发展&#xff0c;旨在提高生产效率、确保产品品质和满足市场需求。 Fendi Club啤酒引入自动化生产设备。他们采用自动…

rabbitmq集群配置

1&#xff0c;配置环境变量 MY_POD_NAME&#xff1a;当前Pod的名称 RABBITMQ_ERLANG_COOKIE&#xff1a;设置Erlang Cookie用于节点间通信安全验证&#xff0c;值来自/nfs/rabbitmq/lib/.erlang.cookie文件内容 RABBITMQ_NODENAME&#xff1a;根据Pod名称动态生成了RabbitMQ…

Typora for Mac:轻量级Markdown编辑器

Typora for Mac是一款专为Mac用户设计的轻量级Markdown编辑器&#xff0c;它以其简洁的界面和强大的功能&#xff0c;成为了Markdown写作爱好者的首选工具。 Typora for Mac v1.8.10中文激活版下载 Typora的最大特色在于其所见即所得的编辑模式&#xff0c;用户无需关心复杂的M…

【软件】ERETCAD-Env:在轨空间环境3D动态仿真软件

文章介绍了Extreme-environment Radiation Effect Technology Computer-Aided Design – Environment (ERETCAD-Env)软件&#xff0c;文章的介绍和展示了ERETCAD-Env软件的功能和特点&#xff0c;这是一款用于动态模拟在轨卫星所处空间环境的计算机辅助设计软件。强调了该软件在…