SCI一区级 | Matlab实现BES-CNN-GRU-Mutilhead-Attention多变量时间序列预测

news2024/11/24 19:10:02

SCI一区级 | Matlab实现BES-CNN-GRU-Mutilhead-Attention秃鹰算法优化卷积门控循环单元融合多头注意力机制多变量时间序列预测

目录

    • SCI一区级 | Matlab实现BES-CNN-GRU-Mutilhead-Attention秃鹰算法优化卷积门控循环单元融合多头注意力机制多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.Matlab实现BES-CNN-GRU-Mutilhead-Attention秃鹰算法优化卷积门控循环单元融合多头注意力机制多变量时间序列预测,要求Matlab2023版以上;
2.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;
3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;
5.算法优化学习率,神经元个数,注意力机制的键值, 卷积核个数。

程序设计

  • 完整源码和数据获取方式私信博主回复Matlab实现BES-CNN-GRU-Mutilhead-Attention多变量时间序列预测



layers0 = [ ...
    % 输入特征
    sequenceInputLayer([numFeatures,1,1],'name','input')   %输入层设置
    sequenceFoldingLayer('name','fold')         %使用序列折叠层对图像序列的时间步长进行独立的卷积运算。
    % CNN特征提取
    convolution2dLayer([3,1],16,'Stride',[1,1],'name','conv1')  %添加卷积层,641表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长
    batchNormalizationLayer('name','batchnorm1')  % BN层,用于加速训练过程,防止梯度消失或梯度爆炸
    reluLayer('name','relu1')       % ReLU激活层,用于保持输出的非线性性及修正梯度的问题
      % 池化层
    maxPooling2dLayer([2,1],'Stride',2,'Padding','same','name','maxpool')   % 第一层池化层,包括3x3大小的池化窗口,步长为1,same填充方式
    % 展开层
    sequenceUnfoldingLayer('name','unfold')       %独立的卷积运行结束后,要将序列恢复
    %平滑层
    flattenLayer('name','flatten')
    
   
    selfAttentionLayer(2,2)          %创建2个头,2个键和查询通道的自注意力层  
    dropoutLayer(0.1,'name','dropout_1')        % Dropout层,以概率为0.2丢弃输入

    fullyConnectedLayer(1,'name','fullconnect')   % 全连接层设置(影响输出维度)(cell层出来的输出层) %
    regressionLayer('Name','output')    ];
    
lgraph0 = layerGraph(layers0);
lgraph0 = connectLayers(lgraph0,'fold/miniBatchSize','unfold/miniBatchSize');
pNum = round( pop *  P_percent );    % The population size of the producers   

for t=1:MaxIt
    %%               1- select_space 
    [pop BestSol s1(t)]=select_space(fobj,pop,nPop,BestSol,low,high,dim);
    %%                2- search in space
    [pop BestSol s2(t)]=search_space(fobj,pop,BestSol,nPop,low,high);
    %%                3- swoop
  [pop BestSol s3(t)]=swoop(fobj,pop,BestSol,nPop,low,high);
        Convergence_curve(t)=BestSol.cost;
        disp(num2str([t BestSol.cost]))
    ed=cputime;
    timep=ed-st;
end
function [pop BestSol s1]=select_space(fobj,pop,npop,BestSol,low,high,dim)
Mean=mean(pop.pos);
% Empty Structure for Individuals
empty_individual.pos = [];
empty_individual.cost = [];
lm= 2;
s1=0;
for i=1:npop
    newsol=empty_individual;
    newsol.pos= BestSol.pos+ lm*rand(1,dim).*(Mean - pop.pos(i,:));
    newsol.pos = max(newsol.pos, low);
    newsol.pos = min(newsol.pos, high);
    newsol.cost=fobj(newsol.pos);
    if newsol.cost<pop.cost(i)
       pop.pos(i,:) = newsol.pos;
       pop.cost(i)= newsol.cost;
       s1=s1+1;
         if pop.cost(i) < BestSol.cost
          BestSol.pos= pop.pos(i,:);
         BestSol.cost=pop.cost(i); 
         end
    end
end


参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1626845.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

命令行启动pytest自动化程序时,程序卡住不动了,不继续往下执行了

一、问题描述 在执行pytestallure自动化测试工具的时候&#xff0c;命令行启动程序时&#xff0c;程序卡住不继续往下执行&#xff0c;如下图所示。 代码主函数如下&#xff1a; 二、解决方法 测试客户项目时遇到2次此类问题&#xff0c;2次问题原因不一样。 原因一&#xf…

【JVM】从i++到JVM栈帧

【JVM】从i到JVM栈帧 本篇博客将用两个代码例子&#xff0c;简单认识一下JVM与栈帧结构以及其作用 从i与i说起 先不急着看i和i&#xff0c;我们来看看JVM虚拟机&#xff08;请看VCR.JPG&#xff09; 我们初学JAVA的时候一定都听到过JAVA“跨平台”的特性&#xff0c;也就是…

XiaodiSec day017 Learn Note 小迪安全学习笔记

XiaodiSec day017 Learn Note 小迪安全学习笔记 记录得比较凌乱&#xff0c;不尽详细 day 17 主要内容&#xff1a; php 框架 thinkPHPyiilaravel 使用 fofa 搜索 thinkphp 市面上 thinkphp5 版本较多 url 结构 域名/.php(文件名)/index(目录)/index(函数名)模块名-控…

律师口才训练技巧课程介绍?

律师口才训练技巧课程介绍 一、课程背景与目标 律师口才作为法律职业的核心能力之一&#xff0c;对于律师在**辩论、法律咨询、谈判协商等场合的表现具有至关重要的作用。然而&#xff0c;许多律师在口才方面存在不足&#xff0c;难以充分发挥自己的专业能力。因此&#xff0c;…

stm32开发之netxduo组件之mqtt客户端的使用记录

前言 1使用mqtt协议的简单示例记录 代码 MQTT服务端(C# 编写,使用MQTTnet提供的示例代码) 主程序 namespace ConsoleApp1;public class Program {public static async Task Main(string[] args){await Run_Server_With_Logging();}}public static async Task Run_Server_Wi…

HarmonyOS ArkUI实战开发—状态管理

一、状态管理 在声明式UI编程框架中&#xff0c;UI是程序状态的运行结果&#xff0c;用户构建了一个UI模型&#xff0c;其中应用的运行时的状态是参数。当参数改变时&#xff0c;UI作为返回结果&#xff0c;也将进行对应的改变。这些运行时的状态变化所带来的UI的重新渲染&…

电子负载仪的远端控制

前言 最近研究了电子负载仪的远端控制&#xff08;区别于前面板控制&#xff09;&#xff0c;主要是用于程序控制&#xff0c;避免繁琐复杂的人工控制&#xff0c;举了南京嘉拓和艾维泰科的例子。 有纰漏请指出&#xff0c;转载请说明。 学习交流请发邮件 1280253714qq.com …

CoReFace:深度人脸识别的样本引导对比正则化

CoReFace: Sample-Guided Contrastive Regularization for Deep Face Recognition 一、摘要 人脸识别对比正则化&#xff08;CoReFace&#xff09;&#xff08;损失函数&#xff09;&#xff0c;将图像级正则化应用于特征表示学习。 具体来说&#xff0c;采用样本引导对比学习…

base64算法

1 介绍 将二进制数据编码为文本字符串的算法 理解&#xff1a;把一个能看懂的明文变成一个看不懂的密文数据统称为加密 2 使用 A 在浏览器控制台使用 加密 window.btoa(加密的数据) 解密 window.atob(MTIzNDQ) B 在VSconde中使用 加密 解密

【算法基础实验】图论-UnionFind连通性检测之quick-union

Union-Find连通性检测之quick-union 理论基础 在图论和计算机科学中&#xff0c;Union-Find 或并查集是一种用于处理一组元素分成的多个不相交集合&#xff08;即连通分量&#xff09;的情况&#xff0c;并能快速回答这组元素中任意两个元素是否在同一集合中的问题。Union-Fi…

基于Springboot的点餐平台

基于SpringbootVue的点餐平台的设计与实现 开发语言&#xff1a;Java数据库&#xff1a;MySQL技术&#xff1a;SpringbootMybatis工具&#xff1a;IDEA、Maven、Navicat 系统展示 用户登录 首页展示 菜品信息 菜品资讯 购物车 后台登录 用户管理 菜品分类管理 菜品信息管理 …

怎么把图片转换为二维码?3个步骤轻松制作图片二维码

图片的二维码是怎么做成的呢&#xff1f;现在很多场景下的二维码&#xff0c;用手机扫码可以展现出对应的图片信息。通过这种方式来传递图片对于用户体验与很好的效果&#xff0c;而且也方便制作者通过这种方式来快速完成图片信息的传递&#xff0c;与传统方式相比成本更低&…

【前端】4. CSS综合案例

1. 模拟新闻界面 <!-- 1.模拟实现新闻界面 --><!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>…

茴香豆:搭建你的RAG智能助理-作业三

本次课程由书生浦语社区贡献者【北辰】老师讲解【茴香豆&#xff1a;搭建你的 RAG 智能助理】课程。分别是&#xff1a; RAG 基础介绍茴香豆产品简介使用茴香豆搭建RAG知识库实战 课程视频&#xff1a;https://www.bilibili.com/video/BV1QA4m1F7t4/ 课程文档&#xff1a;ht…

【鸟叔的Linux私房菜】计算机概论

文章目录 电脑CPU架构单位 电脑架构与设备组件CPUCPU和GPU区别 内存显卡硬盘与存储设备主板 软件程序运行操作系统内核的功能 总结 电脑 五个部分&#xff1a;输入单元、输出单元、CPU的运算单元和逻辑控制单元、内存。 主机机箱的设备大多通过主板连接线在一起&#xff0c;主…

STM32、GD32驱动SHT30温湿度传感器源码分享

一、SHT30介绍 1、简介 SHT30是一种数字湿度和温度传感器&#xff0c;由Sensirion公司生产。它是基于物理蒸发原理的湿度传感器&#xff0c;具有高精度和长期稳定性。SHT30采用I2C数字接口&#xff0c;可以直接与微控制器或其他设备连接。该传感器具有低功耗和快速响应的特点…

Unity入门实践小项目

必备知识点 必备知识点——场景切换和游戏退出 必备知识点——鼠标隐藏锁定相关 必备知识点——随机数和Unity自带委托 必备知识点——模型资源的导入 实践项目 需求分析 UML类图 代码和资源导入 开始场景 场景装饰 拖入模型和添加脚本让场景动起来 开始界面 先用自己写的GUI…

Feign功能详解、使用步骤、代码案例

简介&#xff1a;Feign是Netflix开发的声明式&#xff0c;模板化的HTTP客户端&#xff0c;简化了HTTP的远程服务的开发。Feign是在RestTemplate和Ribbon的基础上进一步封装&#xff0c;使用RestTemplate实现Http调用&#xff0c;使用Ribbon实现负载均衡。我们可以看成 Feign R…

Linux CentOS调用打印机

文章目录 一、lpstat及cups安装二、配置打印机1.启动cups2.配置cups3.配置打印机1.打开浏览器&#xff0c;输入CUPS服务器地址访问web界面&#xff0c;地址一般是&#xff1a;http://localhost:631。这里的"localhost"代表当前机器&#xff0c;如果你的CUPS服务器在别…

【网络安全】安全事件管理处置 — windows应急响应

专栏文章索引&#xff1a;网络安全 有问题可私聊&#xff1a;QQ&#xff1a;3375119339 目录 一、账户排查 二、windows网络排查 三、进程排查 四、windows注册表排查 五、内存分析 总结 一、账户排查 账户排查主要包含以下几个维度 登录服务器的途径弱口令可疑账号 新增…