Centos/linux根目录扩容、分区、挂载。LVM、物理卷、逻辑卷

news2024/10/6 8:22:50

前言    (空格) :分区挂载和扩容是两码事

  每个Linux使用者在安装Linux时都会遇到这样的困境:在为系统分区时,如何精确评估和分配各个硬盘分区的容量,因为系统管理员不但要考虑到当前某个分区需要的容量,还要预见该分区以后可能需要的容量的最大值。因为如果估 计不准确,当遇到某个分区不够用时管理员可能甚至要备份整个系统、清除硬盘、重新对硬盘分区,然后恢复数据到新分区。

  虽然有很多动态调整磁盘的工具可以使用,例如PartitionMagic等等,但是它并不能完全解决问题,因为某个分区可能会再次被耗尽;另外一个方面这需要 重新引导系统才能实现,对于很多关键的服务器,停机是不可接受的,而且对于添加新硬盘,希望一个能跨越多个硬盘驱动器的文件系统时,分区调整程序就不能解决问题。

因此完美的解决方法应该是在零停机前提下可以自如对文件系统的大小进行调整,可以方便实现文件系统跨越不同磁盘和分区。幸运的是Linux提供的逻辑盘卷管理(LVM,LogicalVolumeManager)机制就是一个完美的解决方案。

    逻辑卷管理器(LogicalVolumeManager)本质上是一个虚拟设备驱动,是在内核中块设备和物理设备之间添加的一个新的抽象层次,如图4-1所示。它可以将几块磁盘(物理卷,PhysicalVolume)组合起来形成一个存储池或者卷组(VolumeGroup)。LVM可以每次从卷组中划分出不同大小的逻辑卷(LogicalVolume)创建新的逻辑设备。底层的原始的磁盘不再由内核直接控制,而由LVM层来控制。对于上层应用来说卷组替代了磁盘块成为数据存储的基本单元。LVM管理着所有物理卷的物理盘区,维持着逻辑盘区和物理盘区之间的映射。LVM逻辑设备向上层应用提供了和物理磁盘相同的功能,如文件系统的创建和数据的访问等。但LVM逻辑设备不受物理约束的限制,逻辑卷不必是连续的空间,它可以跨越许多物理卷,并且可以在任何时候任意的调整大小。相比物理磁盘来说,更易于磁盘空间的管理。
在这里插入图片描述

    从用户态应用来看,LVM逻辑卷相当于一个普通的块设备,对其的读写操作和普通的块设备完全相同。而从物理设备层来看,LVM相对独立于底层的物理设备,并且屏蔽了不同物理设备之间的差异。因而在LVM层上实现数据的连续保护问题,可以不需要单独考虑每一种具体的物理设备,避免了在数据复制过程中因物理设备之间的差异而产生的问题。从LVM的内核实现原理上看,LVM是在内核通用块设备层到磁盘设备驱动层的请求提交流之间开辟的另外一条路径,即在通用块设备层到磁盘设备驱动层之间插入了LVM管理映射层用于截获一定的请求进行处理,如图4-2所示。 [1]
在这里插入图片描述
用户通过lvm提供接口,依靠内核创建一系列LVM逻辑卷,所有对lvm逻辑卷的读写操作最终都会由LVM在通用块设备层下方截获下来,进行更进一步的处理。这里的进一步处理主要指的是完成写请求的映射,是将请求的数据根据实际情况进行一些拆分和重定位操作,从而可以将请求和数据分发到实际的物理设备中去。 [1]

基本术语

    前面谈到,LVM是在磁盘分区和文件系统之间添加的一个逻辑层,来为文件系统屏蔽下层磁盘分区布局,提供一个抽象的存储卷,在存储卷上建立文件系统。首先我们讨论以下几个LVM术语:

  • 物理存储介质(PhysicalStorageMedia)
    指系统的物理存储设备:磁盘,如:/dev/hda、/dev/sda等,是存储系统最底层的存储单元。
  • 物理卷(Physical Volume,PV)
    指磁盘分区或从逻辑上与磁盘分区具有同样功能的设备(如RAID),是LVM的基本存储逻辑块,但和基本的物理存储介质(如分区、磁盘等)比较,却包含有与LVM相关的管理参数。
  • 卷组(Volume Group,VG)
    类似于非LVM系统中的物理磁盘,其由一个或多个物理卷PV组成。可以在卷组上创建一个或多个LV(逻辑卷)。
  • 逻辑卷(Logical Volume,LV)
    类似于非LVM系统中的磁盘分区,逻辑卷建立在卷组VG之上。在逻辑卷LV之上可以建立文件系统(比如/home或者/usr等)。
  • 物理块(Physical Extent,PE)
    PE是物理卷PV的基本划分单元,具有唯一编号的PE是可以被LVM寻址的最小单元。PE的大小是可配置的,默认为4MB。所以物理卷(PV)由大小等同的基本单元PE组成。
  • 逻辑块(Logical Extent,LE)
    逻辑卷LV也被划分为可被寻址的基本单位,称为LE。在同一个卷组中,LE的大小和PE是相同的,并且一一对应。

图1所示LVM抽象模型,展示了PV、VG、LV三者之间关系:
在这里插入图片描述

一、LVM结构

在这里插入图片描述

二、数据盘划分

命令

#管理磁盘分区
fdisk /dev/sda	#其中sda是一块虚拟磁盘

#查看磁盘和下面的分区情况
lsblk

#查看虚拟机磁盘使用情况
df -Th

#分区格式化
mkfs.xfs /dev/sda3	#其中,mkfs是命令,xfs将分区格式化为什么类型的文件系统,/dev/sda3就是需要格式化的分区

#实现(取消)挂载
mount(umount) /dev/sda3 /mnt/test	#其中/dev/sda3是新增的分区,/mnt/test是挂载的目录

#查看挂载信息
mount

1. 开始划分

1-1. 创建磁盘分区。

注意,分区需要使用‘8e’类型来使他们可用于LVM

   预先在linux服务器/ 或VMware上添加一块磁盘。随后通过 lsblk 命令查看新添加的磁盘。通过fdisk /dev/<新增磁盘名>对新增磁盘进行管理,实现分区,磁盘情况如下:

需要将vda、vdb剩余资源划分给/data下
在这里插入图片描述

在这里插入图片描述

1-2 进行磁盘扩展之后发现我的sda这块磁盘变为了80G,但是sda下的sda1和sda2分区依旧是之前的70个G。此时就需要将新增的磁盘利用起来,就需要进行分区。

在这里插入图片描述

1-3 进行分区
------------------------------- -----------------------------------------------------
 fdisk /dev/vda
 
	 n-->p-->t-->8e-->w-->partprobe
 
  fdisk /dev/vdb
 
	 n-->p-->t-->8e-->w-->partprob

    使用fdisk /dev/sda对sda磁盘进行管理,然后就会进入到管理界面。通过使用m来查看帮助。
按下n来创建新的分区,然后再按p来创建主分区。此时会叫你选择分区号,因为我之前有sda1和2,所以默认就是3号分区。这时候回车就行。

然后就是对这块分区进行设置大小。默认回车就是将刚才新加的磁盘大小全部放入这个分区中。然后可以按下p来查看此时这个磁盘的分区,我显示的为三块分区,sda1、2、3。第三块是刚才创建的,为10G。最后按下w进行保存。
在这里插入图片描述

————————————————

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1626349.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

使用 Godot 游戏引擎为 Apple 的 visionOS 创建游戏和应用的平台

借助GodotVision ,您可以使用Godot 游戏引擎为 Apple VisionOS创建游戏和应用程序。 保卫牛城堡,一款使用 GodotVision 制作的 VisionOS 游戏 GodotVision 运行一个控制本机RealityKit 视图的无头 Godot实例。粗略地说:Godot 是后端,

C++面向对象程序设计 - 派生类的构造函数和析构函数

构造函数的主要作用对数据成员初始化&#xff0c;基类的构造函数是不能被继承的&#xff0c;在声明派生类时&#xff0c;派生类并没有把类的构造函数继承下来。因此&#xff0c;对继承过来的基类成员初始化的工作也要由派生类的构造函数完成&#xff1b;所以在派生类中不仅要考…

OSPF的LSA与特殊区域

Area区域概念 *一个区域维护一张LSDB&#xff0c;路由器详细的链路信息只在这个区域内传播 不是每一台路由器都需要了解所有外部目的地的详细信息 *OSPF网络的层次化设计 通过区域ID标识 骨干&#xff08; Backbone &#xff09;区域&#xff0c;必须是area 0(骨干区域…

JVM(Jvm如何管理空间?对象如何存储、管理?)

Jvm如何管理空间&#xff08;Java运行时数据区域与分配空间的方式&#xff09; ⭐运行时数据区域 程序计数器 程序计数器&#xff08;PC&#xff09;&#xff0c;是一块较小的内存空。它可以看作是当前线程所执行的字节码的行号指示器。Java虚拟机的多线程是通过时间片轮转调…

milvus对象存储和消息中间件的工厂设计模式分析

milvus对象存储和消息中间件的工厂设计模式分析 需求 根据参数设置创建mq和storage mq有kafka,pulsar storage有local,minio,remote 配置文件 根据配置文件选择初始化mq和存储: mq:type: pulsarcommon:storageType: minio对于这种类型一个是mq&#xff0c;一个是存储&…

抓住四月小尾巴,拿个offer~

首先声明一下~本人是个双非二本大三在校生。 从三月份就开始了苦哈哈的找实习之旅&#xff0c;快三月中旬才敢投大厂&#xff0c;为什么嘞&#xff1f;因为学校要求必须参加完期末考试才能出去实习&#xff08;差不多七月初&#xff09;&#xff0c;因为这个好多公司一听就不安…

算法模版自用(杂)

文章目录 算法库函数next_permutation(start,end) prev_permutation(start,end) (全排列函数)nth_element &#xff08;求第k小值&#xff09;next(it,num),prev(it,num)min_element(begin(),end()),max_element(begiin(),end()) (取最小值最大值) _int128的输入输出STLlist 数…

serdes 同轴电缆和双绞线接法

1、同轴电缆 Coaxial Cable 2、双绞线STP&#xff08;Shielded Twisted Pair&#xff09; 比如我们用的车载camera一般就只需要接一路即可&#xff0c;RIN接camera&#xff0c; RIN-通过电容接地。

Android 使用 GeckoView 并实现 js 交互、权限交互

参考文档&#xff1a; geckoview版本 引入文档&#xff08;有坑 下面会给出正确引入方式&#xff09; 官方示例代码1 官方示例代码2 参考了两位大神的博客和demo&#xff1a; GeckoView js交互实现 geckoview-jsdemo 引入方式&#xff1a; maven {url "https://maven.…

MySQL中的死锁预防和解决

MySQL中的死锁预防和解决 死锁是数据库管理系统中常见的问题&#xff0c;特别是在高并发的应用场景下。MySQL数据库中的死锁会导致事务处理速度减慢&#xff0c;甚至完全停止&#xff0c;因此理解并预防死锁至关重要。本文将详细介绍如何预防MySQL中的死锁&#xff0c;包括常用…

【算法基础实验】图论-深度优先搜索和深度优先路径

深度优先(DFS) 理论基础 深度优先搜索&#xff08;DFS, Depth-First Search&#xff09;是图和树的遍历算法中的一种&#xff0c;它从一个节点开始&#xff0c;沿着树的边走到尽可能深的分支&#xff0c;直到节点没有子节点为止&#xff0c;然后回溯继续搜索下一个分支。DFS …

网络安全实训Day17and18

写在前面 第17和18天都讲的sql注入&#xff0c;故合并 ​​​​​​ 网络空间安全实训-渗透测试 Web渗透 定义 针对Web站点的渗透攻击&#xff0c;以获取网站控制权限为目的 Web渗透的特点 Web技术学习门槛低&#xff0c;更容易实现 Web的普及性决定了Web渗透更容易找到目…

JavaEE 初阶篇-深入了解 I/O 高级流(缓冲流、交换流、数据流和序列化流)

&#x1f525;博客主页&#xff1a; 【小扳_-CSDN博客】 ❤感谢大家点赞&#x1f44d;收藏⭐评论✍ 文章目录 1.0 缓冲流概述 1.1 缓冲流的工作原理 1.2 使用缓冲流的步骤 1.3 字节缓冲流于字符缓冲流的区别 1.4 字节缓冲流的实例 1.5 字符缓冲流的实例 2.0 转换流概述 2.1 字符…

MySQL函数之单行函数

1.前言 我们在使用 SQL 语言的时候&#xff0c;不是直接和这门语言打交道&#xff0c;而是通过它使用不同的数据库软件&#xff0c;即DBMS。DBMS 之间的差异性很大&#xff0c;远大于同一个语言不同版本之间的差异。实际上&#xff0c;只有很少的函数是被 DBMS 同时支持的。比…

MySQL基础知识——MySQL索引

深入浅出索引 索引的意义 索引的意义&#xff1a;在大量数据中&#xff0c;加速访问少量特定数据&#xff1b; 使用索引的前提条件&#xff1a; 1&#xff09;索引块数量小于数据块数量&#xff1b; 2&#xff09;索引键有序&#xff0c;故可以使用二分查找等高效的查找方式&…

go语言并发实战——日志收集系统(十) 重构tailfile模块实现同时监控多个日志文件

前言 在上一篇文章中&#xff0c;我们实现了通过etcd来同时指定多个不同的有关分区与日志文件的路径&#xff0c;但是锁着一次读取配置的增多&#xff0c;不可避免的出现了一个问题&#xff1a;我们如何来监控多个日志文件&#xff0c;这样原来的tailFile模块相对于当下场景就…

前端到全栈进阶之“前端框架”

从前端入门到全栈-系列介绍 你会学到什么&#xff1f; 可能学不到什么东西&#xff0c;该系列是作者本人工作和学习积累&#xff0c;用于复习 系列介绍 现在的 Web 前端已经离不开 Node.js&#xff0c;我们广泛使用的 Babel、Webpack、工程化都是基于 Node 的&#xff0c;各…

【Linux】驱动_2_字符驱动

1. Linux设备分类 字符设备: 指应用程序按字节/字符来读写数据的设备。通常为传真、虚拟终端和串口调制解调器、键盘之类设备提供流通信服务&#xff0c;通常不支持随机存取数据。字符设备在实现时大多不使用缓存器。系统直接从设备读/写每一个字符。块设备: 通常支持随机存取…

【程序分享1】LAMMPS + OVITO + 晶体缺陷识别 + 点缺陷 + 分子动力学模拟

分享2个分子动力学模拟相关的程序。 1. 一种识别体心立方晶体缺陷的新方法。 2. 无后处理的分子动力学模拟中的并行点缺陷识别: lammps的计算和转储方式 。 感谢论文的原作者&#xff01; 第1个程序 关键词&#xff1a; 1. Atomistic simulations, 2. Molecular dynamics…

让客服工作开挂的8个客服办公高效率神器

做客服工作&#xff0c;经常需要写文案&#xff0c;做图片做视频&#xff0c;还要能快捷回复客户&#xff0c;都需要有靠谱的客服办公软件支持&#xff0c;本文介绍了8个高效神器&#xff0c;希望能帮到做客服的亲 前言 做客服工作&#xff0c;在回答客户咨询的同时&#xff0…