AI大模型探索之路-训练篇1:大语言模型微调基础认知

news2024/11/27 12:41:51

文章目录

  • 前言
  • 一、微调技术概述
  • 二、微调的必要性
  • 三、大模型的微调方法
  • 四、微调过程中的技术细节
  • 五、微调后的模型评估与应用
  • 总结


前言

在人工智能的广阔研究领域内,大型预训练语言模型(Large Language Models, LLMs)已经成为推动技术革新的关键因素。这些模型通过在大规模数据集上的预训练过程获得了强大的语言理解和生成能力,使其能够在多种自然语言处理任务中表现出色。然而,由于预训练过程所产生的模型通常具有泛化特性,它们往往无法直接适配到特定的应用场景和细化需求中。为了弥补这一差距,研究人员提出了微调(Fine-tuning)技术。该技术允许模型通过学习额外的、与特定任务相关的数据,从而增强其在特定领域的表现力。本文旨在从专业角度深入探讨大型AI模型微调的概念框架、方法学及其在实际应用中的重要性。
在这里插入图片描述

一、微调技术概述

微调是在预先训练的模型基础上实施的一种有监督的训练策略。为了充分理解微调的应用背景,首先需了解AI大模型的关键使用阶段。以下为AI大模型应用的核心步骤概览:

1)Prompt工程:利用精心设计的自然语言提示指导大模型执行具体任务或解决特定问题。
2)Agent开发:结合大模型的强大能力,构筑各类应用程序,如智能知识库、自助查询系统等。

3)微调:采用有监督学习的方式,基于特定任务的数据对模型进行训练,以优化其预测效果。

4)预训练:通过无监督学习,使模型在大量文本数据上学习语言表示,以便用于后续的任务,如文本续写或分类。
在这里插入图片描述

二、微调的必要性

在这里插入图片描述

GPT-3训练一次的成本约为139.8万美元,而PaLM需要一千多万美元
尽管AI大模型在许多任务中取得了显著的成果,但它们仍然存在一些应用上的缺陷。这些缺陷主要表现在以下几个方面:
1)预训练成本巨大:大规模的模型预训练不仅需要大量的计算资源,同时耗费巨额的资金和时间。
2)行业数据分布的多样性:不同领域的数据分布有着根本的差异性,这导致通用预训练模型难以在所有任务中都达到理想的表现。
3)企业数据安全性:处理敏感的企业私有数据时,如何确保数据的安全性成为了必须解决的问题。
4)Prompt Engineering的高成本:设计有效的Prompt指导大模型完成特定任务过程既耗时又耗力。
5)外部知识的依赖性:大模型需要借助向量数据库等外部知识源来增强其知识储备和应用能力。

针对以上挑战,微调技术提供了一种高效的解决方案。通过对预训练模型进行针对性的微调,可以显著提升其在特定任务上的性能,降低推理成本,并在一定程度上确保企业数据的安全。

三、大模型的微调方法

目前,主流的大模型微调方法主要包含以下几种策略:
**1)全量微调FFT(Full Fine Tuning):**这种方法涉及调整整个模型的所有参数。虽然它可以在一定程度上提高模型性能,但同时也可能带来较高的训练成本和灾难性遗忘的风险。

2)部分参数微调PEFT(Parameter-Efficient Fine Tuning):这种方法仅调整部分参数,从而降低了训练成本。这包括在线模型和离线模型的微调。

在线模型:例如OpenAI发布的模型,可通过标准的微调流程进行调整。
离线模型:采用LoRA、QLoRA、Adapter、Prefix-tuning、P-tuning2、Prompt-tuning等技术进行更高效的微调
在这里插入图片描述
简单代码样例:

# 导入相关库
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

# 加载预训练模型和分词器
model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased")
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")

# 准备数据
inputs = tokenizer("Hello, I am a fine-tuned model.", return_tensors="pt")
labels = torch.tensor([1]).unsqueeze(0)

# 进行部分参数微调
for name, param in model.named_parameters():
    if "layer" in name:  # 只调整特定层数的参数
        param.requires_grad = True
    else:
        param.requires_grad = False

# 进行训练
outputs = model(**inputs, labels=labels)
loss = outputs.loss
loss.backward()
optimizer.step()

四、微调过程中的技术细节

在进行大模型的微调过程中,以下技术细节不容忽视:
1)数据预处理:根据特定任务的需求进行数据清洗与格式化,以确保输入数据的质量和适配性。
2)损失函数设计:根据不同任务的特点选择合适的损失函数,以指导模型优化正确的目标。
3)正则化策略:应用适当的正则化技术如权重衰减、Dropout等,防止过拟合,增强模型的泛化能力。
4)学习率调整:通过精心设计的学习率计划或自适应学习率算法,平衡训练过程中的收敛速度和稳定性。

五、微调后的模型评估与应用

经过微调的模型需要在多个层面进行评估,以保证其在实际环境中的有效性和鲁棒性:
1)性能指标:使用精确度、召回率、F1分数等标准度量来评价模型在特定任务上的表现。
2)实际应用场景测试:将模型部署到真实的应用环境中,检验其在实际操作中的可行性和效率。
3)对抗性测试:评估模型在面对对抗样本时的稳定性,确保其在潜在攻击下仍能保持正确和稳定的输出。


总结

AI大模型的微调作为一项核心技术,已在多个应用场景中证明了其不可或缺的价值。经过微调的预训练模型能够更加精准地适应特定任务,提升性能的同时降低成本。此外,微调后的模型在保护企业数据的隐私性和安全性方面也显示出其优势。随着技术的不断演进和深化,我们有理由相信,AI大模型的微调将在未来的发展中扮演更为关键的角色,并在更广泛的领域内实现其潜在的应用价值。

🔖更多专栏系列文章:AIGC-AI大模型探索之路

文章若有瑕疵,恳请不吝赐教;若有所触动或助益,还望各位老铁多多关注并给予支持。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1625553.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

国产麒麟v10系统下打包electron+vue程序,报错unknown output format set

报错如下: 报错第一时间想到可能是代码配置原因报错,查看代码似乎感觉没啥问题 又查看具体报错原因可能是因为icon的原因报错,后面查阅发现ico在各系统平台会不兼容,也就是ico是给win下使用的,此处改下图标格式就ok&am…

【机器学习】近邻类模型:KNN算法在数据科学中的实践与探索

近邻类模型:KNN算法在数据科学中的实践与探索 一、KNN算法的基本原理二、KNN算法的变种与改进三、KNN算法的Python实践四、总结与展望 在数据科学领域,分类和回归是两大核心问题。随着大数据时代的到来,传统参数化模型在某些复杂场景中已难以…

Selenium IDE 常见错误笔记

错误1:Failed:Exceeded waiting time for new window to appear 2000ms 这个错误通常出现在第一次运行时,有两个原因: Firefox阻止了弹出式窗口,在浏览器设置里允许这个操作即可。 有些网站设置了反扒机制,脚本运行…

数据结构复习指导之队列

文章目录 队列 考纲内容 复习提示 1.队列的基本概念 1.1队列的定义 1.2队列常见的基本操作 1.3重要考点 2.队列的顺序存储结构 2.1队列的顺序存储 2.2循环队列 2.3循环队列的操作 2.4重要考点 3.队列的链式存储结构 3.1队列的链式存储 3.2链式队列的基本操作 3…

LeetCode in Python 48. Rotate Image/Matrix (旋转图像/矩阵)

旋转图像/矩阵的重点是寻找旋转前后对应位置的坐标关系。 示例: 图1 旋转图像/矩阵的输入输出示意图 代码: class Solution:def rotate(self, matrix):n len(matrix)for i in range(n // 2):for j in range(i, n - 1 - i):topleft matrix[i][j]ma…

线上申报开放时间!2024年阜阳市大数据企业培育认定申报条件、流程和材料

2024年阜阳市大数据企业培育认定申报条件、流程和材料,线上申报开放时间整理如下 一、2024年阜阳市大数据企业培育认定申报要求 (一)经营范围 申请认定的企业应当从事以下生产经营活动: 1.从事数据收集、存储、使用、加工、传输、…

Scrapy爬虫框架入门(豆瓣电影Top 250)

文章目录 Scrapy 官网Scrapy 文档GithubScrapy 简介项目结构爬虫实现XPath 教程创建 Scrapy 项目配置用户代理网页 dom 元素 IP 代理池IP代理池作用配置IP代理池申请IP代理池 Scrapy 官网 https://scrapy.org/ Scrapy 文档 https://docs.scrapy.org/en/latest/ Github htt…

快速入门Web开发(中)后端开发(有重点)

你好,我是Qiuner. 为记录自己编程学习过程和帮助别人少走弯路而写博客 这是我的 github gitee 如果本篇文章帮到了你 不妨点个赞吧~ 我会很高兴的 😄 (^ ~ ^) 想看更多 那就点个关注吧 我会尽力带来有趣的内容 CSDN 图片导入做的不是很好,因此如果有没有…

Oracle 数据迁移同步优化(三)

简述 CloudCanal 最近再次对其 Oracle 源端数据同步进行了一系列优化,这些优化基于用户在真实场景中的反馈,具备很强的生产级别参考意义。 本文将简要介绍这些优化项,希望带给读者一些收获。 增量事件 SCN 乱序问题MISSING_SCN 事件干扰新…

信息系统项目管理师0069:数据运维(5信息系统工程—5.2数据工程—5.2.3数据运维)

点击查看专栏目录 文章目录 5.2.3数据运维1.数据存储2.数据备份3.数据容灾4.数据质量评价与控制记忆要点总结5.2.3数据运维 数据开发利用的前提是通过合适的方式将数据保存到存储介质上,并能保证有效的访问,还要通过数据备份和容灾手段,保证数据的高可用性。数据质量管理是在…

让直播和视频通话更精彩的实时换脸神器: 亲妈都未必认识

DeepFacelive:让直播和视频通话更精彩的实时换脸神器! 你是否想在直播或视频通话时,给观众带来惊喜和欢乐?你是否想尝试一下换脸的乐趣,展现出不同的自己?如果你的答案是肯定的,那么你一定不能错…

什么是云手机?云手机有什么用?

过去,我们手中的手机是我们生活、工作、娱乐的得力助手,但随着时代的变迁和技术的发展,我们需要的不仅仅是一部手机,而是一个更强大、更灵活的工具。在这个时候,云手机横空出世,成为了我们手机使用的新选择…

性能工具之 JMeter 自定义 Java Sampler 支持国密 SM2 算法

文章目录 一、前言二、加密接口1、什么是SM22、被测接口加密逻辑 三、准备工作四、JMeter 扩展实现步骤1:准备开发环境步骤2:了解实现方法步骤3:runTest 方法步骤4:getDefaultParameters 方法步骤5:setupTest 方法 五、…

MATLAB 向量

MATLAB 向量 向量是一维数字数组。MATLAB允许创建两种类型的向量 行向量 列向量 行向量 行向量通过将元素集括在方括号中并使用空格或逗号定界元素来创建。 示例 r [7 8 9 10 11] MATLAB将执行上述语句并返回以下结果- r 7 8 9 10 11 列向量 列向量 通过将元素集括在方…

GPU深度学习环境搭建:Win10+CUDA 11.7+Pytorch1.13.1+Anaconda3+python3.10.9

1. 查看显卡驱动及对应cuda版本关系 1.1 显卡驱动和cuda版本信息查看方法 在命令行中输入【nvidia-smi】可以当前显卡驱动版本和cuda版本。 根据显示,显卡驱动版本为:Driver Version: 516.59,CUDA 的版本为:CUDA Version 11.7。 此处我们可以根据下面的表1 显卡驱动和c…

Android Studio实现内容丰富的安卓校园超市

获取源码请点击文章末尾QQ名片联系,源码不免费,尊重创作,尊重劳动 项目代号168 1.开发环境 后端用springboot框架,安卓的用android studio开发 android stuido3.6 jdk1.8 idea mysql tomcat 2.功能介绍 安卓端: 1.注册…

# 从浅入深 学习 SpringCloud 微服务架构(六)Feign(2)

从浅入深 学习 SpringCloud 微服务架构(六)Feign(2) 一、feign 的配置: 1、从 Spring Cloud Edgware 开始,Feign 支持使用属性自定义 Feign。 对于一个指定名称的 FeignClient(例如该 Feign …

迅雷不限速破解方法

背景:现在迅雷和百度云的下载速度真的太恶心了,所以总有大佬可以采用厉害的方法进行破解,在网上看了一圈,很多都是骗人或者是无效的,找了一个靠谱的方法,亲测速度能达到10M以上,非常给力。 以下…

linux部署nacos

1.预备环境准备 Nacos 依赖 Java 环境来运行。如果您是从代码开始构建并运行Nacos,还需要为此配置 Maven环境,请确保是在以下版本环境中安装使用: 64 bit OS,支持 Linux/Unix/Mac/Windows,推荐选用 Linux/Unix/Mac。64 bit JDK …

私有化部署 Llama3 大模型, 支持 API 访问

私有化部署 Llama3 大模型, 支持 API 访问 视频 https://www.bilibili.com/video/BV1wD421n75p/ 前言 原文 https://ducafecat.com/blog/llama3-model-api-local 通过 ollama 本地运行 Llama3 大模型其实对我们开发来说很有意义,你可以私有化放服务上了。 然后通…