🐋动态内存管理
- 🦖动态内存分配存在的意义
- 🦖动态内存函数的介绍
- 🐤malloc和free
- 🐤calloc
- 🐤realloc
- 🦖常见动态内存错误
- 🐤对空指针的解引用操作
- 🐤对动态开辟空间的越界访问
- 🐤对非动态开辟内存使用free
- 🐤使用free释放动态开辟内存的一部分
- 🐤对同一块动态内存多次释放
- 🐤动态开辟的内存忘记释放(内存泄漏)
- 🦖C/C++程序的内存开辟
- 🦖柔性数组
- 🐤柔性数组的特点
- 🐤柔性数组的使用
- 🐤柔性数组的优势
- 🦖结语
🦖动态内存分配存在的意义
我们已经掌握的内存开辟方式有:
int val = 20;//在栈空间上开辟四个字节
char arr[10] = {0};//在栈空间上开辟10个字节的连续空间
但是上述的开辟空间的方式有两个特点:
- 空间开辟大小是固定的。
- 数组在申明的时候,必须指定数组的长度,它所需要的内存在编译时分配。
但是对于空间的需求,不仅仅是上述的情况。有时候我们需要的空间大小在程序运行的时候才能知道,那数组的编译时开辟空间的方式就不能满足了。
这时候就只能试试动态存开辟了。
🦖动态内存函数的介绍
🐤malloc和free
C语言提供了一个动态开辟内存的函数:
void* malloc(size_t size);
这个函数向内存申请一块连续可用的空间,并返回指向这块空间的指针。
- 如果开辟成功,则返回一个指向开辟好空间的指针。
- 如果开辟失败,则返回一个NULL指针,因此malloc的返回值一定要做检查。
- 返回值的类型是 void* ,所以malloc函数并不知道开辟空间的类型,具体在使用的时候使用者自己来决定。
- 如果参数 size 为0,malloc的行为是标准是未定义的,取决于编译器。
C语言提供了另外一个函数free,专门是用来做动态内存的释放和回收的,函数原型如下:
void free(void* ptr);
free函数用来释放动态开辟的内存。
- 如果参数 ptr 指向的空间不是动态开辟的,那free函数的行为是未定义的。
- 如果参数 ptr 是NULL指针,则函数什么事都不做。
malloc和free都声明在stdlib.h头文件中。
举个栗子:
#include <stdio.h>
#include <stdlib.h>
int main()
{
//代码1
int num = 0;
scanf("%d", &num);
int arr[num] = { 0 }; //c89标准不支持变长数组 error, c99才支持的变长数组
//代码2
int* ptr = NULL;
ptr = (int*)malloc(num * sizeof(int));
if (NULL != ptr)//判断ptr指针是否为空
{
int i = 0;
for (i = 0; i < num; i++)
{
*(ptr + i) = 0;
}
}
free(ptr);//释放ptr所指向的动态内存
ptr = NULL;//有必要将ptr置为空指针,free不会将ptr置为空指针,
//避免ptr为野指针,我们使用。
return 0;
}
🐤calloc
C语言还提供了一个函数叫 calloc , calloc 函数也用来动态内存分配。原型如下:
void* calloc (size_t num, size_t size);
- 函数的功能是为 num 个大小为 size 的元素开辟一块空间,并且把空间的每个字节初始化为0。
- 与函数 malloc 的区别只在于 calloc 会在返回地址之前把申请的空间的每个字节初始化为全0。
举个栗子:
#include <stdio.h>
#include <stdlib.h>
int main()
{
int* p = (int*)calloc(10, sizeof(int));
if (NULL != p)
{
//使用空间
}
free(p);
p = NULL;
return 0;
}
所以如何我们对申请的内存空间的内容要求初始化,那么可以很方便的使用calloc函数来完成任务。
🐤realloc
- realloc函数的出现让动态内存管理更加灵活。
- 有时会我们发现过去申请的空间太小了,有时候我们又会觉得申请的空间过大了,那为了合理的分配内存,我们一定会对内存的大小做灵活的调整。那 realloc 函数就可以做到对动态开辟内存大小的调整。
函数原型如下:
void* realloc (void* ptr, size_t size);
- ptr 是要调整的内存地址。
- size 调整之后新大小。
- 返回值为调整之后的内存起始位置。
- 这个函数调整原内存空间大小的基础上,还会将原来内存中的数据移动到新的空间。
- realloc在调整内存空间的是存在两种情况:
-
- 情况1:原有空间之后有足够大的空间。
- 情况1:原有空间之后有足够大的空间。
- 当是情况1 的时候,要扩展内存就直接原有内存之后直接追加空间,原来空间的数据不发生变化。
-
- 情况2:原有空间之后没有足够大的空间。
- 情况2:原有空间之后没有足够大的空间。
- 当是情况2 的时候,原有空间之后没有足够多的空间时,扩展的方法是:在堆空间上另找一个合适大小的连续空间来使用。这样函数返回的是一个新的内存地址。
举个栗子:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main()
{
int* ptr = (int*)malloc(100);
if (ptr != NULL)
{
//业务处理
memset(ptr, 0, 100);
}
else
{
exit(-1);
}
//扩展容量
//代码1
//ptr = (int*)realloc(ptr, 1000);//这样不可以,如果申请失败原来的空间也找不到了
//代码2 //会导致内存泄露。
int* p = NULL;
p = (int*)realloc(ptr, 200);
if (p != NULL)
{
ptr = p;
}
//业务处理
memset(ptr + 25, 1, 100);
free(ptr);
return 0;
}
🦖常见动态内存错误
🐤对空指针的解引用操作
void test()
{
int *p = (int *)malloc(INT_MAX/4);
*p = 20;//如果p的值是NULL,就会有问题
free(p);
}
🐤对动态开辟空间的越界访问
void test()
{
int i = 0;
int *p = (int *)malloc(10*sizeof(int));
if(NULL == p)
{
exit(EXIT_FAILURE);
}
for(i=0; i<=10; i++)
{
*(p+i) = i;//当i是10的时候越界访问
}
free(p);
}
🐤对非动态开辟内存使用free
void test()
{
int a = 10;
int *p = &a;
free(p);//no
}
🐤使用free释放动态开辟内存的一部分
void test()
{
int *p = (int *)malloc(100);
p++;
free(p);//p不再指向动态内存的起始位置,error
}
🐤对同一块动态内存多次释放
void test()
{
int *p = (int *)malloc(100);
free(p);
free(p);//重复释放,对野指针free,error
}
🐤动态开辟的内存忘记释放(内存泄漏)
void test()
{
int *p = (int *)malloc(100);
if(NULL != p)
{
*p = 20;
}
}
int main()
{
while(1) {
test();
}
return 0;
}
忘记释放不再使用的动态开辟的空间会造成内存泄漏。
切记:
动态开辟的空间一定要释放,并且正确释放 。
🦖C/C++程序的内存开辟
C/C++程序内存分配的几个区域:
- 栈区(stack):在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。 栈区主要存放运行函数而分配的局部变量、函数参数、返回数据、返回地址等。
- 堆区(heap):一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。分配方式类似于链表。
- 数据段(静态区)(static)存放全局变量、静态数据。程序结束后由系统释放。
- 代码段:存放函数体(类成员函数和全局函数)的二进制代码。
有了这幅图,我们就可以很好的理解static关键字修饰局部变量的例子了。
实际上普通的局部变量是在栈区分配空间的,栈区的特点是在上面创建的变量出了作用域就销毁。
但是被static修饰的变量存放在数据段(静态区),数据段的特点是在上面创建的变量,直到程序结束才销毁,所以生命周期变长。
🦖柔性数组
也许你从来没有听说过柔性数组(flexible array)这个概念,但是它确实是存在的。
C99 中,结构中的最后一个元素允许是未知大小的数组,这就叫做『柔性数组』成员。
例如:
typedef struct st_type
{
int i;
int a[0];//柔性数组成员
}type_a;
有些编译器会报错无法编译可以改成:
typedef struct st_type
{
int i;
int a[];//柔性数组成员
}type_a;
🐤柔性数组的特点
- 结构中的柔性数组成员前面必须至少一个其他成员。
- sizeof 返回的这种结构大小不包括柔性数组的内存。
- 包含柔性数组成员的结构用malloc ()函数进行内存的动态分配,并且分配的内存应该大于结构的大小,以适应柔性数组的预期大小。
例如:
typedef struct st_type
{
int i;
int a[0];//柔性数组成员
}type_a;
printf("%d\n", sizeof(type_a));//输出的是4
🐤柔性数组的使用
//代码1
int i = 0;
type_a *p = (type_a*)malloc(sizeof(type_a)+100*sizeof(int));
//业务处理
p->i = 100;
for(i=0; i<100; i++)
{
p->a[i] = i;
}
free(p);
这样柔性数组成员a,相当于获得了100个整型元素的连续空间。
🐤柔性数组的优势
上述的 type_a 结构也可以设计为:
//代码2
typedef struct st_type
{
int i;
int *p_a;
}type_a;
type_a *p = (type_a *)malloc(sizeof(type_a));
p->i = 100;
p->p_a = (int *)malloc(p->i*sizeof(int));
//业务处理
for(i=0; i<100; i++)
{
p->p_a[i] = i;
}
//释放空间
free(p->p_a);
p->p_a = NULL;
free(p);
p = NULL;
上述 代码1 和 代码2 可以完成同样的功能,但是 方法1 的实现有两个好处:
第一个好处是:方便内存释放
如果我们的代码是在一个给别人用的函数中,你在里面做了二次内存分配,并把整个结构体返回给用户。用户调用free可以释放结构体,但是用户并不知道这个结构体内的成员也需要free,所以你不能指望用户来发现这个事。所以,如果我们把结构体的内存以及其成员要的内存一次性分配好了,并返回给用户一个结构体指针,用户做一次free就可以把所有的内存也给释放掉。
第二个好处是:这样有利于访问速度.
连续的内存有益于提高访问速度,也有益于减少内存碎片。
在这里分享一个扩展阅读链接里面更加详细的讲解的柔性数组:C语言结构体里的数组和指针
🦖结语
到这里这篇博客已经结束啦。
这份博客👍如果对你有帮助,给博主一个免费的点赞以示鼓励欢迎各位🔎点赞👍评论收藏⭐️,谢谢!!!
如果有什么疑问或不同的见解,欢迎评论区留言欧👀