【树莓派】yolov5 Lite,目标检测,树莓派4B,推理v5lite-e_end2end.onnx,摄像头实时目标检测

news2024/11/19 11:23:10

文章目录

    • YOLOv5 Lite: 在树莓派上轻松运行目标检测
      • 1. 环境配置
      • 2. 克隆项目
      • 3. 安装依赖项
      • 4. 下载模型权重
      • 5. 理解end2end的含义
      • 6. 示例推理
      • 7. 文件介绍
      • 8. 把文件弄到树莓派4B执行
      • 9. 进一步尝试fp16的onnx(行不通)
      • 10. 视频流检测

这里有大概的环境配置:
https://qq742971636.blog.csdn.net/article/details/138048132

yolov5树莓派跑不起来,用yolov5 Lite可以:
https://github.com/ppogg/YOLOv5-Lite

YOLOv5 Lite: 在树莓派上轻松运行目标检测

今天我将向您介绍如何使用YOLOv5 Lite在树莓派上进行目标检测。YOLOv5 Lite是一种轻量级目标检测模型,适用于资源受限的设备,如树莓派。在本文中,我将分享环境配置、项目克隆、模型部署以及示例推理的详细步骤。

1. 环境配置

首先,让我们配置环境以准备部署YOLOv5 Lite。以下是您需要执行的命令:

export http_proxy=http://192.168.3.2:10811
export https_proxy=http://192.168.3.2:10811

2. 克隆项目

接下来,我们将克隆YOLOv5 Lite项目。执行以下命令:

git clone https://github.com/ppogg/YOLOv5-Lite.git

3. 安装依赖项

进入项目目录并安装所需的依赖项:

cd ~/YOLOv5-Lite-master/python_demo/onnxruntime
python3 -m pip install onnx onnxruntime

4. 下载模型权重

现在,让我们下载YOLOv5 Lite的模型权重,您可以通过以下链接获取:

模型权重下载链接

5. 理解end2end的含义

在YOLOv5 Lite中,我们使用end2end方法进行推理。这意味着模型内置了非极大值抑制(NMS),无需额外的后处理步骤。这样可以极大地简化代码并提高推理速度。

在这里插入图片描述

比如对下图的左图推理,可以得到12*6的结果:

在这里插入图片描述

6. 示例推理

在Windows系统上,使用YOLOv5 Lite进行推理非常快速,达到了每秒100帧的速度。这使得它成为在资源受限的设备上进行实时目标检测的理想选择。

推理速度示例

7. 文件介绍

onnx推理不用管太多底层,不像mnn那样,所以更简单一点,经过上面的步骤,我们有如下文件:

(1)v5lite_e_onnx_end2end.py
(2)v5lite-e_end2end.onnx

执行v5lite_e_onnx_end2end.py就可以直接推理任意图片并保存,下图中的所有文件我放这里:

https://docs.qq.com/sheet/DUEdqZ2lmbmR6UVdU?u=bdf8eeb84961492ba2b62f7bfee641ea&tab=BB08J2

在这里插入图片描述

8. 把文件弄到树莓派4B执行

FPS只能达到9,即是每秒大概可以推理9帧图像。因为我们是onnx的fp32的运算,这个运算对树莓派来说还是比较大的,最快看宣传可以达到17帧,需要做一些量化之类的,我这里就不做了。

这是代码执行:
在这里插入图片描述
执行结果保存为save.jpg,打开看到:
在这里插入图片描述

9. 进一步尝试fp16的onnx(行不通)

是否可以使用fp16的onnx推理呢,速度会不会快一些呢,尝试一下,win上安装环境:

pip install onnxmltools  onnxconverter-common

执行python代码:

import onnxmltools
# 加载float16_converter转换器
from onnxmltools.utils.float16_converter import convert_float_to_float16
# 使用onnxmltools.load_model()函数来加载现有的onnx模型
# 但是请确保这个模型是一个fp32的原始模型
onnx_model = onnxmltools.load_model('./v5lite-e_end2end.onnx')
# 使用convert_float_to_float16()函数将fp32模型转换成半精度fp16
onnx_model_fp16 = convert_float_to_float16(onnx_model)
# 使用onnx.utils.save_model()函数来保存,
onnxmltools.utils.save_model(onnx_model_fp16, './v5lite-e_end2end_fp16.onnx')

有警告,但是文件得到了,并且是一半的大小:

在这里插入图片描述
执行推理失败了,说明转换的时候有的nms算子还是不能成功转换的,这一条路堵住了。

在这里插入图片描述

10. 视频流检测

这一步就比较简单了,建立一个文件写点opencv-python的代码,进行usb摄像头检测即可:
在这里插入图片描述

所使用的代码如下,其中v5lite_e_onnx_end2end.py在文档中去搜索获取感谢

import cv2
from v5lite_e_onnx_end2end import yolov5_lite
if __name__ == '__main__':
    # 初始化摄像头
    cap = cv2.VideoCapture(0)  # 0 表示第一个摄像头,如果有多个摄像头,可以尝试不同的索引

    # 加载模型
    modelpath = 'v5lite-e_end2end.onnx'  # 模型路径
    classfile = 'coco.names'  # 类别文件路径
    net = yolov5_lite(modelpath, classfile)  # 加载模型

    # 循环读取摄像头流
    while True:
        ret, frame = cap.read()  # 读取一帧图像
        if not ret:
            break  # 如果没有读取到图像,退出循环

        # 进行检测
        detected_img = net.detect(frame)

        # 显示检测结果
        cv2.imshow('YOLOv5Lite Detection', detected_img)

        # 检测按键,如果按下 q 键则退出循环
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

    # 释放摄像头并关闭所有窗口
    cap.release()
    cv2.destroyAllWindows()

下次博客准备把树莓派系统打包到镜像里去,这样可以免得每次都装半天环境,理论上克隆sd卡里所有内容就复刻了一份所有东西了~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1624621.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

太速科技-多路PCIe的阵列计算全国产化服务器

多路PCIe的阵列计算全国产化服务器 多路PCIe的阵列计算全国产化服务器以国产化处理器(海光、飞腾ARM、算能RSIC V)为主板,扩展6-8路PCIe3.0X4计算卡; 计算卡为全国产化的AI处理卡(瑞星微ARM,算能AI&#x…

【预测】小米汽车电子电气架构的猜想

文章目录 前言 整车EEA 硬件平台 软件平台 总结 参考资料 前言 见《【Review】小米汽车发布会》 整车EEA 小米汽车整车电子电气架构方面的信息,小米官方并没有对外介绍,但是从近日流出的整车BOM和供应商列表中看到,车上各种控制器一个都…

四川易点慧电子商务:抖音小店引领潮流,先进模式打造电商新标杆

在当下数字化浪潮中,电子商务行业如日中天,四川易点慧电子商务有限公司以其独特的视角和前瞻性的战略布局,成功在抖音小店领域崭露头角,成为行业内的佼佼者。本文将深入剖析四川易点慧电子商务的成功秘诀,以及其在抖音…

基于OpenCV的人脸签到系统

效果图 目录文件 camerathread.h 功能实现全写在.h里了 class CameraThread : public QThread {Q_OBJECT public:CameraThread(){//打开序号为0的摄像头m_cap.open(0);if (!m_cap.isOpened()) {qDebug() << "Error: Cannot open camera";}//判断是否有文件,人脸…

OmniPlan Pro for Mac v4.8.0中文激活版 项目流程管理工具

OmniPlan Pro for Mac是一款功能强大的项目管理软件&#xff0c;它以其直观的用户界面和丰富的功能&#xff0c;帮助用户轻松管理各种复杂的项目。 OmniPlan Pro for Mac v4.8.0中文激活版 通过OmniPlan Pro&#xff0c;用户可以轻松创建任务&#xff0c;设置任务的开始和结束时…

【ensp实验】Telnet 协议

目录 Telnet 协议 telnet协议特点 Telnet实验 ​编辑 不使用console口 三种认证模式的区别 Telnet 协议 Telnet 协议是 TCP/IP 协议族中的一员&#xff0c;是 Internet 远程登录服务的标准协议和主要方式。它为用户提供了在本地计算机上完成远程主机工作的能力。在终端使用…

软考-论文写作-论架构风格论文

题目 素材 框架 一、 摘要 2020年12月,我参加了某省政协委员履职系统的开发。该系统为政协机关人员线上开展各项工作以及委员完成各项履职提供了全方位的软件支撑。我在该项目重担任系统架构师一职,负责履职系统的架构设计。本文结合实践,以委员履职系统为例,主要讨论软件…

访问控制列表配置实验

ACL&#xff0c;全称 Access Control List&#xff08;访问控制列表&#xff09;&#xff0c;是一种实现访问控制的机制&#xff0c;用于规定哪些主体&#xff08;如用户、设备、IP地址、进程等&#xff09;可以对哪些资源&#xff08;如网络服务、文件、系统对象等&#xff09…

多组学+机器学习+膀胱癌+分型+建模

这是一个基于多组学机器学习的分型建模文章&#xff0c;这里我们大概介绍一下&#xff0c;这篇文章做了啥 一、研究背景 1、尿路上皮癌是高度恶性的肿瘤&#xff0c;预后差&#xff0c;死亡率高 2、没有明显有效的治疗方法&#xff0c;多数患者在免疫治疗中无法受益&#xf…

STM32H750外设ADC之开始和结束数据转换功能

目录 概述 1 开始转换 1.1 使能ADSTART 1.2 使能JADSTART 1.3 ADSTART 通过硬件清零 2 转换时序 3 停止正在进行的转换&#xff08; ADSTP、 JADSTP&#xff09; 3.1 停止转换功能实现 3.2 停止转换流程图 概述 本文主要讲述了STM32H750外设ADC之开始和结束数据转换…

JavaScript-Vue入门

本文主要测分享Vue的一些基础 Vue简介 Vue.js 是一个构建数据驱动的 web 界面的渐进式框架。它的主要目标是通过尽可能简单的 API 实现响应的数据绑定和组合的视图组件。 下是一些 Vue 的主要特点和概念&#xff1a; 1. 响应式数据绑定&#xff1a;Vue 使用基于 HTML 的模板语法…

Android --- SharedPreferences

SharedPreferences 对应sp文件的接口 使用 SharedPreferences API可以保存的相对较小键值对集合。SharedPreferences 对象指向包含键值对的文件&#xff0c;并提供读写这些键值对的简单方法。每个 SharedPreferences 文件均由框架进行管理&#xff0c;可以是私有文件&#xff…

李沐66_使用注意力机制的seq2seq——自学笔记

加入注意力 1.编码器对每次词的输出作为key和value 2.解码器RNN对上一个词的输出是query 3.注意力的输出和下一个词的词嵌入合并进入RNN 一个带有Bahdanau注意力的循环神经网络编码器-解码器模型 总结 1.seq2seq通过隐状态在编码器和解码器中传递信息 2.注意力机制可以根…

stable diffusion 的controlNet 安装和使用

stable diffusion 安装controlNet需要先下载扩展 扩展地址 下载了扩展以后&#xff0c;需要下载相应的模型&#xff0c;每个模型大约1.45G,可以按需下载。 模型地址 如果下载速度太慢&#xff0c;可以考虑去liblib下载&#xff0c;但是是全量模型 liblib 模型下载完后&#…

使用windows端MySQL创建数据库

1.命令行登录数据库 命令&#xff1a;mysql -u用户名 -p密码&#xff1b; 切记命令后面要以分号结尾 2. 查看和创建数据库 查看数据库命令&#xff1a;show database&#xff1b; 创建数据库命令&#xff1a;mysql> create database db_classes; 创建一个名为db_classes的…

通配符HTTPS安全证书

众多类型的SSL证书&#xff0c;要说适用或者说省钱肯定是通配符了&#xff0c;因为谁都想一本SSL证书包括了整条域名&#xff0c;而且也不用一条一条单独管理。 通配符HTTPS安全证书&#xff0c;其实就是通配符SSL证书&#xff0c;SSL证书主流CA的参数都一样&#xff0c;通配符…

使用riscv-tests进行指令测试(二)

使用riscv-tests进行指令测试&#xff08;二&#xff09; 1 测试用例命名规则2 测试用例dump文件介绍 本文属于《 TinyEMU模拟器基础系列教程》之一&#xff0c;欢迎查看其它文章。 1 测试用例命名规则 用例名称 TVM Name “-” Target Environment Name “-” “指令”…

【论文浅尝】Phi-3-mini:A Highly Capable Language Model Locally on Your Phone

Phi-3-mini phi-3-mini&#xff0c;一个3.8亿个参数的语言模型&#xff0c;训练了3.3万亿个token&#xff0c;其总体性能&#xff0c;通过学术基准和内部测试进行衡量&#xff0c;可以与Mixtral 8x7B和GPT-3.5等模型相媲美(在MMLU上达到69%&#xff0c;在MT-bench上达到8.38)&…

python_django农产品物流信息服务系统6m344

Python 中存在众多的 Web 开发框架&#xff1a;Flask、Django、Tornado、Webpy、Web2py、Bottle、Pyramid、Zope2 等。近几年较为流行的&#xff0c;大概也就是 Flask 和 Django 了 Flask 是一个轻量级的 Web 框架&#xff0c;使用 Python 语言编写&#xff0c;较其他同类型框…

13 如何利用缓存实现万级并发扣减

在上一讲的实现方案里我们讨论了采用纯数据库的扣减实现方案&#xff0c;如果以常规的机器或者 Docker 来进行评估&#xff0c;此方案较难实现单机过万的 TPS。之所以介绍&#xff0c;是想告诉你&#xff0c;架构是面向业务功能、成本、实现难度、时间等因素的取舍&#xff0c;…