C++必修:从C到C++的过渡(下)

news2025/1/18 21:14:28

✨✨ 欢迎大家来到贝蒂大讲堂✨✨

🎈🎈养成好习惯,先赞后看哦~🎈🎈

所属专栏:C++学习
贝蒂的主页:Betty’s blog

1. 缺省参数

1.1. 缺省参数的使用

缺省参数是声明或定义函数时为函数的参数指定一个缺省值。在调用该函数时,如果没有指定实参则采用该形参的缺省值,否则使用指定的实参。

void func(int a = 0)
{
	cout << a << endl;
}
int main()
{
	func();  // 没有传参时,使用参数的默认值,输出0
	func(1); // 传参时,使用指定的实参,输出1
	return 0;
}

img

1.2. 缺省参数的分类

根据其缺省参数的个数,我们我可以将缺省参数分为全缺省半缺省。

1.2.1. 全缺省

每一个参数都有缺省值。

#include<iostream>
using namespace std;
void func(int a = 0,int b = 1,int c = 2)
{
	cout <<"a=" << a << endl;
	cout << "b = " << b << endl;
	cout << "c = " << c << endl;
}
int main()
{
	func();//不穿参数
	func(10,20);//半传参数
	func(10, 20, 30);//全传
	return 0;
}

img

1.2.2. 半缺省

只有一部分参数有缺省值,并且半缺省参数必须从右往左依次来给出,不能间隔着给。

#include<iostream>
using namespace std;
void func(int a ,int b=1,int c=2)
{
	cout <<"a = " << a << endl;
	cout << "b = " << b << endl;
	cout << "c = " << c << endl;
}
int main()
{

	func(10,20);//半传参数
	cout << endl;
	func(10, 20, 30);//全传
	return 0;
}

img

1.2.3. 注意

在使用缺省参数时,我们也要知道一些注意事项:

  1. 传参时不能间隔传参。
void func(int a ,int b=1,int c=2)
{
	cout <<"a = " << a << endl;
	cout << "b = " << b << endl;
	cout << "c = " << c << endl;
}
func(,10,20)//error
  1. 缺省参数不能在函数声明和定义中同时出现
//test.h
void Func(int a = 10);//声明
// test.cpp
void Func(int a = 20)//定义
{}
  1. 缺省值必须是常量或者全局变量。
  2. C语言不支持(编译器不支持)

2. 函数重载

2.1. 函数重载的定义

函数重载是函数的一种特殊情况,C++允许在同一作用域中声明几个功能类似的同名函数,这
些同名函数的形参列表(参数个数 或 类型 或 类型顺序)不同,常用来处理实现功能类似数据类型
不同的问题

2.2. 函数重载的分类

2.2.1. 参数类型不同
int Add(int a, int b)
{
	return a + b;
}
double Add(double a, double b)
{
	return a + b;
}
2.2.2. 参数个数不同
int Add(int a, int b)
{
	return a + b;
}
int Add(int a, int b, int c)
{
	return a + b;
}
2.2.3. 参数类型顺序不同
int Add(char a, int c)
{
	return a + c;
}
int Add(int a, char c)
{
	return a + c;
}

2.3. 注意

  1. 返回值类型不同无法构成函数重载
int Add(int a, int b)
{
	return a + b;
}
double Add(int a,int b)//error
{
	return a + b;
}
  1. 缺省值不同也不能构成函数重载
int Add(int a=1, int b=20)
{
	return a + b;
}
int Add(int a=1, int b=2)//error
{
	return a + b;
}

2.4. 函数名修饰规则

为什么返回值不同,缺省值不同就不能构成函数重载呢?这就要涉及C++的函数名修饰规则。

我们在C语言当中学习编译与链接时就知道C/C++程序运行起来要经历的四个阶段:

  • 预处理:头文件展开、宏替换、条件编译、去掉注释,生成 .i 的文件。.h的文件直接被展开。
  • 编译: 语法检查(语法分析、语义分析、词法分析)、符号汇总、生成汇编代码,生成.s文件。
  • 汇编: 把汇编代码转换为二进制机器码,形成符号表,生成.o文件。符号表里存放定义函数的地址信息。
  • 链接: 合并目标文件、段表,符号表的合并和符号表的重定位,.o格式的目标文件合并到一起,生成.out/.exe文件。

img

我们在调用函数时,就需要去.o文件调用对应的函数地址,然后去调用函数。因为要区分函数重载的相同函数名的函数,所以函数名肯定要被修饰过,并且每个编译器的修饰规则都不一样。而在C语言中就没有这样的修饰规则,所以C语言不支持函数重载。

下面我们可以看看在g++编译下的函数修饰规则:

int Add(int a, int b)
{
	return a + b;
}
void func(int a, double b, int* p)
{
}
int main()
{
	Add(1, 2);
	func(1, 2, NULL);
	return 0;
}

img

g++的函数修饰规则相对较简单:

_Z+函数名长度+每个参数类型

3. 引用

3.1. 引用的概念

引用不是新定义一个变量,而是给已存在变量取了一个别名,编译器不会为引用变量开辟内存空
间,它和它引用的变量共用同一块内存空间 。其语法为:

引用对象类型& 引用变量名(对象名) = 引用实体;

引用类似于指针,因为指向同一块空间,所以改变引用变量引用实体也会改变。

#include<iostream>
using namespace std;
int main()
{
	int a = 1;
	int& b = a;//引用
	cout << &a << endl;
	cout << &b << endl;
	b++;
	cout << a << endl;
	cout << b << endl;
	return 0;
}

img

3.2. 注意

  1. 引用在定义时必须初始化
int&b;//必须初始化
  1. 一个变量可以有多个引用
int a=1;
int&b=a;
int&c=a;//多个引用
  1. 引用一旦引用一个实体,再不能引用其他实体
int a=1;
int&b=a;
b=2;//这时是赋值,相当于a=b=2;

3.3. 常引用

我们可以通过const修饰引用来让其变为常引用。这时引用变量是不能被修改的,并且只能将常变量复杂给常引用,不能将常变量赋值给引用。也可以将变量赋值给常引用。

#include<iostream>
using namespace std;
int main()
{
	const int a = 1;//常变量
	const int& b = a;//right
	int& c = a;//error
	int c = 2;
	const int& d = c;//right
	double pi = 3.14;
	int& e = pi;//error
	//pi是浮点型,赋值给整型类型会发生隐式类型
	//这个隐式类型转换的值是个常变量
	const int& f = pi;
	return 0;
}

3.4. 引用的使用场景

3.4.1. 作为函数的参数
int swap(int& a, int& b)
{
	int tmp = 0;
	tmp = a;
	a = b;
	b = tmp;
}

做参数就可以解决C语言中形参的改变无法影响实参的问题。

3.4.2. 做函数返回值

做函数返回值要注意,返回的值应在出了作用域不被销毁。不能可能出现于野指针类似的问题。

int& Count()
{
	static int n = 0;
	n++;
	return n;
}

3.5. 错误示例

int& Add(int a, int b)
{
	int c = a + b;
	return c;
}
int main()
{
	int& ret = Add(1, 2);
	Add(3, 4);
	cout << ret <<endl;
	return 0;
}//输出什么

img

为什么会输出7呢?那是因为在第二次调用函数Add(3,4)时,会在原来第一次调用Add(1,2)建立栈帧的空间上建立栈帧所以返回值c的值会被重新覆盖,ret值也会发生改变。但因为这块空间出了作用域也会还给操作系统,所以具体结果也是未定义的。

那我们应该如何修改呢?

int Add(int a, int b)
{
	int c = a + b;
	return c;
}
int main()
{
	int ret = Add(1, 2);
	Add(3, 4);
	cout << ret << endl;
	return 0;
}

传值返回在函数栈帧销毁前,会先将返回值拷贝放在寄存器中

3.6. 传值与传引用

以值作为参数或者返回值类型,在传参和返回期间,函数不会直接传递实参或者将变量本身直接返回,而是传递实参或者返回变量的一份临时的拷贝,因此用值作为参数或者返回值类型,效率是非常低下的,尤其是当参数或者返回值类型非常大时,效率就更低。

我们可以通过下列代码观察一下:

#include<iostream>
using namespace std;
#include <time.h>
struct A 
{ 
	int a[10000]; 
};
void TestFunc1(A a) 
{}
void TestFunc2(A& a) 
{
}
void TestRefAndValue()
{
	A a;
	// 以值作为函数参数
	size_t begin1 = clock();
	for (size_t i = 0; i < 100000; ++i)
		TestFunc1(a);
	size_t end1 = clock();
	// 以引用作为函数参数
	size_t begin2 = clock();
	for (size_t i = 0; i < 100000; ++i)
		TestFunc2(a);
	size_t end2 = clock();
	// 分别计算两个函数运行结束后的时间
	cout << "TestFunc1(A)-time:" << end1 - begin1 << endl;
	cout << "TestFunc2(A&)-time:" << end2 - begin2 << endl;
}
int main()
{
	TestRefAndValue();
	return 0;
}

img

3.7. 引用与指针的区别

引用的底层实现与指针其实并没有什么区别。

int main()
{
	int a = 10;
	int& ra = a;
	ra = 20;
	int* pa = &a;
	*pa = 20;
	return 0;
}

我们可以通过代码的汇编观察一下:

img

但是引用与指针还是有些区别。

不同点引用指针
概念变量的别名变量的地址
初始化必须建议
对象引用一个后不能修改可以修改指向对象
大小引用类型的大小在32位平台为4,64位平台为8
多级没有多级引用有多级指针
安全性更安全并不安全

4. 内联函数

在C语言中,无论宏常量还是宏函数都有易出错,无法调试等缺陷。而C++为了弥补这一缺陷,一般用constenum代替宏常量,引入了内联函数的概念代替宏函数。

4.1. 内联函数的定义

以关键字inline修饰的函数叫做内联函数,编译时C++编译器会在调用内联函数的地方展开,没有函数调
用建立栈帧的开销,内联函数提升程序运行的效率。

#include<iostream>
using namespace std;
inline int Add(int x, int y)
{
	return x + y;
}
int main()
{
	Add(1, 2);
	return 0;
}

4.2. 注意

  1. 内联函数是一种以空间换时间的做法,如果编译器将函数当成内联函数处理,在编译阶段,会用函数体替换函数调用。内联函数的优势减少了调用开销,提高程序运行效率,缺陷就是可能会使目标文件变大。
  2. inline对于编译器而言只是一个建议,不同编译器关于inline实现机制可能不同,一般建议:将函数规模较小(即函数不是很长,具体没有准确的说法,取决于编译器内部实现)、不是递归、且频繁调用的函数采用inline修饰,否则编译器会忽略inline特性。
  3. inline不能声明和定义分离,分离会导致链接错误。因为inline被展开,就没有函数地址了,链接就会找不到。
//test.h
inline int Add(int x, int y);
//test.cpp
int Add(int x, int y)
{
	return x + y;
}

因为内联函数会在调用时直接展开,如果声明与定义分离内联函数的地址根本不会进入符号表,链接时就无法找到定义的函数,就会发生链接错误。

5. auto关键字

5.1. auto的简介

在C++中,随着程序越来越复杂,程序所用的类型也越来越复杂。为了简化代码,增加代码的可读性,C++11引入了自动类型推断auto。在C语言中,**auto修饰的变量,是具有自动存储器的局部变量。**但是实用性很小,所以C++11中,标准委员会赋予了auto全新的含义即:auto不再是一个存储类型指示符,而是作为一个新的类型指示符来指示编译器,auto声明的变量必须由编译器在编译时期推导而得

int a = 1;
auto b = a;//自动推断b的类型

5.2. 注意

  1. 用auto声明指针类型时,用auto和auto*没有任何区别,但用auto声明引用类型时则必须加&
int x = 1;
auto a = &x;
auto* b = &x;
auto& c = x;
  1. 当在同一行声明多个变量时,这些变量必须是相同的类型,否则编译器将会报错,因为编译器实际只对第一个类型进行推导,然后用推导出来的类型定义其他变量。
auto a = 1, b = 2;
auto c = 2, d = 3.14;//error
  1. auto不能作为函数的参数或者声明数组
void TestAuto(auto a)
{
    //auto不能推断形参的类型
}

6. 范围for

在C++98之前,我们遍历一个数组,需要按照以下的形式:

#include<iostream>
using namespace std;
int main()
{
	int arr[] = { 1,2,3,4,5 };
	for (int i = 0; i < sizeof(arr) / sizeof(arr[0]); i++)
	{
		cout << arr[i] << endl;
	}
	return 0;
}

但是在C++11,又引入了一种新的遍历方法——范围for。for循环后的括号由冒号“ :”分为两部分:第一部分是范围内用于迭代的变量,第二部分则表示被迭代的范围。

#include<iostream>
using namespace std;
int main()
{
	int arr[] = { 1,2,3,4,5 };
	for (auto e : arr)
	{
		cout << e << endl;
	}
	//取数组arr的值依次赋值给e
	//自动递增,自动判断结束
	return 0;
}

由于e是临时变量,所以要想改变数组的值,需要引用。

#include<iostream>
using namespace std;
int main()
{
	int arr[] = { 1,2,3,4,5 };
	for (auto&e : arr)
	{
		e *= 2;
	}
	return 0;
}
  • 注意:与普通循环类似,可以用continue来结束本次循环,也可以用break来跳出整个循环。

7. nullptr空指针

在C语言中,定义了一个宏NULL,在传统的C头文件(stddef.h)中,可以看到如下代码 :

#ifndef NULL
#ifdef __cplusplus
#define NULL 0
#else
#define NULL ((void *)0)
#endif
#endif

由此我们知道NULL既可以代表数字0,也可以代表空指针。这种模棱两可的定义就可能引出一些问题,比如下面这段代码:

#include<iostream>
using namespace std;
void func(int a)
{
	cout << "func(int)" << endl;
}
void func(int*p)
{
	cout << "func(int*)" << endl;
}
//函数重载
int main()
{
	func(0);
	func(NULL);
	func((int*)NULL);
	return 0;//输出??
}

img
我们的本意可能是将NULL当成一个指针,但是在默认情况下NULL被编译器当做数字0。这种问题是我们并不想看见的,所以C++11引入了nullptr来代替NULL。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1622580.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Nginx】Nginx启动显示80端口占用问题的解决方案

目录 &#x1f305;1. 问题描述 &#x1f30a;2. 解决方案 &#x1f305;1. 问题描述 在启动nginx服务的时候显示内容如下&#xff1a; sudo systemctl status nginx 问题出现原因&#xff1a; 根据日志显示&#xff0c;Nginx 服务启动失败&#xff0c;主要原因是无法绑定…

Oracle Linux 8.8 一键安装 Oracle 11GR2 RAC(231017)

前言 Oracle 一键安装脚本&#xff0c;演示 Oracle Linux 8.8 一键安装 Oracle 11GR2 RAC&#xff08;231017&#xff09;过程&#xff08;全程无需人工干预&#xff09;&#xff1a;&#xff08;脚本包括 ORALCE PSU/OJVM 等补丁自动安装&#xff09; ⭐️ 脚本下载地址&…

热知识:更多团队采用3个及以上内部开发者平台

01 介绍 根据 Perforce Puppet 的一份新报告中&#xff0c;平台工程的采用已经在一些企业内看到了成效&#xff0c;78% 的受访者表示他们的组织拥有专门的平台团队至少三年了。 然而&#xff0c;这并不意味着这些组织只使用同一套工具。四分之三的调查参与者表示&#xff0c;他…

【笔记】头部比例知识

1.三庭五眼 三庭&#xff1a;颅骨-眼睛 五眼&#xff1a;发际线-眉心-鼻底-下巴 2.结构位置 耳朵底部尽量不要超过鼻子底部&#xff0c;耳朵最高点一般是在眉心。 眼睛可以简化为五边形或梯形&#xff0c;但上面的最高点和下面的最高的最好不要平行&#xff0c;而是连起来是…

手撕sql面试题:根据分数进行排名,不使用窗口函数

分享一道面试题&#xff1a; 有一个分数表id 是该表的主键。该表的每一行都包含了一场考试的分数。Score 是一个有两位小数点的浮点值。 以下是表结构和数据&#xff1a; Create table Scores ( id int(11) NOT NULL AUTO_INCREMENT, score DECIMAL(3,2), PRIMARY KEY…

redis中的缓存穿透问题

缓存穿透 缓存穿透问题&#xff1a; 一般请求来到后端&#xff0c;都是先从缓存中查找数据&#xff0c;如果缓存中找不到&#xff0c;才会去数据库中查询数据。 而缓存穿透就是基于这一点&#xff0c;不断发送请求查询不存在的数据&#xff0c;从而使数据库压力过大&#xff…

java-springboot 01 手写springboot

01.springboot 一般都是一个父项目&#xff0c;而后子项目依赖父项目&#xff0c;保持依赖的版本相同 首先创建一个maven的父项目&#xff0c;由于idea更新&#xff0c;所以用Maven Archetype 来创建maven项目 具体的配置&#xff1a; 在已经创建的wzpWriteSpringboot的父mav…

低代码信创开发核心技术(四)动态元数据系统设计

一、概述 在当今快速发展的信息技术领域&#xff0c;动态元数据系统扮演着至关重要的角色。它不仅能够提供数据的描述信息&#xff0c;还能动态地适应业务需求的变化&#xff0c;从而提高系统的灵活性和可扩展性。构建一个动态元数据系统意味着我们可以在不重启系统的情况下&a…

HIL 测试

HIL是什么&#xff1f; 即硬件在环测试&#xff08;Hardware-in-the-Loop Testing&#xff09;&#xff0c;是一种广泛应用于汽车电子控制系统领域的测试方法。它将实际的硬件&#xff08;如ECU、传感器、执行器等&#xff09;与模拟器件&#xff08;如模型、仿真器等&#xf…

企业微信hook接口协议,根据用户id批量获取详细信息

根据用户id批量获取详细信息 参数名必选类型说明uuid是String每个实例的唯一标识&#xff0c;根据uuid操作具体企业微信 请求示例 {"uuid": "3240fde0-45e2-48c0-90e8-cb098d0ebe43","vids":[7881302555913738,1688853794914376] } 返回示例 {&…

内网穿透下的 wordpress 地址冲突问题与 https 下的后台登陆问题

内网穿透下的 wordpress 地址冲突问题与 https 下的后台登陆问题 内网穿透下的地址冲突https 登录管理后台总结 同步发布在个人笔记内网穿透下的 wordpress 地址冲突问题与 https 下的后台登陆问题 笔记记录解决两个 wordpress 相关问题 如果我们使用内网穿透把本地的 wordpre…

着手开发属于自己的第一个Intellij-platform plugin插件程序(三)

开发第一个插件 本节会从0开始构建一个简单的IDE插件&#xff0c;包括插件工程相关的配置。完成后的代码可当做插件开发的基础开发框架使用&#xff0c;这可大大节省新插件开发时工程的构建时间。本节旨在为了在正式学习开发Intellij平台插件之前使开发者对Intellij平台插件的开…

了解DNS洪水攻击

域名系统 (DNS) 服务器是互联网的“电话簿“&#xff1b;互联网设备通过这些服务器来查找特定 Web 服务器以便访问互联网内容。在互联网中&#xff0c;DNS 洪水是一种网络攻击方式。 DNS 洪水攻击是一种分布式拒绝服务 (DDoS) 攻击&#xff0c;攻击者用大量流量淹没某个域的 D…

高效一键改写文章,智能伪原创工具轻松搞定

在信息爆炸的时代&#xff0c;想要高效率的一键改写文章却是很多创作者都想了解的方法。然而在人工智能技术发展的今天&#xff0c;智能伪原创工具的出现&#xff0c;也正是成了广大创作者用来一键改写文章的好方法&#xff0c;因为它的优势&#xff0c;可以为大家轻松完成改写…

java 自动加密解密RequestBodyAdvice和RequestBodyAdvice

自定义注解 package com.han.annotation;import java.lang.annotation.*;Target({ElementType.METHOD,ElementType.TYPE}) Retention(RetentionPolicy.RUNTIME) Documented public interface SecretAnnotation {///是否加密默认falseboolean encode() default false;///是否解…

【Python-闭包】

Python-闭包 ■ 闭包特性■ 简单闭包■ 使用nonlocal关键字修改外部函数的值■ 使用闭包实现ATM小案例 ■ 闭包特性 ■ 简单闭包 def outer(logo):def inner(msg):print(f"<{logo}>{msg}<{logo}>")return innerfn1 outer("程序员") fn1(&quo…

QFD赋能人工智能:打造智能化需求分析与优化新纪元

在科技飞速发展的今天&#xff0c;人工智能(AI)已经渗透到我们生活的方方面面。然而&#xff0c;如何让AI更加贴合用户需求&#xff0c;提供更加精准和个性化的服务&#xff1f;这成为了一个亟待解决的问题。质量功能展开&#xff08;Quality Function Deployment&#xff0c;简…

Unity 实现原神中的元素反应

一、元素反应 原神中共有七种元素&#xff0c;分别是水、火、冰、岩、风、雷、草。这七种元素能互相作用 Demo下载&#xff1a;Download 元素反应表格图示&#xff0c;可能不够精准 /火水雷冰草岩风绽放原激化火/蒸发超载融化燃烧结晶扩散烈绽放/水蒸发/感电冻结/碎冰绽放结晶…

揭秘高效秘诀:并行工作方法论助你事半功倍!

当一个人在一段时间面对多项工作内容的时候&#xff0c;有的人可以顺利高效地完成任务&#xff1b;有的人经过大量的加班也可以完成任务&#xff1b;有的人不用通过加班就能高效地完成任务。 如何高效地完成每项工作内容而实现目标&#xff0c;就变得相当重要了。“并行工作方法…

李宏毅2022机器学习/深度学习 个人笔记(1)

本系列用于推导、记录该系列视频中本人不熟悉、或认为有价值的知识点 本篇记录第一讲&#xff08;选修&#xff09;&#xff1a;神奇宝贝分类 如图&#xff0c;为了估算某个样本属于某类的概率&#xff0c;在二分类问题中&#xff0c;我们需要计算红框所示的4个参数&#xff0…