政安晨:【Keras机器学习示例演绎】(十四)—— 用于弱光图像增强的零 DCE

news2024/12/23 23:49:43

目录

简介

下载 LOL 数据集

创建 TensorFlow 数据集

零 DCE 框架

了解光线增强曲线

DCE-Net

损失函数

色彩恒定损失

曝光损失

光照平滑度损失

空间一致性损失

深度曲线估计模型

训练

推论

测试图像推理


政安晨的个人主页政安晨

欢迎 👍点赞✍评论⭐收藏

收录专栏: TensorFlow与Keras机器学习实战

希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正!

本文目标:实施零参考深度曲线估算,实现低-高。

简介


零参考深度曲线估算(Zero-Reference Deep Curve Estimation 或 Zero-DCE)将低照度图像增强定义为利用深度神经网络估算图像特定色调曲线的任务。

在本示例中,我们训练一个轻量级深度网络 DCE-Net,以估计像素级和高阶色调曲线,从而调整给定图像的动态范围。

Zero-DCE 将低照度图像作为输入,并生成高阶色调曲线作为输出。然后利用这些曲线对输入图像的动态范围进行像素级调整,从而获得增强图像。曲线估算过程可以保持增强图像的范围,并保留相邻像素的对比度。这种曲线估算的灵感来自 Adobe Photoshop 等照片编辑软件中使用的曲线调整,用户可以在整个图像的色调范围内调整点。

Zero-DCE 的吸引力在于其对参考图像的宽松假设:它在训练过程中不需要任何输入/输出图像对。这是通过一组精心制定的非参考损失函数实现的,这些函数隐含地测量增强质量并指导网络的训练。

下载 LOL 数据集


LoL 数据集是为弱光图像增强而创建的。该数据集提供 485 幅图像用于训练,15 幅图像用于测试。数据集中的每对图像都由低照度输入图像和相应的曝光良好的参考图像组成。

import os

os.environ["KERAS_BACKEND"] = "tensorflow"

import random
import numpy as np
from glob import glob
from PIL import Image, ImageOps
import matplotlib.pyplot as plt

import keras
from keras import layers

import tensorflow as tf
!wget https://huggingface.co/datasets/geekyrakshit/LoL-Dataset/resolve/main/lol_dataset.zip
!unzip -q lol_dataset.zip && rm lol_dataset.zip

演绎如下:

--2023-11-20 20:01:50--  https://huggingface.co/datasets/geekyrakshit/LoL-Dataset/resolve/main/lol_dataset.zip
Resolving huggingface.co (huggingface.co)... 3.163.189.74, 3.163.189.90, 3.163.189.114, ...
Connecting to huggingface.co (huggingface.co)|3.163.189.74|:443... connected.
HTTP request sent, awaiting response... 302 Found
Location: https://cdn-lfs.huggingface.co/repos/d9/09/d909ef7668bb417b7065a311bd55a3084cc83a1f918e13cb41c5503328432db2/419fddc48958cd0f5599939ee0248852a37ceb8bb738c9b9525e95b25a89de9a?response-content-disposition=attachment%3B+filename*%3DUTF-8%27%27lol_dataset.zip%3B+filename%3D%22lol_dataset.zip%22%3B&response-content-type=application%2Fzip&Expires=1700769710&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTcwMDc2OTcxMH19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy5odWdnaW5nZmFjZS5jby9yZXBvcy9kOS8wOS9kOTA5ZWY3NjY4YmI0MTdiNzA2NWEzMTFiZDU1YTMwODRjYzgzYTFmOTE4ZTEzY2I0MWM1NTAzMzI4NDMyZGIyLzQxOWZkZGM0ODk1OGNkMGY1NTk5OTM5ZWUwMjQ4ODUyYTM3Y2ViOGJiNzM4YzliOTUyNWU5NWIyNWE4OWRlOWE%7EcmVzcG9uc2UtY29udGVudC1kaXNwb3NpdGlvbj0qJnJlc3BvbnNlLWNvbnRlbnQtdHlwZT0qIn1dfQ__&Signature=VPqHlt0h6mUV7D3alDMIO61VSvUX498wZn5rIpo4u5yTYOu2s9CbO82xeGfrZguIuENVO6yiuoUAlZO4XXDsGC0Gc3MR3KIoTGuI9URA815nrdvFE616XBooGAW200KOUmVj2IoySAufi-7ORPuspaVJoKqWr8wytt0hDpNMeaWSg766kVMkJB1Aywq6yu5KHFGkqvOPDWNZZO6yfOtdX2XfbXVuiaiUlS03gRZ58H9pYn535TrE3BYP4W1u%7EehJ4OACpsRsnrsrXDr--PLH5RsxApOR2neFLySta3LiN9mtdjSpOKGn0oUapDfCWG7Ik5OMB5PGGzQBTB5J0b0O9g__&Key-Pair-Id=KVTP0A1DKRTAX [following]
--2023-11-20 20:01:50--  https://cdn-lfs.huggingface.co/repos/d9/09/d909ef7668bb417b7065a311bd55a3084cc83a1f918e13cb41c5503328432db2/419fddc48958cd0f5599939ee0248852a37ceb8bb738c9b9525e95b25a89de9a?response-content-disposition=attachment%3B+filename*%3DUTF-8%27%27lol_dataset.zip%3B+filename%3D%22lol_dataset.zip%22%3B&response-content-type=application%2Fzip&Expires=1700769710&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTcwMDc2OTcxMH19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy5odWdnaW5nZmFjZS5jby9yZXBvcy9kOS8wOS9kOTA5ZWY3NjY4YmI0MTdiNzA2NWEzMTFiZDU1YTMwODRjYzgzYTFmOTE4ZTEzY2I0MWM1NTAzMzI4NDMyZGIyLzQxOWZkZGM0ODk1OGNkMGY1NTk5OTM5ZWUwMjQ4ODUyYTM3Y2ViOGJiNzM4YzliOTUyNWU5NWIyNWE4OWRlOWE%7EcmVzcG9uc2UtY29udGVudC1kaXNwb3NpdGlvbj0qJnJlc3BvbnNlLWNvbnRlbnQtdHlwZT0qIn1dfQ__&Signature=VPqHlt0h6mUV7D3alDMIO61VSvUX498wZn5rIpo4u5yTYOu2s9CbO82xeGfrZguIuENVO6yiuoUAlZO4XXDsGC0Gc3MR3KIoTGuI9URA815nrdvFE616XBooGAW200KOUmVj2IoySAufi-7ORPuspaVJoKqWr8wytt0hDpNMeaWSg766kVMkJB1Aywq6yu5KHFGkqvOPDWNZZO6yfOtdX2XfbXVuiaiUlS03gRZ58H9pYn535TrE3BYP4W1u%7EehJ4OACpsRsnrsrXDr--PLH5RsxApOR2neFLySta3LiN9mtdjSpOKGn0oUapDfCWG7Ik5OMB5PGGzQBTB5J0b0O9g__&Key-Pair-Id=KVTP0A1DKRTAX
Resolving cdn-lfs.huggingface.co (cdn-lfs.huggingface.co)... 108.138.94.122, 108.138.94.25, 108.138.94.14, ...
Connecting to cdn-lfs.huggingface.co (cdn-lfs.huggingface.co)|108.138.94.122|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 347171015 (331M) [application/zip]
Saving to: ‘lol_dataset.zip’
lol_dataset.zip     100%[===================>] 331.09M  37.4MB/s    in 9.5s    
2023-11-20 20:02:00 (34.9 MB/s) - ‘lol_dataset.zip’ saved [347171015/347171015]

创建 TensorFlow 数据集

我们使用 LoL 数据集训练集中的 300 张弱光图像进行训练,并使用剩余的 185 张弱光图像进行验证。我们将图像大小调整为 256 x 256,以便同时用于训练和验证。请注意,为了训练 DCE-Net,我们不需要相应的增强图像。

IMAGE_SIZE = 256
BATCH_SIZE = 16
MAX_TRAIN_IMAGES = 400


def load_data(image_path):
    image = tf.io.read_file(image_path)
    image = tf.image.decode_png(image, channels=3)
    image = tf.image.resize(images=image, size=[IMAGE_SIZE, IMAGE_SIZE])
    image = image / 255.0
    return image


def data_generator(low_light_images):
    dataset = tf.data.Dataset.from_tensor_slices((low_light_images))
    dataset = dataset.map(load_data, num_parallel_calls=tf.data.AUTOTUNE)
    dataset = dataset.batch(BATCH_SIZE, drop_remainder=True)
    return dataset


train_low_light_images = sorted(glob("./lol_dataset/our485/low/*"))[:MAX_TRAIN_IMAGES]
val_low_light_images = sorted(glob("./lol_dataset/our485/low/*"))[MAX_TRAIN_IMAGES:]
test_low_light_images = sorted(glob("./lol_dataset/eval15/low/*"))


train_dataset = data_generator(train_low_light_images)
val_dataset = data_generator(val_low_light_images)

print("Train Dataset:", train_dataset)
print("Validation Dataset:", val_dataset)

演绎展示:

Train Dataset: <_BatchDataset element_spec=TensorSpec(shape=(16, 256, 256, 3), dtype=tf.float32, name=None)>
Validation Dataset: <_BatchDataset element_spec=TensorSpec(shape=(16, 256, 256, 3), dtype=tf.float32, name=None)>

零 DCE 框架


DCE-Net 的目标是根据输入图像估算出一组最合适的光增强曲线 (LE-curves)。然后,该框架通过迭代应用这些曲线来映射输入图像 RGB 通道的所有像素,从而获得最终的增强图像。

了解光线增强曲线


光线增强曲线是一种能将低照度图像自动映射为增强版本的曲线,其自适应曲线参数完全取决于输入图像。在设计这种曲线时,应考虑三个目标:

× 增强图像的每个像素值都应在归一化范围 [0,1] 内,以避免溢出截断造成信息丢失。
× 它应该是单调的,以保持相邻像素之间的对比度。
× 曲线的形状应尽可能简单,曲线应可微分,以便进行反向传播。

光增强曲线分别应用于三个 RGB 通道,而不是只应用于照明通道。

三通道调整可以更好地保留固有色彩,降低过度饱和的风险。

DCE-Net


DCE-Net 是一种轻量级深度神经网络,可学习输入图像与其最佳拟合曲线参数图之间的映射。DCE-Net 的输入是一幅低亮度图像,而输出则是一组对应高阶曲线的像素曲线参数图。

它是一个由七个卷积层对称连接而成的普通 CNN。每层由 32 个大小为 3×3 和步长为 1 的卷积核组成,然后是 ReLU 激活函数。最后一个卷积层之后是 Tanh 激活函数,该函数在 8 次迭代中产生 24 个参数图,其中每次迭代需要三个通道的三个曲线参数图。

def build_dce_net():
    input_img = keras.Input(shape=[None, None, 3])
    conv1 = layers.Conv2D(
        32, (3, 3), strides=(1, 1), activation="relu", padding="same"
    )(input_img)
    conv2 = layers.Conv2D(
        32, (3, 3), strides=(1, 1), activation="relu", padding="same"
    )(conv1)
    conv3 = layers.Conv2D(
        32, (3, 3), strides=(1, 1), activation="relu", padding="same"
    )(conv2)
    conv4 = layers.Conv2D(
        32, (3, 3), strides=(1, 1), activation="relu", padding="same"
    )(conv3)
    int_con1 = layers.Concatenate(axis=-1)([conv4, conv3])
    conv5 = layers.Conv2D(
        32, (3, 3), strides=(1, 1), activation="relu", padding="same"
    )(int_con1)
    int_con2 = layers.Concatenate(axis=-1)([conv5, conv2])
    conv6 = layers.Conv2D(
        32, (3, 3), strides=(1, 1), activation="relu", padding="same"
    )(int_con2)
    int_con3 = layers.Concatenate(axis=-1)([conv6, conv1])
    x_r = layers.Conv2D(24, (3, 3), strides=(1, 1), activation="tanh", padding="same")(
        int_con3
    )
    return keras.Model(inputs=input_img, outputs=x_r)

损失函数


为了在 DCE-Net 中实现零参考学习,我们使用了一组可微分的零参考损失,以便评估增强图像的质量。

色彩恒定损失


色彩不变性损失用于纠正增强图像中潜在的色彩偏差。

def color_constancy_loss(x):
    mean_rgb = tf.reduce_mean(x, axis=(1, 2), keepdims=True)
    mr, mg, mb = (
        mean_rgb[:, :, :, 0],
        mean_rgb[:, :, :, 1],
        mean_rgb[:, :, :, 2],
    )
    d_rg = tf.square(mr - mg)
    d_rb = tf.square(mr - mb)
    d_gb = tf.square(mb - mg)
    return tf.sqrt(tf.square(d_rg) + tf.square(d_rb) + tf.square(d_gb))

曝光损失


为了抑制曝光不足/曝光过度的区域,我们使用了曝光控制损失。它测量的是局部区域的平均强度值与预设的良好曝光水平(设为 0.6)之间的距离。

def exposure_loss(x, mean_val=0.6):
    x = tf.reduce_mean(x, axis=3, keepdims=True)
    mean = tf.nn.avg_pool2d(x, ksize=16, strides=16, padding="VALID")
    return tf.reduce_mean(tf.square(mean - mean_val))

光照平滑度损失


为了保持相邻像素之间的单调性关系,每个曲线参数图都会添加光照平滑度损失。

def illumination_smoothness_loss(x):
    batch_size = tf.shape(x)[0]
    h_x = tf.shape(x)[1]
    w_x = tf.shape(x)[2]
    count_h = (tf.shape(x)[2] - 1) * tf.shape(x)[3]
    count_w = tf.shape(x)[2] * (tf.shape(x)[3] - 1)
    h_tv = tf.reduce_sum(tf.square((x[:, 1:, :, :] - x[:, : h_x - 1, :, :])))
    w_tv = tf.reduce_sum(tf.square((x[:, :, 1:, :] - x[:, :, : w_x - 1, :])))
    batch_size = tf.cast(batch_size, dtype=tf.float32)
    count_h = tf.cast(count_h, dtype=tf.float32)
    count_w = tf.cast(count_w, dtype=tf.float32)
    return 2 * (h_tv / count_h + w_tv / count_w) / batch_size

空间一致性损失


空间一致性损失通过保持输入图像及其增强版本中相邻区域之间的对比度,促进增强图像的空间一致性。

class SpatialConsistencyLoss(keras.losses.Loss):
    def __init__(self, **kwargs):
        super().__init__(reduction="none")

        self.left_kernel = tf.constant(
            [[[[0, 0, 0]], [[-1, 1, 0]], [[0, 0, 0]]]], dtype=tf.float32
        )
        self.right_kernel = tf.constant(
            [[[[0, 0, 0]], [[0, 1, -1]], [[0, 0, 0]]]], dtype=tf.float32
        )
        self.up_kernel = tf.constant(
            [[[[0, -1, 0]], [[0, 1, 0]], [[0, 0, 0]]]], dtype=tf.float32
        )
        self.down_kernel = tf.constant(
            [[[[0, 0, 0]], [[0, 1, 0]], [[0, -1, 0]]]], dtype=tf.float32
        )

    def call(self, y_true, y_pred):
        original_mean = tf.reduce_mean(y_true, 3, keepdims=True)
        enhanced_mean = tf.reduce_mean(y_pred, 3, keepdims=True)
        original_pool = tf.nn.avg_pool2d(
            original_mean, ksize=4, strides=4, padding="VALID"
        )
        enhanced_pool = tf.nn.avg_pool2d(
            enhanced_mean, ksize=4, strides=4, padding="VALID"
        )

        d_original_left = tf.nn.conv2d(
            original_pool,
            self.left_kernel,
            strides=[1, 1, 1, 1],
            padding="SAME",
        )
        d_original_right = tf.nn.conv2d(
            original_pool,
            self.right_kernel,
            strides=[1, 1, 1, 1],
            padding="SAME",
        )
        d_original_up = tf.nn.conv2d(
            original_pool, self.up_kernel, strides=[1, 1, 1, 1], padding="SAME"
        )
        d_original_down = tf.nn.conv2d(
            original_pool,
            self.down_kernel,
            strides=[1, 1, 1, 1],
            padding="SAME",
        )

        d_enhanced_left = tf.nn.conv2d(
            enhanced_pool,
            self.left_kernel,
            strides=[1, 1, 1, 1],
            padding="SAME",
        )
        d_enhanced_right = tf.nn.conv2d(
            enhanced_pool,
            self.right_kernel,
            strides=[1, 1, 1, 1],
            padding="SAME",
        )
        d_enhanced_up = tf.nn.conv2d(
            enhanced_pool, self.up_kernel, strides=[1, 1, 1, 1], padding="SAME"
        )
        d_enhanced_down = tf.nn.conv2d(
            enhanced_pool,
            self.down_kernel,
            strides=[1, 1, 1, 1],
            padding="SAME",
        )

        d_left = tf.square(d_original_left - d_enhanced_left)
        d_right = tf.square(d_original_right - d_enhanced_right)
        d_up = tf.square(d_original_up - d_enhanced_up)
        d_down = tf.square(d_original_down - d_enhanced_down)
        return d_left + d_right + d_up + d_down

深度曲线估计模型


我们将 Zero-DCE 框架作为 Keras 子类模型来实现。

class ZeroDCE(keras.Model):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.dce_model = build_dce_net()

    def compile(self, learning_rate, **kwargs):
        super().compile(**kwargs)
        self.optimizer = keras.optimizers.Adam(learning_rate=learning_rate)
        self.spatial_constancy_loss = SpatialConsistencyLoss(reduction="none")
        self.total_loss_tracker = keras.metrics.Mean(name="total_loss")
        self.illumination_smoothness_loss_tracker = keras.metrics.Mean(
            name="illumination_smoothness_loss"
        )
        self.spatial_constancy_loss_tracker = keras.metrics.Mean(
            name="spatial_constancy_loss"
        )
        self.color_constancy_loss_tracker = keras.metrics.Mean(
            name="color_constancy_loss"
        )
        self.exposure_loss_tracker = keras.metrics.Mean(name="exposure_loss")

    @property
    def metrics(self):
        return [
            self.total_loss_tracker,
            self.illumination_smoothness_loss_tracker,
            self.spatial_constancy_loss_tracker,
            self.color_constancy_loss_tracker,
            self.exposure_loss_tracker,
        ]

    def get_enhanced_image(self, data, output):
        r1 = output[:, :, :, :3]
        r2 = output[:, :, :, 3:6]
        r3 = output[:, :, :, 6:9]
        r4 = output[:, :, :, 9:12]
        r5 = output[:, :, :, 12:15]
        r6 = output[:, :, :, 15:18]
        r7 = output[:, :, :, 18:21]
        r8 = output[:, :, :, 21:24]
        x = data + r1 * (tf.square(data) - data)
        x = x + r2 * (tf.square(x) - x)
        x = x + r3 * (tf.square(x) - x)
        enhanced_image = x + r4 * (tf.square(x) - x)
        x = enhanced_image + r5 * (tf.square(enhanced_image) - enhanced_image)
        x = x + r6 * (tf.square(x) - x)
        x = x + r7 * (tf.square(x) - x)
        enhanced_image = x + r8 * (tf.square(x) - x)
        return enhanced_image

    def call(self, data):
        dce_net_output = self.dce_model(data)
        return self.get_enhanced_image(data, dce_net_output)

    def compute_losses(self, data, output):
        enhanced_image = self.get_enhanced_image(data, output)
        loss_illumination = 200 * illumination_smoothness_loss(output)
        loss_spatial_constancy = tf.reduce_mean(
            self.spatial_constancy_loss(enhanced_image, data)
        )
        loss_color_constancy = 5 * tf.reduce_mean(color_constancy_loss(enhanced_image))
        loss_exposure = 10 * tf.reduce_mean(exposure_loss(enhanced_image))
        total_loss = (
            loss_illumination
            + loss_spatial_constancy
            + loss_color_constancy
            + loss_exposure
        )

        return {
            "total_loss": total_loss,
            "illumination_smoothness_loss": loss_illumination,
            "spatial_constancy_loss": loss_spatial_constancy,
            "color_constancy_loss": loss_color_constancy,
            "exposure_loss": loss_exposure,
        }

    def train_step(self, data):
        with tf.GradientTape() as tape:
            output = self.dce_model(data)
            losses = self.compute_losses(data, output)

        gradients = tape.gradient(
            losses["total_loss"], self.dce_model.trainable_weights
        )
        self.optimizer.apply_gradients(zip(gradients, self.dce_model.trainable_weights))

        self.total_loss_tracker.update_state(losses["total_loss"])
        self.illumination_smoothness_loss_tracker.update_state(
            losses["illumination_smoothness_loss"]
        )
        self.spatial_constancy_loss_tracker.update_state(
            losses["spatial_constancy_loss"]
        )
        self.color_constancy_loss_tracker.update_state(losses["color_constancy_loss"])
        self.exposure_loss_tracker.update_state(losses["exposure_loss"])

        return {metric.name: metric.result() for metric in self.metrics}

    def test_step(self, data):
        output = self.dce_model(data)
        losses = self.compute_losses(data, output)

        self.total_loss_tracker.update_state(losses["total_loss"])
        self.illumination_smoothness_loss_tracker.update_state(
            losses["illumination_smoothness_loss"]
        )
        self.spatial_constancy_loss_tracker.update_state(
            losses["spatial_constancy_loss"]
        )
        self.color_constancy_loss_tracker.update_state(losses["color_constancy_loss"])
        self.exposure_loss_tracker.update_state(losses["exposure_loss"])

        return {metric.name: metric.result() for metric in self.metrics}

    def save_weights(self, filepath, overwrite=True, save_format=None, options=None):
        """While saving the weights, we simply save the weights of the DCE-Net"""
        self.dce_model.save_weights(
            filepath,
            overwrite=overwrite,
            save_format=save_format,
            options=options,
        )

    def load_weights(self, filepath, by_name=False, skip_mismatch=False, options=None):
        """While loading the weights, we simply load the weights of the DCE-Net"""
        self.dce_model.load_weights(
            filepath=filepath,
            by_name=by_name,
            skip_mismatch=skip_mismatch,
            options=options,
        )

训练

zero_dce_model = ZeroDCE()
zero_dce_model.compile(learning_rate=1e-4)
history = zero_dce_model.fit(train_dataset, validation_data=val_dataset, epochs=100)


def plot_result(item):
    plt.plot(history.history[item], label=item)
    plt.plot(history.history["val_" + item], label="val_" + item)
    plt.xlabel("Epochs")
    plt.ylabel(item)
    plt.title("Train and Validation {} Over Epochs".format(item), fontsize=14)
    plt.legend()
    plt.grid()
    plt.show()


plot_result("total_loss")
plot_result("illumination_smoothness_loss")
plot_result("spatial_constancy_loss")
plot_result("color_constancy_loss")
plot_result("exposure_loss")

演绎展示:

Epoch 1/100
  2/25 ━[37m━━━━━━━━━━━━━━━━━━━  1s 85ms/step - color_constancy_loss: 0.0013 - exposure_loss: 3.0376 - illumination_smoothness_loss: 2.5211 - spatial_constancy_loss: 4.6834e-07 - total_loss: 5.5601     

WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1700510538.106578 3409375 device_compiler.h:187] Compiled cluster using XLA!  This line is logged at most once for the lifetime of the process.

 25/25 ━━━━━━━━━━━━━━━━━━━━ 16s 123ms/step - color_constancy_loss: 0.0029 - exposure_loss: 2.9968 - illumination_smoothness_loss: 2.1813 - spatial_constancy_loss: 1.8559e-06 - total_loss: 5.1810 - val_color_constancy_loss: 0.0023 - val_exposure_loss: 2.9489 - val_illumination_smoothness_loss: 2.7063 - val_spatial_constancy_loss: 5.0979e-06 - val_total_loss: 5.6575
Epoch 2/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0030 - exposure_loss: 2.9854 - illumination_smoothness_loss: 1.2876 - spatial_constancy_loss: 6.1811e-06 - total_loss: 4.2759 - val_color_constancy_loss: 0.0023 - val_exposure_loss: 2.9381 - val_illumination_smoothness_loss: 1.8299 - val_spatial_constancy_loss: 1.3742e-05 - val_total_loss: 4.7703
Epoch 3/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0031 - exposure_loss: 2.9746 - illumination_smoothness_loss: 0.8735 - spatial_constancy_loss: 1.6664e-05 - total_loss: 3.8512 - val_color_constancy_loss: 0.0024 - val_exposure_loss: 2.9255 - val_illumination_smoothness_loss: 1.3135 - val_spatial_constancy_loss: 3.1783e-05 - val_total_loss: 4.2414
Epoch 4/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0032 - exposure_loss: 2.9623 - illumination_smoothness_loss: 0.6259 - spatial_constancy_loss: 3.7938e-05 - total_loss: 3.5914 - val_color_constancy_loss: 0.0025 - val_exposure_loss: 2.9118 - val_illumination_smoothness_loss: 0.9835 - val_spatial_constancy_loss: 6.1902e-05 - val_total_loss: 3.8979
Epoch 5/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0033 - exposure_loss: 2.9493 - illumination_smoothness_loss: 0.4700 - spatial_constancy_loss: 7.2080e-05 - total_loss: 3.4226 - val_color_constancy_loss: 0.0026 - val_exposure_loss: 2.8976 - val_illumination_smoothness_loss: 0.7751 - val_spatial_constancy_loss: 1.0500e-04 - val_total_loss: 3.6754
Epoch 6/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0034 - exposure_loss: 2.9358 - illumination_smoothness_loss: 0.3693 - spatial_constancy_loss: 1.1878e-04 - total_loss: 3.3086 - val_color_constancy_loss: 0.0027 - val_exposure_loss: 2.8829 - val_illumination_smoothness_loss: 0.6316 - val_spatial_constancy_loss: 1.6075e-04 - val_total_loss: 3.5173
Epoch 7/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 65ms/step - color_constancy_loss: 0.0036 - exposure_loss: 2.9219 - illumination_smoothness_loss: 0.2996 - spatial_constancy_loss: 1.7723e-04 - total_loss: 3.2252 - val_color_constancy_loss: 0.0028 - val_exposure_loss: 2.8660 - val_illumination_smoothness_loss: 0.5261 - val_spatial_constancy_loss: 2.3790e-04 - val_total_loss: 3.3951
Epoch 8/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0037 - exposure_loss: 2.9056 - illumination_smoothness_loss: 0.2486 - spatial_constancy_loss: 2.5932e-04 - total_loss: 3.1582 - val_color_constancy_loss: 0.0029 - val_exposure_loss: 2.8466 - val_illumination_smoothness_loss: 0.4454 - val_spatial_constancy_loss: 3.4372e-04 - val_total_loss: 3.2952
Epoch 9/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0039 - exposure_loss: 2.8872 - illumination_smoothness_loss: 0.2110 - spatial_constancy_loss: 3.6800e-04 - total_loss: 3.1025 - val_color_constancy_loss: 0.0031 - val_exposure_loss: 2.8244 - val_illumination_smoothness_loss: 0.3853 - val_spatial_constancy_loss: 4.8290e-04 - val_total_loss: 3.2132
Epoch 10/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0041 - exposure_loss: 2.8665 - illumination_smoothness_loss: 0.1846 - spatial_constancy_loss: 5.0693e-04 - total_loss: 3.0558 - val_color_constancy_loss: 0.0033 - val_exposure_loss: 2.8002 - val_illumination_smoothness_loss: 0.3395 - val_spatial_constancy_loss: 6.5965e-04 - val_total_loss: 3.1436
Epoch 11/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0044 - exposure_loss: 2.8440 - illumination_smoothness_loss: 0.1654 - spatial_constancy_loss: 6.8036e-04 - total_loss: 3.0145 - val_color_constancy_loss: 0.0035 - val_exposure_loss: 2.7749 - val_illumination_smoothness_loss: 0.3031 - val_spatial_constancy_loss: 8.6824e-04 - val_total_loss: 3.0824
Epoch 12/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0047 - exposure_loss: 2.8198 - illumination_smoothness_loss: 0.1512 - spatial_constancy_loss: 8.9387e-04 - total_loss: 2.9765 - val_color_constancy_loss: 0.0038 - val_exposure_loss: 2.7463 - val_illumination_smoothness_loss: 0.2753 - val_spatial_constancy_loss: 0.0011 - val_total_loss: 3.0265
Epoch 13/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0050 - exposure_loss: 2.7928 - illumination_smoothness_loss: 0.1408 - spatial_constancy_loss: 0.0012 - total_loss: 2.9398 - val_color_constancy_loss: 0.0041 - val_exposure_loss: 2.7132 - val_illumination_smoothness_loss: 0.2537 - val_spatial_constancy_loss: 0.0015 - val_total_loss: 2.9724
Epoch 14/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0054 - exposure_loss: 2.7600 - illumination_smoothness_loss: 0.1340 - spatial_constancy_loss: 0.0016 - total_loss: 2.9009 - val_color_constancy_loss: 0.0045 - val_exposure_loss: 2.6673 - val_illumination_smoothness_loss: 0.2389 - val_spatial_constancy_loss: 0.0021 - val_total_loss: 2.9129
Epoch 15/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0060 - exposure_loss: 2.7115 - illumination_smoothness_loss: 0.1314 - spatial_constancy_loss: 0.0022 - total_loss: 2.8512 - val_color_constancy_loss: 0.0055 - val_exposure_loss: 2.5820 - val_illumination_smoothness_loss: 0.2374 - val_spatial_constancy_loss: 0.0035 - val_total_loss: 2.8284
Epoch 16/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0075 - exposure_loss: 2.6129 - illumination_smoothness_loss: 0.1414 - spatial_constancy_loss: 0.0041 - total_loss: 2.7660 - val_color_constancy_loss: 0.0081 - val_exposure_loss: 2.3797 - val_illumination_smoothness_loss: 0.2453 - val_spatial_constancy_loss: 0.0083 - val_total_loss: 2.6414
Epoch 17/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0128 - exposure_loss: 2.3149 - illumination_smoothness_loss: 0.1766 - spatial_constancy_loss: 0.0148 - total_loss: 2.5190 - val_color_constancy_loss: 0.0286 - val_exposure_loss: 1.5060 - val_illumination_smoothness_loss: 0.3288 - val_spatial_constancy_loss: 0.0648 - val_total_loss: 1.9282
Epoch 18/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0505 - exposure_loss: 1.3386 - illumination_smoothness_loss: 0.2606 - spatial_constancy_loss: 0.1196 - total_loss: 1.7693 - val_color_constancy_loss: 0.0827 - val_exposure_loss: 0.6645 - val_illumination_smoothness_loss: 0.2964 - val_spatial_constancy_loss: 0.2687 - val_total_loss: 1.3123
Epoch 19/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0873 - exposure_loss: 0.8174 - illumination_smoothness_loss: 0.2378 - spatial_constancy_loss: 0.2577 - total_loss: 1.4002 - val_color_constancy_loss: 0.0861 - val_exposure_loss: 0.6856 - val_illumination_smoothness_loss: 0.2464 - val_spatial_constancy_loss: 0.2539 - val_total_loss: 1.2719
Epoch 20/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0753 - exposure_loss: 0.8584 - illumination_smoothness_loss: 0.1858 - spatial_constancy_loss: 0.2394 - total_loss: 1.3589 - val_color_constancy_loss: 0.0882 - val_exposure_loss: 0.6714 - val_illumination_smoothness_loss: 0.2195 - val_spatial_constancy_loss: 0.2620 - val_total_loss: 1.2410
Epoch 21/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0779 - exposure_loss: 0.8382 - illumination_smoothness_loss: 0.1706 - spatial_constancy_loss: 0.2486 - total_loss: 1.3354 - val_color_constancy_loss: 0.0886 - val_exposure_loss: 0.6648 - val_illumination_smoothness_loss: 0.2072 - val_spatial_constancy_loss: 0.2643 - val_total_loss: 1.2249
Epoch 22/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0784 - exposure_loss: 0.8337 - illumination_smoothness_loss: 0.1590 - spatial_constancy_loss: 0.2502 - total_loss: 1.3212 - val_color_constancy_loss: 0.0889 - val_exposure_loss: 0.6647 - val_illumination_smoothness_loss: 0.1934 - val_spatial_constancy_loss: 0.2653 - val_total_loss: 1.2122
Epoch 23/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0783 - exposure_loss: 0.8329 - illumination_smoothness_loss: 0.1498 - spatial_constancy_loss: 0.2508 - total_loss: 1.3118 - val_color_constancy_loss: 0.0897 - val_exposure_loss: 0.6602 - val_illumination_smoothness_loss: 0.1834 - val_spatial_constancy_loss: 0.2671 - val_total_loss: 1.2003
Epoch 24/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0787 - exposure_loss: 0.8283 - illumination_smoothness_loss: 0.1426 - spatial_constancy_loss: 0.2529 - total_loss: 1.3025 - val_color_constancy_loss: 0.0897 - val_exposure_loss: 0.6601 - val_illumination_smoothness_loss: 0.1754 - val_spatial_constancy_loss: 0.2671 - val_total_loss: 1.1923
Epoch 25/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0785 - exposure_loss: 0.8294 - illumination_smoothness_loss: 0.1365 - spatial_constancy_loss: 0.2524 - total_loss: 1.2968 - val_color_constancy_loss: 0.0902 - val_exposure_loss: 0.6562 - val_illumination_smoothness_loss: 0.1672 - val_spatial_constancy_loss: 0.2692 - val_total_loss: 1.1828
Epoch 26/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0793 - exposure_loss: 0.8229 - illumination_smoothness_loss: 0.1316 - spatial_constancy_loss: 0.2554 - total_loss: 1.2892 - val_color_constancy_loss: 0.0896 - val_exposure_loss: 0.6567 - val_illumination_smoothness_loss: 0.1606 - val_spatial_constancy_loss: 0.2699 - val_total_loss: 1.1768
Epoch 27/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 65ms/step - color_constancy_loss: 0.0788 - exposure_loss: 0.8285 - illumination_smoothness_loss: 0.1238 - spatial_constancy_loss: 0.2534 - total_loss: 1.2845 - val_color_constancy_loss: 0.0906 - val_exposure_loss: 0.6519 - val_illumination_smoothness_loss: 0.1574 - val_spatial_constancy_loss: 0.2725 - val_total_loss: 1.1724
Epoch 28/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0794 - exposure_loss: 0.8247 - illumination_smoothness_loss: 0.1194 - spatial_constancy_loss: 0.2550 - total_loss: 1.2785 - val_color_constancy_loss: 0.0914 - val_exposure_loss: 0.6451 - val_illumination_smoothness_loss: 0.1542 - val_spatial_constancy_loss: 0.2783 - val_total_loss: 1.1689
Epoch 29/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0797 - exposure_loss: 0.8203 - illumination_smoothness_loss: 0.1139 - spatial_constancy_loss: 0.2577 - total_loss: 1.2715 - val_color_constancy_loss: 0.0914 - val_exposure_loss: 0.6468 - val_illumination_smoothness_loss: 0.1435 - val_spatial_constancy_loss: 0.2775 - val_total_loss: 1.1592
Epoch 30/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0795 - exposure_loss: 0.8199 - illumination_smoothness_loss: 0.1083 - spatial_constancy_loss: 0.2581 - total_loss: 1.2659 - val_color_constancy_loss: 0.0911 - val_exposure_loss: 0.6483 - val_illumination_smoothness_loss: 0.1336 - val_spatial_constancy_loss: 0.2768 - val_total_loss: 1.1498
Epoch 31/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0797 - exposure_loss: 0.8194 - illumination_smoothness_loss: 0.1037 - spatial_constancy_loss: 0.2589 - total_loss: 1.2617 - val_color_constancy_loss: 0.0912 - val_exposure_loss: 0.6483 - val_illumination_smoothness_loss: 0.1289 - val_spatial_constancy_loss: 0.2772 - val_total_loss: 1.1456
Epoch 32/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0794 - exposure_loss: 0.8226 - illumination_smoothness_loss: 0.0982 - spatial_constancy_loss: 0.2578 - total_loss: 1.2580 - val_color_constancy_loss: 0.0923 - val_exposure_loss: 0.6421 - val_illumination_smoothness_loss: 0.1251 - val_spatial_constancy_loss: 0.2814 - val_total_loss: 1.1409
Epoch 33/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0801 - exposure_loss: 0.8188 - illumination_smoothness_loss: 0.0939 - spatial_constancy_loss: 0.2601 - total_loss: 1.2529 - val_color_constancy_loss: 0.0934 - val_exposure_loss: 0.6367 - val_illumination_smoothness_loss: 0.1261 - val_spatial_constancy_loss: 0.2853 - val_total_loss: 1.1416
Epoch 34/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0802 - exposure_loss: 0.8173 - illumination_smoothness_loss: 0.0889 - spatial_constancy_loss: 0.2611 - total_loss: 1.2475 - val_color_constancy_loss: 0.0941 - val_exposure_loss: 0.6326 - val_illumination_smoothness_loss: 0.1227 - val_spatial_constancy_loss: 0.2883 - val_total_loss: 1.1378
Epoch 35/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 65ms/step - color_constancy_loss: 0.0807 - exposure_loss: 0.8134 - illumination_smoothness_loss: 0.0844 - spatial_constancy_loss: 0.2632 - total_loss: 1.2418 - val_color_constancy_loss: 0.0946 - val_exposure_loss: 0.6312 - val_illumination_smoothness_loss: 0.1180 - val_spatial_constancy_loss: 0.2893 - val_total_loss: 1.1330
Epoch 36/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0808 - exposure_loss: 0.8119 - illumination_smoothness_loss: 0.0798 - spatial_constancy_loss: 0.2644 - total_loss: 1.2368 - val_color_constancy_loss: 0.0941 - val_exposure_loss: 0.6351 - val_illumination_smoothness_loss: 0.1096 - val_spatial_constancy_loss: 0.2865 - val_total_loss: 1.1253
Epoch 37/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0807 - exposure_loss: 0.8127 - illumination_smoothness_loss: 0.0759 - spatial_constancy_loss: 0.2637 - total_loss: 1.2330 - val_color_constancy_loss: 0.0949 - val_exposure_loss: 0.6295 - val_illumination_smoothness_loss: 0.1088 - val_spatial_constancy_loss: 0.2904 - val_total_loss: 1.1237
Epoch 38/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0812 - exposure_loss: 0.8091 - illumination_smoothness_loss: 0.0732 - spatial_constancy_loss: 0.2658 - total_loss: 1.2293 - val_color_constancy_loss: 0.0946 - val_exposure_loss: 0.6313 - val_illumination_smoothness_loss: 0.1022 - val_spatial_constancy_loss: 0.2893 - val_total_loss: 1.1174
Epoch 39/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0810 - exposure_loss: 0.8100 - illumination_smoothness_loss: 0.0694 - spatial_constancy_loss: 0.2655 - total_loss: 1.2259 - val_color_constancy_loss: 0.0953 - val_exposure_loss: 0.6278 - val_illumination_smoothness_loss: 0.1015 - val_spatial_constancy_loss: 0.2918 - val_total_loss: 1.1164
Epoch 40/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0813 - exposure_loss: 0.8077 - illumination_smoothness_loss: 0.0668 - spatial_constancy_loss: 0.2668 - total_loss: 1.2226 - val_color_constancy_loss: 0.0951 - val_exposure_loss: 0.6294 - val_illumination_smoothness_loss: 0.0950 - val_spatial_constancy_loss: 0.2907 - val_total_loss: 1.1103
Epoch 41/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0814 - exposure_loss: 0.8074 - illumination_smoothness_loss: 0.0639 - spatial_constancy_loss: 0.2669 - total_loss: 1.2195 - val_color_constancy_loss: 0.0955 - val_exposure_loss: 0.6263 - val_illumination_smoothness_loss: 0.0946 - val_spatial_constancy_loss: 0.2930 - val_total_loss: 1.1093
Epoch 42/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0816 - exposure_loss: 0.8056 - illumination_smoothness_loss: 0.0613 - spatial_constancy_loss: 0.2684 - total_loss: 1.2168 - val_color_constancy_loss: 0.0950 - val_exposure_loss: 0.6304 - val_illumination_smoothness_loss: 0.0876 - val_spatial_constancy_loss: 0.2900 - val_total_loss: 1.1031
Epoch 43/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0813 - exposure_loss: 0.8074 - illumination_smoothness_loss: 0.0582 - spatial_constancy_loss: 0.2671 - total_loss: 1.2140 - val_color_constancy_loss: 0.0953 - val_exposure_loss: 0.6271 - val_illumination_smoothness_loss: 0.0859 - val_spatial_constancy_loss: 0.2925 - val_total_loss: 1.1008
Epoch 44/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0816 - exposure_loss: 0.8048 - illumination_smoothness_loss: 0.0564 - spatial_constancy_loss: 0.2687 - total_loss: 1.2115 - val_color_constancy_loss: 0.0956 - val_exposure_loss: 0.6266 - val_illumination_smoothness_loss: 0.0837 - val_spatial_constancy_loss: 0.2930 - val_total_loss: 1.0988
Epoch 45/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0816 - exposure_loss: 0.8045 - illumination_smoothness_loss: 0.0541 - spatial_constancy_loss: 0.2690 - total_loss: 1.2093 - val_color_constancy_loss: 0.0955 - val_exposure_loss: 0.6275 - val_illumination_smoothness_loss: 0.0796 - val_spatial_constancy_loss: 0.2923 - val_total_loss: 1.0949
Epoch 46/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0816 - exposure_loss: 0.8043 - illumination_smoothness_loss: 0.0517 - spatial_constancy_loss: 0.2691 - total_loss: 1.2067 - val_color_constancy_loss: 0.0959 - val_exposure_loss: 0.6245 - val_illumination_smoothness_loss: 0.0790 - val_spatial_constancy_loss: 0.2945 - val_total_loss: 1.0939
Epoch 47/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0819 - exposure_loss: 0.8025 - illumination_smoothness_loss: 0.0505 - spatial_constancy_loss: 0.2701 - total_loss: 1.2050 - val_color_constancy_loss: 0.0960 - val_exposure_loss: 0.6242 - val_illumination_smoothness_loss: 0.0764 - val_spatial_constancy_loss: 0.2949 - val_total_loss: 1.0914
Epoch 48/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0819 - exposure_loss: 0.8021 - illumination_smoothness_loss: 0.0482 - spatial_constancy_loss: 0.2706 - total_loss: 1.2027 - val_color_constancy_loss: 0.0957 - val_exposure_loss: 0.6262 - val_illumination_smoothness_loss: 0.0721 - val_spatial_constancy_loss: 0.2934 - val_total_loss: 1.0874
Epoch 49/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0818 - exposure_loss: 0.8027 - illumination_smoothness_loss: 0.0463 - spatial_constancy_loss: 0.2702 - total_loss: 1.2010 - val_color_constancy_loss: 0.0959 - val_exposure_loss: 0.6244 - val_illumination_smoothness_loss: 0.0712 - val_spatial_constancy_loss: 0.2947 - val_total_loss: 1.0863
Epoch 50/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0820 - exposure_loss: 0.8015 - illumination_smoothness_loss: 0.0446 - spatial_constancy_loss: 0.2711 - total_loss: 1.1992 - val_color_constancy_loss: 0.0959 - val_exposure_loss: 0.6248 - val_illumination_smoothness_loss: 0.0688 - val_spatial_constancy_loss: 0.2945 - val_total_loss: 1.0839
Epoch 51/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0819 - exposure_loss: 0.8019 - illumination_smoothness_loss: 0.0429 - spatial_constancy_loss: 0.2707 - total_loss: 1.1974 - val_color_constancy_loss: 0.0964 - val_exposure_loss: 0.6224 - val_illumination_smoothness_loss: 0.0677 - val_spatial_constancy_loss: 0.2964 - val_total_loss: 1.0829
Epoch 52/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0823 - exposure_loss: 0.7996 - illumination_smoothness_loss: 0.0416 - spatial_constancy_loss: 0.2721 - total_loss: 1.1955 - val_color_constancy_loss: 0.0958 - val_exposure_loss: 0.6240 - val_illumination_smoothness_loss: 0.0644 - val_spatial_constancy_loss: 0.2951 - val_total_loss: 1.0793
Epoch 53/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0822 - exposure_loss: 0.8004 - illumination_smoothness_loss: 0.0399 - spatial_constancy_loss: 0.2717 - total_loss: 1.1941 - val_color_constancy_loss: 0.0960 - val_exposure_loss: 0.6234 - val_illumination_smoothness_loss: 0.0633 - val_spatial_constancy_loss: 0.2957 - val_total_loss: 1.0785
Epoch 54/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0823 - exposure_loss: 0.7997 - illumination_smoothness_loss: 0.0382 - spatial_constancy_loss: 0.2723 - total_loss: 1.1924 - val_color_constancy_loss: 0.0959 - val_exposure_loss: 0.6242 - val_illumination_smoothness_loss: 0.0591 - val_spatial_constancy_loss: 0.2951 - val_total_loss: 1.0744
Epoch 55/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0822 - exposure_loss: 0.7999 - illumination_smoothness_loss: 0.0362 - spatial_constancy_loss: 0.2721 - total_loss: 1.1904 - val_color_constancy_loss: 0.0965 - val_exposure_loss: 0.6211 - val_illumination_smoothness_loss: 0.0603 - val_spatial_constancy_loss: 0.2974 - val_total_loss: 1.0754
Epoch 56/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0825 - exposure_loss: 0.7983 - illumination_smoothness_loss: 0.0351 - spatial_constancy_loss: 0.2732 - total_loss: 1.1890 - val_color_constancy_loss: 0.0960 - val_exposure_loss: 0.6237 - val_illumination_smoothness_loss: 0.0547 - val_spatial_constancy_loss: 0.2955 - val_total_loss: 1.0699
Epoch 57/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0823 - exposure_loss: 0.7987 - illumination_smoothness_loss: 0.0331 - spatial_constancy_loss: 0.2730 - total_loss: 1.1871 - val_color_constancy_loss: 0.0963 - val_exposure_loss: 0.6236 - val_illumination_smoothness_loss: 0.0540 - val_spatial_constancy_loss: 0.2956 - val_total_loss: 1.0694
Epoch 58/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0823 - exposure_loss: 0.7990 - illumination_smoothness_loss: 0.0319 - spatial_constancy_loss: 0.2727 - total_loss: 1.1859 - val_color_constancy_loss: 0.0965 - val_exposure_loss: 0.6210 - val_illumination_smoothness_loss: 0.0537 - val_spatial_constancy_loss: 0.2976 - val_total_loss: 1.0688
Epoch 59/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0826 - exposure_loss: 0.7969 - illumination_smoothness_loss: 0.0315 - spatial_constancy_loss: 0.2740 - total_loss: 1.1850 - val_color_constancy_loss: 0.0966 - val_exposure_loss: 0.6208 - val_illumination_smoothness_loss: 0.0530 - val_spatial_constancy_loss: 0.2978 - val_total_loss: 1.0682
Epoch 60/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0824 - exposure_loss: 0.7971 - illumination_smoothness_loss: 0.0304 - spatial_constancy_loss: 0.2740 - total_loss: 1.1840 - val_color_constancy_loss: 0.0966 - val_exposure_loss: 0.6206 - val_illumination_smoothness_loss: 0.0516 - val_spatial_constancy_loss: 0.2979 - val_total_loss: 1.0667
Epoch 61/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0825 - exposure_loss: 0.7969 - illumination_smoothness_loss: 0.0295 - spatial_constancy_loss: 0.2741 - total_loss: 1.1829 - val_color_constancy_loss: 0.0969 - val_exposure_loss: 0.6194 - val_illumination_smoothness_loss: 0.0506 - val_spatial_constancy_loss: 0.2988 - val_total_loss: 1.0657
Epoch 62/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0827 - exposure_loss: 0.7954 - illumination_smoothness_loss: 0.0287 - spatial_constancy_loss: 0.2749 - total_loss: 1.1817 - val_color_constancy_loss: 0.0967 - val_exposure_loss: 0.6203 - val_illumination_smoothness_loss: 0.0494 - val_spatial_constancy_loss: 0.2981 - val_total_loss: 1.0644
Epoch 63/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0825 - exposure_loss: 0.7966 - illumination_smoothness_loss: 0.0278 - spatial_constancy_loss: 0.2742 - total_loss: 1.1810 - val_color_constancy_loss: 0.0971 - val_exposure_loss: 0.6184 - val_illumination_smoothness_loss: 0.0491 - val_spatial_constancy_loss: 0.2996 - val_total_loss: 1.0642
Epoch 64/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 67ms/step - color_constancy_loss: 0.0827 - exposure_loss: 0.7949 - illumination_smoothness_loss: 0.0268 - spatial_constancy_loss: 0.2753 - total_loss: 1.1797 - val_color_constancy_loss: 0.0969 - val_exposure_loss: 0.6199 - val_illumination_smoothness_loss: 0.0460 - val_spatial_constancy_loss: 0.2984 - val_total_loss: 1.0611
Epoch 65/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0826 - exposure_loss: 0.7957 - illumination_smoothness_loss: 0.0254 - spatial_constancy_loss: 0.2748 - total_loss: 1.1785 - val_color_constancy_loss: 0.0976 - val_exposure_loss: 0.6180 - val_illumination_smoothness_loss: 0.0464 - val_spatial_constancy_loss: 0.2998 - val_total_loss: 1.0618
Epoch 66/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0827 - exposure_loss: 0.7948 - illumination_smoothness_loss: 0.0249 - spatial_constancy_loss: 0.2753 - total_loss: 1.1777 - val_color_constancy_loss: 0.0975 - val_exposure_loss: 0.6189 - val_illumination_smoothness_loss: 0.0448 - val_spatial_constancy_loss: 0.2991 - val_total_loss: 1.0602
Epoch 67/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0825 - exposure_loss: 0.7954 - illumination_smoothness_loss: 0.0241 - spatial_constancy_loss: 0.2750 - total_loss: 1.1770 - val_color_constancy_loss: 0.0977 - val_exposure_loss: 0.6179 - val_illumination_smoothness_loss: 0.0441 - val_spatial_constancy_loss: 0.2998 - val_total_loss: 1.0595
Epoch 68/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0827 - exposure_loss: 0.7946 - illumination_smoothness_loss: 0.0231 - spatial_constancy_loss: 0.2757 - total_loss: 1.1761 - val_color_constancy_loss: 0.0973 - val_exposure_loss: 0.6198 - val_illumination_smoothness_loss: 0.0410 - val_spatial_constancy_loss: 0.2980 - val_total_loss: 1.0562
Epoch 69/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0826 - exposure_loss: 0.7947 - illumination_smoothness_loss: 0.0226 - spatial_constancy_loss: 0.2752 - total_loss: 1.1752 - val_color_constancy_loss: 0.0979 - val_exposure_loss: 0.6170 - val_illumination_smoothness_loss: 0.0435 - val_spatial_constancy_loss: 0.3003 - val_total_loss: 1.0587
Epoch 70/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0828 - exposure_loss: 0.7940 - illumination_smoothness_loss: 0.0224 - spatial_constancy_loss: 0.2758 - total_loss: 1.1749 - val_color_constancy_loss: 0.0976 - val_exposure_loss: 0.6182 - val_illumination_smoothness_loss: 0.0414 - val_spatial_constancy_loss: 0.2994 - val_total_loss: 1.0566
Epoch 71/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0827 - exposure_loss: 0.7941 - illumination_smoothness_loss: 0.0216 - spatial_constancy_loss: 0.2758 - total_loss: 1.1742 - val_color_constancy_loss: 0.0974 - val_exposure_loss: 0.6189 - val_illumination_smoothness_loss: 0.0389 - val_spatial_constancy_loss: 0.2986 - val_total_loss: 1.0538
Epoch 72/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0827 - exposure_loss: 0.7941 - illumination_smoothness_loss: 0.0211 - spatial_constancy_loss: 0.2755 - total_loss: 1.1734 - val_color_constancy_loss: 0.0979 - val_exposure_loss: 0.6166 - val_illumination_smoothness_loss: 0.0420 - val_spatial_constancy_loss: 0.3005 - val_total_loss: 1.0571
Epoch 73/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0828 - exposure_loss: 0.7935 - illumination_smoothness_loss: 0.0214 - spatial_constancy_loss: 0.2759 - total_loss: 1.1735 - val_color_constancy_loss: 0.0977 - val_exposure_loss: 0.6172 - val_illumination_smoothness_loss: 0.0401 - val_spatial_constancy_loss: 0.3001 - val_total_loss: 1.0551
Epoch 74/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0828 - exposure_loss: 0.7935 - illumination_smoothness_loss: 0.0205 - spatial_constancy_loss: 0.2760 - total_loss: 1.1727 - val_color_constancy_loss: 0.0978 - val_exposure_loss: 0.6168 - val_illumination_smoothness_loss: 0.0395 - val_spatial_constancy_loss: 0.3005 - val_total_loss: 1.0546
Epoch 75/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0828 - exposure_loss: 0.7924 - illumination_smoothness_loss: 0.0204 - spatial_constancy_loss: 0.2764 - total_loss: 1.1721 - val_color_constancy_loss: 0.0977 - val_exposure_loss: 0.6176 - val_illumination_smoothness_loss: 0.0385 - val_spatial_constancy_loss: 0.2997 - val_total_loss: 1.0536
Epoch 76/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0827 - exposure_loss: 0.7933 - illumination_smoothness_loss: 0.0198 - spatial_constancy_loss: 0.2760 - total_loss: 1.1718 - val_color_constancy_loss: 0.0979 - val_exposure_loss: 0.6166 - val_illumination_smoothness_loss: 0.0376 - val_spatial_constancy_loss: 0.3002 - val_total_loss: 1.0524
Epoch 77/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0828 - exposure_loss: 0.7925 - illumination_smoothness_loss: 0.0195 - spatial_constancy_loss: 0.2763 - total_loss: 1.1710 - val_color_constancy_loss: 0.0979 - val_exposure_loss: 0.6170 - val_illumination_smoothness_loss: 0.0384 - val_spatial_constancy_loss: 0.2999 - val_total_loss: 1.0532
Epoch 78/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0827 - exposure_loss: 0.7929 - illumination_smoothness_loss: 0.0196 - spatial_constancy_loss: 0.2761 - total_loss: 1.1713 - val_color_constancy_loss: 0.0979 - val_exposure_loss: 0.6170 - val_illumination_smoothness_loss: 0.0369 - val_spatial_constancy_loss: 0.3000 - val_total_loss: 1.0518
Epoch 79/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0828 - exposure_loss: 0.7922 - illumination_smoothness_loss: 0.0192 - spatial_constancy_loss: 0.2763 - total_loss: 1.1704 - val_color_constancy_loss: 0.0981 - val_exposure_loss: 0.6157 - val_illumination_smoothness_loss: 0.0380 - val_spatial_constancy_loss: 0.3009 - val_total_loss: 1.0527
Epoch 80/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0828 - exposure_loss: 0.7918 - illumination_smoothness_loss: 0.0191 - spatial_constancy_loss: 0.2766 - total_loss: 1.1703 - val_color_constancy_loss: 0.0980 - val_exposure_loss: 0.6159 - val_illumination_smoothness_loss: 0.0373 - val_spatial_constancy_loss: 0.3004 - val_total_loss: 1.0516
Epoch 81/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0828 - exposure_loss: 0.7917 - illumination_smoothness_loss: 0.0190 - spatial_constancy_loss: 0.2764 - total_loss: 1.1699 - val_color_constancy_loss: 0.0981 - val_exposure_loss: 0.6153 - val_illumination_smoothness_loss: 0.0373 - val_spatial_constancy_loss: 0.3009 - val_total_loss: 1.0516
Epoch 82/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 66ms/step - color_constancy_loss: 0.0829 - exposure_loss: 0.7915 - illumination_smoothness_loss: 0.0187 - spatial_constancy_loss: 0.2766 - total_loss: 1.1697 - val_color_constancy_loss: 0.0979 - val_exposure_loss: 0.6170 - val_illumination_smoothness_loss: 0.0348 - val_spatial_constancy_loss: 0.2996 - val_total_loss: 1.0493
Epoch 83/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 65ms/step - color_constancy_loss: 0.0828 - exposure_loss: 0.7918 - illumination_smoothness_loss: 0.0182 - spatial_constancy_loss: 0.2763 - total_loss: 1.1691 - val_color_constancy_loss: 0.0980 - val_exposure_loss: 0.6158 - val_illumination_smoothness_loss: 0.0358 - val_spatial_constancy_loss: 0.3004 - val_total_loss: 1.0500
Epoch 84/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 65ms/step - color_constancy_loss: 0.0829 - exposure_loss: 0.7911 - illumination_smoothness_loss: 0.0184 - spatial_constancy_loss: 0.2766 - total_loss: 1.1689 - val_color_constancy_loss: 0.0982 - val_exposure_loss: 0.6146 - val_illumination_smoothness_loss: 0.0366 - val_spatial_constancy_loss: 0.3010 - val_total_loss: 1.0505
Epoch 85/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0829 - exposure_loss: 0.7907 - illumination_smoothness_loss: 0.0185 - spatial_constancy_loss: 0.2767 - total_loss: 1.1687 - val_color_constancy_loss: 0.0980 - val_exposure_loss: 0.6154 - val_illumination_smoothness_loss: 0.0361 - val_spatial_constancy_loss: 0.3006 - val_total_loss: 1.0501
Epoch 86/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 65ms/step - color_constancy_loss: 0.0828 - exposure_loss: 0.7910 - illumination_smoothness_loss: 0.0182 - spatial_constancy_loss: 0.2765 - total_loss: 1.1685 - val_color_constancy_loss: 0.0982 - val_exposure_loss: 0.6145 - val_illumination_smoothness_loss: 0.0356 - val_spatial_constancy_loss: 0.3009 - val_total_loss: 1.0492
Epoch 87/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0829 - exposure_loss: 0.7902 - illumination_smoothness_loss: 0.0181 - spatial_constancy_loss: 0.2767 - total_loss: 1.1680 - val_color_constancy_loss: 0.0981 - val_exposure_loss: 0.6149 - val_illumination_smoothness_loss: 0.0357 - val_spatial_constancy_loss: 0.3007 - val_total_loss: 1.0494
Epoch 88/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0829 - exposure_loss: 0.7904 - illumination_smoothness_loss: 0.0180 - spatial_constancy_loss: 0.2766 - total_loss: 1.1679 - val_color_constancy_loss: 0.0983 - val_exposure_loss: 0.6133 - val_illumination_smoothness_loss: 0.0359 - val_spatial_constancy_loss: 0.3015 - val_total_loss: 1.0491
Epoch 89/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0830 - exposure_loss: 0.7893 - illumination_smoothness_loss: 0.0181 - spatial_constancy_loss: 0.2770 - total_loss: 1.1674 - val_color_constancy_loss: 0.0981 - val_exposure_loss: 0.6148 - val_illumination_smoothness_loss: 0.0350 - val_spatial_constancy_loss: 0.3006 - val_total_loss: 1.0484
Epoch 90/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0829 - exposure_loss: 0.7901 - illumination_smoothness_loss: 0.0178 - spatial_constancy_loss: 0.2765 - total_loss: 1.1673 - val_color_constancy_loss: 0.0984 - val_exposure_loss: 0.6128 - val_illumination_smoothness_loss: 0.0358 - val_spatial_constancy_loss: 0.3017 - val_total_loss: 1.0487
Epoch 91/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0831 - exposure_loss: 0.7886 - illumination_smoothness_loss: 0.0181 - spatial_constancy_loss: 0.2771 - total_loss: 1.1669 - val_color_constancy_loss: 0.0981 - val_exposure_loss: 0.6142 - val_illumination_smoothness_loss: 0.0351 - val_spatial_constancy_loss: 0.3007 - val_total_loss: 1.0481
Epoch 92/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0829 - exposure_loss: 0.7895 - illumination_smoothness_loss: 0.0177 - spatial_constancy_loss: 0.2766 - total_loss: 1.1668 - val_color_constancy_loss: 0.0983 - val_exposure_loss: 0.6133 - val_illumination_smoothness_loss: 0.0349 - val_spatial_constancy_loss: 0.3011 - val_total_loss: 1.0476
Epoch 93/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0831 - exposure_loss: 0.7884 - illumination_smoothness_loss: 0.0179 - spatial_constancy_loss: 0.2770 - total_loss: 1.1664 - val_color_constancy_loss: 0.0984 - val_exposure_loss: 0.6125 - val_illumination_smoothness_loss: 0.0355 - val_spatial_constancy_loss: 0.3014 - val_total_loss: 1.0478
Epoch 94/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 65ms/step - color_constancy_loss: 0.0831 - exposure_loss: 0.7882 - illumination_smoothness_loss: 0.0181 - spatial_constancy_loss: 0.2769 - total_loss: 1.1663 - val_color_constancy_loss: 0.0983 - val_exposure_loss: 0.6128 - val_illumination_smoothness_loss: 0.0349 - val_spatial_constancy_loss: 0.3012 - val_total_loss: 1.0473
Epoch 95/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0831 - exposure_loss: 0.7881 - illumination_smoothness_loss: 0.0179 - spatial_constancy_loss: 0.2770 - total_loss: 1.1660 - val_color_constancy_loss: 0.0983 - val_exposure_loss: 0.6130 - val_illumination_smoothness_loss: 0.0341 - val_spatial_constancy_loss: 0.3009 - val_total_loss: 1.0462
Epoch 96/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0832 - exposure_loss: 0.7874 - illumination_smoothness_loss: 0.0179 - spatial_constancy_loss: 0.2771 - total_loss: 1.1656 - val_color_constancy_loss: 0.0983 - val_exposure_loss: 0.6125 - val_illumination_smoothness_loss: 0.0353 - val_spatial_constancy_loss: 0.3010 - val_total_loss: 1.0471
Epoch 97/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0830 - exposure_loss: 0.7882 - illumination_smoothness_loss: 0.0181 - spatial_constancy_loss: 0.2765 - total_loss: 1.1658 - val_color_constancy_loss: 0.0984 - val_exposure_loss: 0.6120 - val_illumination_smoothness_loss: 0.0346 - val_spatial_constancy_loss: 0.3014 - val_total_loss: 1.0464
Epoch 98/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 63ms/step - color_constancy_loss: 0.0832 - exposure_loss: 0.7869 - illumination_smoothness_loss: 0.0180 - spatial_constancy_loss: 0.2772 - total_loss: 1.1653 - val_color_constancy_loss: 0.0984 - val_exposure_loss: 0.6118 - val_illumination_smoothness_loss: 0.0344 - val_spatial_constancy_loss: 0.3012 - val_total_loss: 1.0458
Epoch 99/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0832 - exposure_loss: 0.7863 - illumination_smoothness_loss: 0.0182 - spatial_constancy_loss: 0.2772 - total_loss: 1.1650 - val_color_constancy_loss: 0.0983 - val_exposure_loss: 0.6120 - val_illumination_smoothness_loss: 0.0343 - val_spatial_constancy_loss: 0.3007 - val_total_loss: 1.0453
Epoch 100/100
 25/25 ━━━━━━━━━━━━━━━━━━━━ 2s 64ms/step - color_constancy_loss: 0.0831 - exposure_loss: 0.7873 - illumination_smoothness_loss: 0.0180 - spatial_constancy_loss: 0.2765 - total_loss: 1.1649 - val_color_constancy_loss: 0.0984 - val_exposure_loss: 0.6115 - val_illumination_smoothness_loss: 0.0341 - val_spatial_constancy_loss: 0.3011 - val_total_loss: 1.0451

推论

def plot_results(images, titles, figure_size=(12, 12)):
    fig = plt.figure(figsize=figure_size)
    for i in range(len(images)):
        fig.add_subplot(1, len(images), i + 1).set_title(titles[i])
        _ = plt.imshow(images[i])
        plt.axis("off")
    plt.show()


def infer(original_image):
    image = keras.utils.img_to_array(original_image)
    image = image.astype("float32") / 255.0
    image = np.expand_dims(image, axis=0)
    output_image = zero_dce_model(image)
    output_image = tf.cast((output_image[0, :, :, :] * 255), dtype=np.uint8)
    output_image = Image.fromarray(output_image.numpy())
    return output_image

测试图像推理


我们将通过 MIRNet 增强的 LOLDataset 测试图像与通过 PIL.ImageOps.autocontrast() 函数增强的图像进行了比较。

您可以使用 Hugging Face Hub 上托管的训练有素的模型,并在 Hugging Face Spaces 上尝试演

for val_image_file in test_low_light_images:
    original_image = Image.open(val_image_file)
    enhanced_image = infer(original_image)
    plot_results(
        [original_image, ImageOps.autocontrast(original_image), enhanced_image],
        ["Original", "PIL Autocontrast", "Enhanced"],
        (20, 12),
    )


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1622273.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

遥感卫星影像地表温度反演

近年来&#xff0c;随着遥感技术的不断发展和卫星遥感数据的广泛应用&#xff0c;遥感卫星地表温度反演成为了地球科学和环境监测领域的重要研究内容。地表温度反演是指利用遥感卫星数据推算地表温度的过程&#xff0c;其原理基于地物表面的辐射特征与温度之间的关系。本文将介…

Github2024-04-25 开源项目日报Top10

根据Github Trendings的统计,今日(2024-04-25统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Python项目4非开发语言项目2TypeScript项目2PowerShell项目1C++项目1Dart项目1JavaScript项目1GPT4All: 在边缘运行开源大型语言模型 创建周期:…

C++:拷贝构造函数的初始化列表

拷贝构造函数的初始化列表是在拷贝构造函数的定义中出现的一组初始值&#xff0c;用于初始化新创建的对象的成员变量。它的语法是在构造函数的声明后面使用冒号&#xff08;:&#xff09;来开头&#xff0c;然后列出要初始化的成员变量和它们的初始值。初始化列表的优点在于它允…

从国内盲盒小程序看国外市场的发展机遇与挑战

近年来&#xff0c;盲盒小程序在国内市场迅速崛起&#xff0c;凭借其独特的营销模式和消费者体验&#xff0c;赢得了大量年轻消费者的喜爱。从国内盲盒小程序的发展中&#xff0c;我们可以窥见国外市场的一些发展机遇与挑战&#xff0c;为进军国际市场提供有益的参考。 首先&a…

[Swift]单元测试

编写单元测试是确保你的代码质量和功能正确性的重要步骤 一、编写单元测试的详细流程 1. 创建一个新的Xcode项目 如果你尚未创建一个项目&#xff0c;首先你需要在Xcode中创建一个新的iOS项目&#xff1a; 打开Xcode&#xff0c;选择“File” > “New” > “Project”…

ARM DMIPS算力说明

ARM DMIPS算力说明 ARM算力参考官网地址 https://en.wikipedia.org/wiki/List_of_ARM_processors Product familyARM architectureProcessorFeatureCache (I / D), MMUTypical MIPS MHzReferenceARM1ARMv1ARM1First implementationNoneARM2ARMv2ARM2ARMv2 added the MUL (mu…

一文带你了解MySQL的DCL语句

文章目录 ☃️DCL☃️管理用户☃️权限控制☃️DCL的重要性 欢迎来到 请回答1024 的博客 &#x1f34e;&#x1f34e;&#x1f34e;欢迎来到 请回答1024的博客 关于博主&#xff1a; 我是 请回答1024&#xff0c;一个追求数学与计算的边界、时间与空间的平衡&#xff0c;0与1的…

【MySQL】A01、性能优化-结构设计与配置

1、数据库设计原则 1.1、核心原则 不在数据库做运算; cpu计算务必移至业务层; 控制列数量(字段少而精,字段数建议在20以内); 平衡范式与冗余(效率优先&#xff1b;往往牺牲范式) 拒绝3B(拒绝大sql语句&#xff1a;big sql、拒绝大事务&#xff1a;big transaction、拒绝大…

【漏洞复现】Palo Alto Networks PAN-OS GlobalProtect 命令注入漏洞 CVE-2024-3400

漏洞描述 Palo Alto Networks PAN-OS GlobalProtect 命令 Palo Alto Networks PAN-OS GlobalProtect 是Palo Alto Networks 的一款防火墙产品。2024年4月12日,官方披露CVE-2024-3400 Palo Alto Networks GlobalProtect 命令注入漏洞。在特定PAN-OS版本和不同功能配置下,未经…

618哪些好物值得入手?收下这份必买清单!

很快618就要来啦&#xff0c;在这之前一定要好好做攻略。在这个特别的时刻&#xff0c;我们不仅有机会淘到心仪已久的商品&#xff0c;还能享受到超值的折扣和优惠。为了让大家的购物体验更加愉快&#xff0c;我特意整理了一份618必买清单&#xff0c;里面汇聚了各类热门好物&a…

【算法入门-Python】02_递归

一、递归 递归的两个特点&#xff1a;调用自身&#xff1b;结束条件。 def func1(x):print(x)func1(x-1)没有结束条件&#xff0c;si递归。不是递归。 def func2(x)&#xff1a;if x > 0:print(x)func2(x1)递归调用的x1&#xff0c;没有结束条件。不是递归 def func3(x)…

2024最新版本FL Studio21水果编曲软件破解版激活许可证

FL Studio 21水果编曲软件适合广泛的人群使用&#xff0c;包括但不限于以下几类人&#xff1a; 音乐制作人&#xff1a;对于专业的音乐制作人来说&#xff0c;FL Studio 21提供了全面的音乐制作工具和功能&#xff0c;能够满足他们在音乐创作、编曲、混音等方面的需求。他们可以…

VUE父组件向子组件传递值

创作灵感 最近在写一个项目时&#xff0c;遇到了这样的一个需求。我封装了一个组件&#xff0c;这个组件需要被以下两个地方使用&#xff0c;一个是搜索用户时用到&#xff0c;一个是修改用户信息时需要用到。其中&#xff0c;在搜索用户时&#xff0c;可以根据姓名或者账号进…

Git TortoiseGit 详细安装使用教程

前言 Git 是一个免费的开源分布式版本控制系统&#xff0c;是用来保存工程源代码历史状态的命令行工具&#xff0c;旨在处理从小型到非常大型的项目&#xff0c;速度快、效率高。《请查阅Git详细说明》。TortoiseGit 是 Git 的 Windows Shell 界面工具&#xff0c;基于 Tortoi…

Mybatis入门(入门案例,IDEA配置SQL提示,JDBC介绍,lombok介绍)

目录 一、Mybatis入门案例介绍整体步骤创建SpringBoot项目pom依赖准备测试数据新建实体类配置Mybatis数据库连接信息新建接口类,编写SQL代码单元测试 二、IDEA配置SQL提示三、JDBC是什么案例JDBC和Mybatis对比 四、数据库连接池介绍如何实现一个数据库连接池切换数据库连接池 五…

【SpringCloud】LoadBalance负载均衡服务调用快速入门

【SpringCloud】LoadBalance负载均衡服务调用快速入门 文章目录 【SpringCloud】LoadBalance负载均衡服务调用快速入门1. 概述2. 引入依赖3. 配置、验证3.1 配置3.2 验证 1. 概述 官网地址&#xff1a;点击跳转 Spring Cloud LoadBalancer 是由 SpringCloud 官方提供的一个开…

自动化测试用例设计

知人者智&#xff0c;自知者明。大家好&#xff0c;给大家分享一下关于自动化测试用例的设计心得&#xff0c;首先完整的熟悉业务是第一步要做的&#xff0c;不熟悉业务的前提下不会设计出高效且合理的用例&#xff0c;其次是我们要有明确的测试目标&#xff0c;确保我们写的每…

CentOS 7.9.2009 中 Docker 使用 GPU

一、安装nvidia驱动 1.1&#xff0c;查看显卡驱动 # 查看显卡型号 lspci | grep -i nvidia 1.2&#xff0c;进入 PCI devices &#xff0c;输入上一步查询到的 2204 1.3&#xff0c;进入 官方驱动 | NVIDIA&#xff0c;查询 Geforce RTX 3090 驱动并下载 1.4&#xff0c;禁用…

Redis入门到通关之数据结构解析-QuickList

文章目录 ☃️前提概要☃️ 配置项相关☃️简要源码☃️总结 欢迎来到 请回答1024 的博客 &#x1f353;&#x1f353;&#x1f353;欢迎来到 请回答1024的博客 关于博主&#xff1a; 我是 请回答1024&#xff0c;一个追求数学与计算的边界、时间与空间的平衡&#xff0c;0与1…

第十五届蓝桥杯省赛第二场C/C++B组A题【进制】题解(AC)

解题思路 按照题意进行模拟&#xff0c;计算 x x x 的 b b b 进制过程中&#xff0c;若出现余数大于 9 9 9&#xff0c;则说明 x x x 的 b b b 进制一定要用字母进行表示。 #include <iostream> #include <cstring> #include <algorithm> #include &l…