共享单车数据分析与需求预测项目

news2024/11/18 3:24:38

注意:本文引用自专业人工智能社区Venus AI

更多AI知识请参考原站 ([www.aideeplearning.cn])

项目背景

自动自行车共享系统是传统自行车租赁的新一代,整个会员、租赁和归还过程都变得自动化。通过这些系统,用户可以轻松地在一个位置租赁自行车,然后在另一个位置归还。目前,全球有超过500个自行车共享计划,涵盖了超过50万辆自行车。由于这些系统在交通、环境和健康问题中的重要作用,它们引起了极大的关注。

除了自行车共享系统的有趣的实际应用之外,这些系统生成的数据特征使它们成为研究的有吸引力的对象。与其他交通服务(如公交或地铁)不同,这些系统明确记录了旅行的持续时间、出发地点和到达地点。这一特性将自行车共享系统转变成了一个可以用于城市移动性监测的虚拟传感器网络。因此,通过监测这些数据,预计可以检测到城市中的大多数重要事件。

项目目标

我们的项目旨在利用自动自行车共享系统的数据来实现城市移动性监测。具体目标包括:

  1. 分析城市中不同时间段的自行车共享模式,以了解城市的移动性趋势。
  2. 预测未来自行车共享需求,帮助共享系统优化自行车的分布和维护。
  3. 监测城市中的重要事件,如假期、天气和交通状况,以改进城市规划和交通管理。

项目应用

我们的项目有广泛的应用潜力,包括但不限于以下方面:

  1. 城市交通规划:通过了解自行车共享模式和需求,城市规划者可以更好地规划自行车道和交通设施。
  2. 环境保护:鼓励更多人使用自行车共享系统可以减少汽车尾气排放,有助于改善城市空气质量。
  3. 交通管理:监测特殊天气条件下的共享自行车使用情况可以帮助交通管理部门采取相应措施,以确保道路安全。

数据集描述

  • instant:记录索引
  • dteday:日期
  • season:季节(1:冬季,2:春季,3:夏季,4:秋季)
  • yr:年份(0: 2011, 1:2012)
  • mnth:月份(1到12)
  • hr:小时(0到23)
  • holiday:天气是否为假日
  • weekday:星期几
  • workingday:是否是工作日
  • weathersit:天气状况(1:晴天,2:多云,3:雨雪,4:暴雨)
  • temp:标准化温度(摄氏度)
  • atemp:标准化体感温度(摄氏度)
  • hum:标准化湿度
  • windspeed:标准化风速
  • casual:非注册用户租赁数量
  • registered:注册用户租赁数量
  • cnt:总租赁自行车数量(包括非注册和注册用户)

模型选择与依赖库

为了实现项目目标,我们计划使用以下机器学习模型:

  • 线性回归(LinearRegression)
  • 岭回归(Ridge)
  • Huber回归(HuberRegressor)
  • 弹性网络回归(ElasticNetCV)
  • 决策树回归(DecisionTreeRegressor)
  • 随机森林回归(RandomForestRegressor)
  • 极端随机树回归(ExtraTreesRegressor)
  • 梯度提升回归(GradientBoostingRegressor)

我们将使用Python编程语言,并依赖于以下库来处理数据、构建模型和可视化结果:

  • Pandas:用于数据清洗和预处理。
  • NumPy:用于数值计算。
  • Matplotlib和Seaborn:用于数据可视化。
  • Scikit-learn:用于构建和评估机器学习模型。

代码实现

导入模块

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
%matplotlib inline
warnings.filterwarnings('ignore')
pd.options.display.max_columns = 999

加载数据集

df = pd.read_csv('hour.csv')
df.head()
instantdtedayseasonyrmnthhrholidayweekdayworkingdayweathersittempatemphumwindspeedcasualregisteredcnt
012011-01-01101006010.240.28790.810.031316
122011-01-01101106010.220.27270.800.083240
232011-01-01101206010.220.27270.800.052732
342011-01-01101306010.240.28790.750.031013
452011-01-01101406010.240.28790.750.0011
# 统计信息
df.describe()
instantseasonyrmnthhrholidayweekdayworkingdayweathersittempatemphumwindspeedcasualregisteredcnt
count17379.000017379.00000017379.00000017379.00000017379.00000017379.00000017379.00000017379.00000017379.00000017379.00000017379.00000017379.00000017379.00000017379.00000017379.00000017379.000000
mean8690.00002.5016400.5025616.53777511.5467520.0287703.0036830.6827211.4252830.4969870.4757750.6272290.19009835.676218153.786869189.463088
std5017.02951.1069180.5000083.4387766.9144050.1671652.0057710.4654310.6393570.1925560.1718500.1929300.12234049.305030151.357286181.387599
min1.00001.0000000.0000001.0000000.0000000.0000000.0000000.0000001.0000000.0200000.0000000.0000000.0000000.0000000.0000001.000000
25%4345.50002.0000000.0000004.0000006.0000000.0000001.0000000.0000001.0000000.3400000.3333000.4800000.1045004.00000034.00000040.000000
50%8690.00003.0000001.0000007.00000012.0000000.0000003.0000001.0000001.0000000.5000000.4848000.6300000.19400017.000000115.000000142.000000
75%13034.50003.0000001.00000010.00000018.0000000.0000005.0000001.0000002.0000000.6600000.6212000.7800000.25370048.000000220.000000281.000000
max17379.00004.0000001.00000012.00000023.0000001.0000006.0000001.0000004.0000001.0000001.0000001.0000000.850700367.000000886.000000977.000000
# 数据类型信息
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 17379 entries, 0 to 17378
Data columns (total 17 columns):
 #   Column      Non-Null Count  Dtype  
---  ------      --------------  -----  
 0   instant     17379 non-null  int64  
 1   dteday      17379 non-null  object 
 2   season      17379 non-null  int64  
 3   yr          17379 non-null  int64  
 4   mnth        17379 non-null  int64  
 5   hr          17379 non-null  int64  
 6   holiday     17379 non-null  int64  
 7   weekday     17379 non-null  int64  
 8   workingday  17379 non-null  int64  
 9   weathersit  17379 non-null  int64  
 10  temp        17379 non-null  float64
 11  atemp       17379 non-null  float64
 12  hum         17379 non-null  float64
 13  windspeed   17379 non-null  float64
 14  casual      17379 non-null  int64  
 15  registered  17379 non-null  int64  
 16  cnt         17379 non-null  int64  
dtypes: float64(4), int64(12), object(1)
memory usage: 2.3+ MB
# 每个特征中不重复的值
df.apply(lambda x: len(x.unique()))
instant       17379
dteday          731
season            4
yr                2
mnth             12
hr               24
holiday           2
weekday           7
workingday        2
weathersit        4
temp             50
atemp            65
hum              89
windspeed        30
casual          322
registered      776
cnt             869
dtype: int64

预处理数据集

# 检查是否有空值
df.isnull().sum()
instant       0
dteday        0
season        0
yr            0
mnth          0
hr            0
holiday       0
weekday       0
workingday    0
weathersit    0
temp          0
atemp         0
hum           0
windspeed     0
casual        0
registered    0
cnt           0
dtype: int64
df = df.rename(columns={'weathersit':'weather',
                       'yr':'year',
                       'mnth':'month',
                       'hr':'hour',
                       'hum':'humidity',
                       'cnt':'count'})
df.head()
instantdtedayseasonyearmonthhourholidayweekdayworkingdayweathertempatemphumiditywindspeedcasualregisteredcount
012011-01-01101006010.240.28790.810.031316
122011-01-01101106010.220.27270.800.083240
232011-01-01101206010.220.27270.800.052732
342011-01-01101306010.240.28790.750.031013
452011-01-01101406010.240.28790.750.0011
df = df.drop(columns=['instant', 'dteday', 'year'])
# 将 int 列更改为类别
cols = ['season','month','hour','holiday','weekday','workingday','weather']

for col in cols:
    df[col] = df[col].astype('category')
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 17379 entries, 0 to 17378
Data columns (total 14 columns):
 #   Column      Non-Null Count  Dtype   
---  ------      --------------  -----   
 0   season      17379 non-null  category
 1   month       17379 non-null  category
 2   hour        17379 non-null  category
 3   holiday     17379 non-null  category
 4   weekday     17379 non-null  category
 5   workingday  17379 non-null  category
 6   weather     17379 non-null  category
 7   temp        17379 non-null  float64 
 8   atemp       17379 non-null  float64 
 9   humidity    17379 non-null  float64 
 10  windspeed   17379 non-null  float64 
 11  casual      17379 non-null  int64   
 12  registered  17379 non-null  int64   
 13  count       17379 non-null  int64   
dtypes: category(7), float64(4), int64(3)
memory usage: 1.0 MB

探索性数据分析

fig, ax = plt.subplots(figsize=(20,10))
sns.pointplot(data=df, x='hour', y='count', hue='weekday', ax=ax)
ax.set(title='工作日和周末的自行车数量')
[Text(0.5, 1.0, '工作日和周末的自行车数量')]

fig, ax = plt.subplots(figsize=(20,10))
sns.pointplot(data=df, x='hour', y='casual', hue='weekday', ax=ax)
ax.set(title='工作日和周末的自行车数量:未注册用户')
[Text(0.5, 1.0, '工作日和周末的自行车数量:未注册用户')]

fig, ax = plt.subplots(figsize=(20,10))
sns.pointplot(data=df, x='hour', y='registered', hue='weekday', ax=ax)
ax.set(title='工作日和周末的自行车数量:注册用户')
[Text(0.5, 1.0, '工作日和周末的自行车数量:注册用户')]

fig, ax = plt.subplots(figsize=(20,10))
sns.pointplot(data=df, x='hour', y='count', hue='weather', ax=ax)
ax.set(title='不同天气下的自行车数量')
[Text(0.5, 1.0, '不同天气下的自行车数量')]

fig, ax = plt.subplots(figsize=(20,10))
sns.pointplot(data=df, x='hour', y='count', hue='season', ax=ax)
ax.set(title='不同季节下的自行车数量')
[Text(0.5, 1.0, '不同季节下的自行车数量')]

fig, ax = plt.subplots(figsize=(20,10))
sns.barplot(data=df, x='month', y='count', ax=ax)
ax.set(title='不同月份下的自行车数量')
[Text(0.5, 1.0, '不同月份下的自行车数量')]

fig, ax = plt.subplots(figsize=(20,10))
sns.barplot(data=df, x='weekday', y='count', ax=ax)
ax.set(title='不同天的自行车数量')
[Text(0.5, 1.0, '不同天的自行车数量')]

fig, (ax1,ax2) = plt.subplots(ncols=2, figsize=(20,6))
sns.regplot(x=df['temp'], y=df['count'], ax=ax1)
ax1.set(title="气温与用户数量的关系")
sns.regplot(x=df['humidity'], y=df['count'], ax=ax2)
ax2.set(title="湿度与用户数量的关系")
[Text(0.5, 1.0, '湿度与用户数量的关系')]

from statsmodels.graphics.gofplots import qqplot
fig, (ax1,ax2) = plt.subplots(ncols=2, figsize=(20,6))
sns.distplot(df['count'], ax=ax1)
ax1.set(title='用户数量分布')
qqplot(df['count'], ax=ax2, line='s')
ax2.set(title='理论分位数与样本分位数的比较(QQ图)')

[Text(0.5, 1.0, '理论分位数与样本分位数的比较(QQ图)')]

df['count'] = np.log(df['count'])

应用对数变换(如np.log(df['count'])),然后重新绘制分布和 QQ(分位数-分位数)图可能很有用,原因如下:

数据的正态性:许多统计技术假设数据服从正态分布。对数变换有助于标准化严重倾斜的变量分布。

稳定方差:对数变换可以稳定数据集的方差。在方差随平均值增加的情况下,应用对数变换可以产生更加同方差的数据集。

线性化关系:转换可以线性化关系,使数据中的模式更易于解释并适合线性建模。

减少异常值的影响:它还可以减少异常值的影响,因为对数转换显着缩小了数据的范围。

fig, (ax1,ax2) = plt.subplots(ncols=2, figsize=(20,6))
sns.distplot(df['count'], ax=ax1)
ax1.set(title='Distribution of the users')
qqplot(df['count'], ax=ax2, line='s')
ax2.set(title='Theoritical quantiles')
[Text(0.5, 1.0, 'Theoritical quantiles')]

相关矩阵

corr = df.corr()
plt.figure(figsize=(15,10))
sns.heatmap(corr, annot=True, annot_kws={'size':15})
<Axes: >

独热编码

pd.get_dummies(df['season'], prefix='season', drop_first=True)
season_2season_3season_4
0000
1000
2000
3000
4000
............
17374000
17375000
17376000
17377000
17378000

17379 rows × 3 columns

df_oh = df

def one_hot_encoding(data, column):
    data = pd.concat([data, pd.get_dummies(data[column], prefix=column, drop_first=True)], axis=1)
    data = data.drop([column], axis=1)
    return data

cols = ['season','month','hour','holiday','weekday','workingday','weather']

for col in cols:
    df_oh = one_hot_encoding(df_oh, col)
df_oh.head()
tempatemphumiditywindspeedcasualregisteredcountseason_2season_3season_4month_2month_3month_4month_5month_6month_7month_8month_9month_10month_11month_12hour_1hour_2hour_3hour_4hour_5hour_6hour_7hour_8hour_9hour_10hour_11hour_12hour_13hour_14hour_15hour_16hour_17hour_18hour_19hour_20hour_21hour_22hour_23holiday_1weekday_1weekday_2weekday_3weekday_4weekday_5weekday_6workingday_1weather_2weather_3weather_4
00.240.28790.810.03132.772589000000000000000000000000000000000000000000010000
10.220.27270.800.08323.688879000000000000001000000000000000000000000000010000
20.220.27270.800.05273.465736000000000000000100000000000000000000000000010000
30.240.28790.750.03102.564949000000000000000010000000000000000000000000010000
40.240.28790.750.0010.000000000000000000000001000000000000000000000000010000
X = df_oh.drop(columns=['atemp', 'windspeed', 'casual', 'registered', 'count'], axis=1)
y = df_oh['count']

模型训练

from sklearn.linear_model import LinearRegression, Ridge, HuberRegressor, ElasticNetCV
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor, ExtraTreesRegressor

models = [LinearRegression(),
         Ridge(),
         HuberRegressor(),
         ElasticNetCV(),
         DecisionTreeRegressor(),
         RandomForestRegressor(),
         ExtraTreesRegressor(),
         GradientBoostingRegressor()]

from sklearn import model_selection
def train(model):
    kfold = model_selection.KFold(n_splits=5, shuffle=True, random_state=42) 
    pred = model_selection.cross_val_score(model, X, y, cv=kfold, scoring='neg_mean_squared_error')
    cv_score = pred.mean()
    print('Model:',model)
    print('CV score:', abs(cv_score))

代码中的内容cv_score就像您正在使用的机器学习模型的成绩单。它告诉您模型的表现如何。它的工作原理如下:

交叉验证 (CV):将您的数据视为一个大馅饼。代码将这个馅饼切成 5 片(因为n_splits=5)。然后,它使用 4 个切片来训练模型,并使用 1 个切片来测试模型。这样做 5 次,每次使用不同的切片进行测试。

评分:每次测试后,模型根据其错误(均方误差)获得分数。但在代码中,这些分数是负数。

平均分数 ( cv_score):这cv_score是这些测试分数的平均值。我们将负分改为正分(使用abs(cv_score))以使它们更容易理解。较低的分数意味着模型犯的错误较少,这很好!

因此,cv_score平均分数表明您的模型的预测效果如何。它的值越低越好。

for model in models:
    train(model)
Model: LinearRegression()
CV score: 0.44849511159541205
Model: Ridge()
CV score: 0.4484090089563206
Model: HuberRegressor()
CV score: 0.46596807512124105
Model: ElasticNetCV()
CV score: 0.45614918135359145
Model: DecisionTreeRegressor()
CV score: 0.44255199359646225
Model: RandomForestRegressor()
CV score: 0.23279282002190094
Model: ExtraTreesRegressor()
CV score: 0.23485168754583902
Model: GradientBoostingRegressor()
CV score: 0.35702811006978274

线性回归:基本回归模型,CV分数为0.4485,表示平均误差。

岭回归:与线性回归类似,但经过正则化,误差稍低,为 0.4484。

Huber 回归器:一个对异常值具有鲁棒性的模型,CV 得分为 0.4660,表明它对此数据集可能不那么有效。

ElasticNetCV:结合L1和L2正则化,CV得分为0.4561。

决策树回归器:非线性模型,CV 得分为 0.4426。

随机森林回归器:决策树的集合,显示出明显更好的 CV 分数 0.2328。

Extra Trees Regressor:与随机森林类似,但 CV 分数稍好,为 0.2349。

Gradient Boosting Regressor:一个专注于纠正其上一个子模型错误的集成模型,CV 得分为 0.3570。

CV 分数越低表明模型性能越好。RandomForest 和 ExtraTrees 回归器显示了这些模型中的最佳结果。

from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)
model = RandomForestRegressor()
model.fit(x_train, y_train)
y_pred = model.predict(x_test)
# 绘制误差差
error = y_test - y_pred
fig, ax = plt.subplots()
ax.scatter(y_test, error)
ax.axhline(lw=3, color='black')
ax.set_xlabel('Observed')
ax.set_ylabel('Error')
plt.show()

from sklearn.metrics import mean_squared_error
np.sqrt(mean_squared_error(y_test, y_pred))
0.48527134611361483

代码与数据集下载

详情请见共享单车数据分析与需求预测项目-VenusAI (aideeplearning.cn)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1621273.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SpringCloud系列(13)--Eureka服务名称修改和服务IP显示

前言&#xff1a;在上一章节中我们把服务提供者做成了集群&#xff0c;而本章节则是一些关于服务信息的配置&#xff0c;这部分知识对集群整体影响不大&#xff0c;不过最好还是掌握&#xff0c;毕竟万一有用到的地方呢 1、修改服务的名称 有时候我们想要修改服务的名称&#…

Linux网络-DHCP原理与配置

目录 一.DHCP工作原理 1.了解DHCP服务 1.1.使用DHCP的好处 1.2.DHCP的分配方式 2.DHCP的租约过程 2.1.DHCP工作原理 2.2.DHCP交互过程 二.DHCP服务器的配置 1.关闭防火墙 2.检查并且安装DHCP有关软件包 3.查看系统的配置文件 3.1.设置参数 4.修改网络 4.1.修改虚…

MATLAB命令

MATLAB是一个用于数值计算和数据可视化的交互式程序。您可以通过在命令窗口的MATLAB提示符 ‘>>’ 处键入命令来输入命令。 在本节中&#xff0c;我们将提供常用的通用MATLAB命令列表。 用于管理会话的命令 MATLAB提供了用于管理会话的各种命令。下表提供了所有此类命令…

Golang基础3-函数、nil相关

函数 需要声明原型支持不定参数 func sum(numbers ...int)int支持返回多值支持递归支持命名返回参数 // 命名返回参数 func add(a, b int) (sum int) {sum a breturn // 这里不需要显式地写出返回值&#xff0c;因为已经在函数签名中声明了命名返回参数 } 支持匿名函数、闭包…

redis基于Stream类型实现消息队列,命令操作,术语概念,个人总结等

个人大白话总结 1 在Redis Stream中&#xff0c;即使消息被消费者确认&#xff08;acknowledged, ACK&#xff09;&#xff0c;消息也不会自动从Stream数据结构中删除。这与Kafka或RabbitMQ等传统消息队列系统的做法不同&#xff0c;在那些系统中&#xff0c;一旦消息被消费并…

Linux 服务器硬件及RAID配置实战

服务器详解 服务器分类 可以分为&#xff1a;塔式服务器、机架服务器、刀片服务器、机柜服务器等。 其中以机架式居多 服务器架构 服务器品牌&#xff1a; 戴尔、AMD、英特尔、惠普、华为、华3&#xff08;H3C&#xff09;、联想、浪潮、长城 服务器规格&#xff1a; 规格…

贵州大学计算机840初试

本人是24考研的一名考生&#xff0c;现在已经上岸啦。有想考贵州大学计算机的同学需要资料可以找我喔&#xff5e; #希望大家都可以如愿以偿&#x1f60e;&#x1f60e;

Java web应用性能分析之客户端慢

客户端慢的原因包括&#xff1a; 终端设备老化&#xff08;手机、PAD、电脑年限久远、运行期间产生了很多垃圾未清除&#xff09;终端网络设备老化&#xff08;路由器、交换机老化&#xff09;跟我们使用的手机一样&#xff0c;路由器也需要及时更新换代&#xff0c;否则硬件跟…

11.泛型

文章目录 1 泛型概念2. 自定义泛型结构3 泛型方法4 泛型在继承上的体现5 通配符的使用 1 泛型概念 所谓泛型就是用标识符标识不确定的类型&#xff0c;详细说就是&#xff1a;定义类或接口时用标识符表示类中某个属性的类型或者是某个方法的返回值及参数类型。泛型将在使用时&a…

oracle 12c+ max_string_size参数

一个客户的数据库版本是19.3,在做数据库复制的时候,目标端报错了,查看了一下问题发现表的字段长度有不对,在12c以前我们都知道varchar的长度最大是4000,但是客户这里居然有32767: 把客户的建表语句弄出来,放到我的一个19c的测试环境进行测试: 发现报错了: 这里报错很明显了,是M…

力扣面试 150二叉搜索树迭代器 中序遍历 栈模拟递归 步骤拆分

Problem: 173. 二叉搜索树迭代器 思路 &#x1f469;‍&#x1f3eb; 三叶 复杂度 时间复杂度: O ( 1 ) O(1) O(1) 空间复杂度: O ( h ) O(h) O(h) Code class BSTIterator { Stack<TreeNode> d new Stack<>();public BSTIterator(TreeNode root){dfsLe…

thsi指针用法总结

1 c类对象中的变量和函数是分开存储的 2 所以对象共用一份成员函数&#xff0c;类的大小是指非静态的成员变量&#xff1b; this 完成链式操作 const 修饰成员函数

IDEA启动项目弹框提示:Lombok requires enabled annotation processing

问题现象 IDEA启动项目弹框提示如下图&#xff1a; 原因分析 由弹窗内容分析&#xff0c;首先确认我的IDEA中已经安装了Lombok插件&#xff0c;其次去settings中查找annotation processing配置&#xff0c;发现确实有这个配置并且未勾选启动 如何解决 修改配置

Linux:动静态库介绍

动静态库 库的介绍开发环境 & 编译器库存在的意义库的实现库的命名静态库制作和使用总结 动态库的制作和使用动态库的使用方法方法一方法二方法三 库加载问题静态库加载问题动态库的加载问题与位置无关码 C/C静态库下载方式 库的介绍 静态库&#xff1a;程序在编译链接的时…

[MoeCTF-2022]Sqlmap_boy

title:[MoeCTF 2022]Sqlmap_boy 查看网页源代码&#xff0c;得到提示 <!-- $sql select username,password from users where username".$username." && password".$password.";; --> 用万能密码绕过&#xff0c;用’"闭合 爆数据库…

Lambda表达式特点

Lambda 表达式是 Java 8 引入的一项重要特性&#xff0c;它们提供了一种更简洁的方式来表达匿名函数。Lambda 表达式允许你将一段代码传递给方法&#xff0c;而不是显式创建一个实现了接口的匿名内部类。Lambda 表达式通常用于实现单个抽象方法的接口&#xff08;即函数式接口&…

用友NC Cloud importhttpscer接口任意文件上传漏洞

声明 本文仅用于技术交流&#xff0c;请勿用于非法用途 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失&#xff0c;均由使用者本人负责&#xff0c;文章作者不为此承担任何责任。 一、漏洞描述 用友NC Cloud的importhttpscer接口如果存在任意文件上传…

SpringBoot+Vue开发记录(四)

说明&#xff1a; 本篇文章的主要内容是软件架构以及项目的前端Vue创建 一、软件架构 我道听途说的&#xff0c;听说这个东西很关键很重要什么的。 软件架构&#xff08;software architecture&#xff09;是一个系统的草图,是一系列相关的抽象模式&#xff0c;用于指导大型软…

安装Selenium库的方法最终解答!_Python库

安装Python库Selenium 我的环境&#xff1a;Window10&#xff0c;Python3.7&#xff0c;Anaconda3&#xff0c;Pycharm2023.1.3 Selenium Selenium是一个开源的自动化测试工具&#xff0c;它支持多种编程语言&#xff08;如Python、Java等&#xff09;&#xff0c;能够在不同…

代码托管基础操作

在待上传代码文件夹中右键&#xff0c;打开Git Bash Here依次输入以下命令&#xff1a; git init(在本地初始化一个代码仓库&#xff0c;具体表现为会在你的文件夹里出现一个隐藏的.git文件夹) git add .&#xff08;先把代码放到本地的一个缓冲区&#xff09;添加当前目录下的…