Langchain入门到实战
- Langchain中的提示词
- 官网地址
- Langchain概述
- Langchain的提示词用法
- 更新计划
Langchain中的提示词
- 语言模型提示模板是预定义的生成语言模型提示的方法。
- 模板可能包括指令、少样本示例、特定任务的上下文和问题。
- LangChain 提供了创建和处理提示模板的工具。
- LangChain 致力于创建模型不可知的模板,以便轻松地跨不同的语言模型重用现有的模板。
- 通常,语言模型expects 提示要么是字符串,要么是聊天消息列表。
官网地址
声明: 由于操作系统, 版本更新等原因, 文章所列内容不一定100%复现, 还要以官方信息为准
https://python.langchain.com/
Langchain概述
LangChain是一个用于开发由大型语言模型(LLM)驱动的应用程序的框架。
Langchain的提示词用法
-
PromptTemplate: 默认情况下,PromptTemplate 使用 Python 的 str.format 语法进行模板化。
from langchain_core.prompts import PromptTemplate prompt_template = PromptTemplate.from_template( "Tell me a {adjective} joke about {content}." ) prompt_template.format(adjective="funny", content="chickens")
-
ChatPromptTemplate: 聊天模型的提示是一个聊天消息列表。每个聊天消息都与内容关联,并有一个额外的参数称为角色。例如,在OpenAI聊天完成API中,一个聊天消息可以与AI助手、人类或系统角色关联。
from langchain_core.prompts import ChatPromptTemplate chat_template = ChatPromptTemplate.from_messages( [ ("system", "You are a helpful AI bot. Your name is {name}."), ("human", "Hello, how are you doing?"), ("ai", "I'm doing well, thanks!"), ("human", "{user_input}"), ] ) messages = chat_template.format_messages(name="Bob", user_input="What is your name?") messages
- Message Prompts: 提供了不同类型的MessagePromptTemplate
- AIMessagePromptTemplate
- SystemMessagePromptTemplate
- HumanMessagePromptTemplate
- 任意指定角色的PromptTemplate
from langchain_core.prompts import ChatMessagePromptTemplate prompt = "May the {subject} be with you" chat_message_prompt = ChatMessagePromptTemplate.from_template( role="Jedi", template=prompt ) chat_message_prompt.format(subject="force")
-
MessagesPlaceholder: 完全控制格式化期间要呈现的消息
from langchain_core.prompts import ( ChatPromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder, ) human_prompt = "Summarize our conversation so far in {word_count} words." human_message_template = HumanMessagePromptTemplate.from_template(human_prompt) chat_prompt = ChatPromptTemplate.from_messages( [MessagesPlaceholder(variable_name="conversation"), human_message_template] ) from langchain_core.messages import AIMessage, HumanMessage human_message = HumanMessage(content="What is the best way to learn programming?") ai_message = AIMessage( content="""\ 1. Choose a programming language: Decide on a programming language that you want to learn. 2. Start with the basics: Familiarize yourself with the basic programming concepts such as variables, data types and control structures. 3. Practice, practice, practice: The best way to learn programming is through hands-on experience\ """ ) chat_prompt.format_prompt( conversation=[human_message, ai_message], word_count="10" ).to_messages()
- LCEL
- PromptTemplate 入参是字典, 返回值是StringPromptValue
- ChatPromptTemplate 入参是字典, 返回值是ChatPromptValue
from langchain_core.prompts import PromptTemplate prompt_template = PromptTemplate.from_template( "Tell me a {adjective} joke about {content}." ) prompt_val = prompt_template.invoke({"adjective": "funny", "content": "chickens"}) prompt_val
from langchain_core.messages import SystemMessage
from langchain_core.prompts import ChatPromptTemplate
chat_template = ChatPromptTemplate.from_messages(
[
SystemMessage(
content=(
"You are a helpful assistant that re-writes the user's text to "
"sound more upbeat."
)
),
HumanMessagePromptTemplate.from_template("{text}"),
]
)
chat_val = chat_template.invoke({"text": "i dont like eating tasty things."})
更新计划
欲知后事如何, 请听下回分解