就业班 第三阶段(负载均衡) 2401--4.18 day2 nginx2 LVS-DR模式

news2024/11/15 17:57:47
3、LVS/DR 模式

实验说明: 1.网络使用NAT模式 2.DR模式要求Director DIP 和 所有RealServer RIP必须在同一个网段及广播域 3.所有节点网关均指定真实网关

主机名ip系统用途
client172.16.147.1mac客户端
lvs-server172.16.147.154centos7.5分发器
real-server1172.16.147.155centos7.5web1
real-server2172.16.147.156centos7.5web2
vip for dr172.16/147.200(真实场景是公网ip)
2、LVS/DR模式实施

1、准备工作(集群中所有主机)关闭防火墙和selinux

[root@lvs-server ~]# cat /etc/hosts
127.0.0.1   localhost localhost.localdomain localhost4 localhost4.localdomain4
::1         localhost localhost.localdomain localhost6 localhost6.localdomain6
172.16.147.154 lvs-server
172.16.147.155 real-server1
172.16.147.156 real-server2

2、Director分发器配置

配置VIP

[root@lvs-server ~]# ip addr add dev ens33 172.16.147.200/32 #设置VIP
[root@lvs-server ~]# yum install -y ipvsadm   #RHEL确保LoadBalancer仓库可用
[root@lvs-server ~]# service ipvsadm start  #启动
注意:启动如果报错: /bin/bash: /etc/sysconfig/ipvsadm: 没有那个文件或目录
需要手动生成文件
[root@lvs-server ~]# ipvsadm --save > /etc/sysconfig/ipvsadm

定义LVS分发策略

-A:添加VIP
-t:用的是tcp协议
-a:添加的是lo的vip地址
-r:转发到realserverip
-s:算法
-L|-l –list #显示内核虚拟服务器表
--numeric, -n:#以数字形式输出地址和端口号
-g --gatewaying #指定LVS工作模式为直接路由器模式(也是LVS默认的模式)
-S -save #保存虚拟服务器规则到标准输出,输出为-R 选项可读的格式
rr:轮循
如果添加ip错了,删除命令如下:
# ip addr del 172.16.147.200 dev ens33
[root@lvs-server ~]# ipvsadm -C  #清除内核虚拟服务器表中的所有记录。
[root@lvs-server ~]# ipvsadm -A -t 172.16.147.200:80 -s rr 
[root@lvs-server ~]# ipvsadm -a -t 172.16.147.200:80 -r 172.16.147.155:80 -g 
[root@lvs-server ~]# ipvsadm -a -t 172.16.147.200:80 -r 172.16.147.156:80 -g  
[root@lvs-server ~]# service ipvsadm save #保存方式一,使用下面的保存方式,版本7已经不支持了
[root@lvs-server ~]# ipvsadm -S > /etc/sysconfig/ipvsadm  #保存方式二,保存到一个文件中
[root@lvs-server ~]# ipvsadm -ln
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
  -> RemoteAddress:Port           Forward Weight ActiveConn InActConn
TCP  172.16.147.100:80 rr
  -> 172.16.147.155:80            Route   1      0          0         
  -> 172.16.147.156:80            Route   1      0          0         
     
[root@lvs-server ~]# ipvsadm -L -n       
[root@lvs-server ~]# ipvsadm -L -n --stats    #显示统计信息
1. Conns    (connections scheduled)  已经转发过的连接数
2. InPkts   (incoming packets)       入包个数
3. OutPkts  (outgoing packets)       出包个数
4. InBytes  (incoming bytes)         入流量(字节)  
5. OutBytes (outgoing bytes)         出流量(字节)
[root@lvs-server ~]# ipvsadm -L -n --rate   #看速率
1. CPS      (current connection rate)   每秒连接数
2. InPPS    (current in packet rate)    每秒的入包个数
3. OutPPS   (current out packet rate)   每秒的出包个数
4. InBPS    (current in byte rate)      每秒入流量(字节)
5. OutBPS   (current out byte rate)      每秒出流量(字节)

3、所有RS配置

配置好网站服务器,测试所有RS #为了测试效果,提供不同的页面(以下两台real-server都操作)

[root@real-server1 ~]# yum install -y nginx
[root@real-server1 ~]# echo "real-server1" >> /usr/share/nginx/html/index.html
两台机器都安装,按顺序添加不同的主机名以示区分
[root@real-server1 ~]# ip addr add dev lo 172.16.147.200/32   #在lo接口上绑定VIP
[root@real-server1 ~]# echo 1 > /proc/sys/net/ipv4/conf/all/arp_ignore  #忽略arp广播
[root@real-server1 ~]# echo 2 > /proc/sys/net/ipv4/conf/all/arp_announce #匹配精确ip地址回包
[root@real-server1 ~]# systemctl start nginx 
[root@real-server1 ~]# systemctl enable  nginx 
=============================================================================
因为:realServer的vip有了,接着就是同一个网段中拥有两个vip, 客户端在网关发送arp广播需找vip时需要让realServer不接受响应.  
解决:
echo 1 >/proc/sys/net/ipv4/conf/eth0/arp_ignore 
arp_ignore 设置为1,意味着当别人的arp请求过来的时候,如果接收的设备没有这个ip,就不做出响应(这个ip在lo上,lo不是接收设备的进口)
echo 2 >/proc/sys/net/ipv4/conf/eth0/arp_announce   
使用最好的ip来回应,什么是最好的ip?同一个网段内子网掩码最长的
4、测试
[root@client ~]# elinks -dump http://172.16.147.200
8、LVS的调度算法

LVS的调度算法分为静态与动态两类。

1、静态算法(4种)

只根据算法进行调度 而不考虑后端服务器的实际连接情况和负载情况

①.RR:轮叫调度(Round Robin)

调度器通过”轮叫”调度算法将外部请求按顺序轮流分配到集群中的真实服务器上,它均等地对待每一台服务器,而不管服务器上实际的连接数和系统负载。

②.WRR:加权轮叫(Weight RR)

调度器通过“加权轮叫”调度算法根据真实服务器的不同处理能力来调度访问请求。这样可以保证处理能力强的服务器处理更多的访问流量。调度器可以自动问询真实服务器的负载情况,并动态地调整其权值。

③.DH:目标地址散列调度(Destination Hash )

根据请求的目标IP地址,作为散列键(HashKey)从静态分配的散列表找出对应的服务器,若该服务器是可用的且未超载,将请求发送到该服务器,否则返回空。

④.SH:源地址 hash(Source Hash)

源地址散列”调度算法根据请求的源IP地址,作为散列键(HashKey)从静态分配的散列表找出对应的服务器,若该服务器是可用的且未超载,将请求发送到该服务器,否则返回空。

2、动态算法(6种)

前端的调度器会根据后端真实服务器的实际连接情况来分配请求

①.LC:最少链接(Least Connections)

调度器通过”最少连接”调度算法动态地将网络请求调度到已建立的链接数最少的服务器上。如果集群系统的真实服务器具有相近的系统性能,采用”最小连接”调度算法可以较好地均衡负载。

②.WLC:加权最少连接(默认采用的就是这种)(Weighted Least Connections)

在集群系统中的服务器性能差异较大的情况下,调度器采用“加权最少链接”调度算法优化负载均衡性能,具有较高权值的服务器将承受较大比例的活动连接负载。调度器可以自动问询真实服务器的负载情况,并动态地调整其权值。

③.SED:最短期望延迟调度(Shortest Expected Delay )

在WLC基础上改进,Overhead =  (ACTIVE+1)*256/加权,不再考虑非活动状态,把当前处于活动状态的数目+1来实现,数目最小的,接受下次请求,+1的目的是为了考虑加权的时候,非活动连接过多缺陷:当权限过大的时候,会倒置空闲服务器一直处于无连接状态。

④.NQ:永不排队/最少队列调度(Never Queue Scheduling NQ)

无需队列。如果有台  realserver的连接数=0就直接分配过去,不需要再进行sed运算,保证不会有一个主机很空闲。

⑤.LBLC:基于局部性的最少链接(locality-Based Least Connections)

基于局部性的最少链接”调度算法是针对目标IP地址的负载均衡,目前主要用于Cache集群系统。该算法根据请求的目标IP地址找出该目标IP地址最近使用的服务器,若该服务器是可用的且没有超载,将请求发送到该服务器;若服务器不存在,或者该服务器超载且有服务器处于一半的工作负载,则用“最少链接”的原则选出一个可用的服务器,将请求发送到该服务器。

⑥. LBLCR:带复制的基于局部性最少连接(Locality-Based Least Connections with Replication)

带复制的基于局部性最少链接”调度算法也是针对目标IP地址的负载均衡,目前主要用于Cache集群系统。它与LBLC算法的不同之处是它要维护从一个目标IP地址到一组服务器的映射,而LBLC算法维护从一个目标IP地址到一台服务器的映射。该算法根据请求的目标IP地址找出该目标IP地址对应的服务器组,按”最小连接”原则从服务器组中选出一台服务器,若服务器没有超载,将请求发送到该服务器;若服务器超载,则按“最小连接”原则从这个集群中选出一台服务器,将该服务器加入到服务器组中,将请求发送到该服务器。同时,当该服务器组有一段时间没有被修改,将最忙的服务器从服务器组中删除,以降低复制的程度。

补充:

自己的总结:关于临时DR配置的

DR模式需要解决的问题

1、同一个网络中有3个VIP

假如lvs的VIP地址是192.168.91.130

为了让后台发包的时候直接发给客户端,所以要在real-server 中添加lvs的VIP lo

ip addr add 192.168.91.130/32 dev lo

这是添加lvs的本地回环ip,配置一个独一无二的ip地址,表示32位都指的是主机,没有网络位了

后端的两个VIP实现内部网卡,不会与lvs的负载均衡器冲突

2、为什么client不会直接发送包给后端

配置后端的realserver对arp请求静默

echo 1 > /proc/sys/net/ipv4/conf/all/arp_ignore

3、如何保证后端使用VIP作为回包的源地址

echo 2 > /proc/sys/net/ipv4/conf/all/arp_announce

配置后端以精确ip地址回包

4、后端服务器都有VIP,如何进行分发包采用更底层的mac地址进行分发。

image-20240418143533531

加一块新网卡

访问不会受限制

注意在真实的服务器上要把自己的lo设置的ip地址看好

脚本

写一下lvs-dr的脚本

开机自启(永久配置和临时生效)

lvs 中的资源配置永久生效和临时生效

生产环境中全部配置为永久生效哦

1、sysctl.conf 中的配置
永久生效:
vim /etc/sysctl.conf
net.ipv4.ip_forward=1
net.ipv4.conf.all.arp_ignore = 1
net.ipv4.conf.all.arp_announce = 2
​
sysctl -p
​
临时生效:
echo 1 > /proc/sys/net/ipv4/ip_forward
echo 1 > /proc/sys/net/ipv4/conf/all/arp_ignore 
echo 2 > /proc/sys/net/ipv4/conf/all/arp_announce
2、单块网卡添加多个ip[vip]
永久生效
vim /etc/sysconfig/network-scripts/ifcfg-ens33
TYPE="Ethernet"
PROXY_METHOD="none"
BROWSER_ONLY="no"
BOOTPROTO="static"
DEFROUTE="yes"
IPADDR=192.168.241.155
IPADDR2=192.168.241.166
IPADDR3=192.168.241.177
PREFIX=24
GATEWAY=192.168.241.2
DNS1=114.114.114.114
DEVICE="ens33"
ONBOOT="yes"
​
临时生效
ip addr add 192.168.241.155/24 dev ens33
ip addr add 192.168.241.166/24 dev ens33
ip addr add 192.168.241.177/24 dev ens33
3、默认路由、静态路由
永久生效
vim /etc/sysconfig/network-scripts/route-ens33
192.168.241.0/24 via 10.36.139.1 dev ens33
网段  下一跳  跳转的ip  设备 ens33
​
临时生效
ip route add 192.168.241.0/24 via 10.36.139.1 dev ens33
​
# 可以看出,文件中写的内容就是临时指令的后半段
4、ipvsadm规则
永久生效
方法1、通过ipvsadm 服务管理
    1、配置规则
    2、ipvsadm-save 保存到 /etc/sysconfig/ipvsadm 文件中
    3、将ipvsadm 设置为开机启动  systemctl enable ipvsadm
​
方法2、通过rc.local 设置
    1、ipvsadm -S > /tmp/ipvs
    2、rc.local:  ipvsadm -R < /tmp/ipvs

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1616637.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

一句话或一张图讲清楚系列之——ISERDESE2的原理

主要参考&#xff1a; https://blog.csdn.net/weixin_50810761/article/details/137383681 xilinx原语详解及仿真——ISERDESE2 作者&#xff1a;电路_fpga https://blog.csdn.net/weixin_45372778/article/details/122036112 Xilinx ISERDESE2应用笔记及仿真实操 作者&#x…

华为机考入门python3--(17)牛客17- 坐标移动

分类&#xff1a;字符串 知识点&#xff1a; 正则匹配 re.match(pattern, move) 格式字符串&#xff0c;可以在字符串中直接引用变量 f"{x},{y}" 题目来自【牛客】 import re def is_valid_coordinate(move): # 使用正则表达式验证移动是否合法 # ^: …

JavaEE初阶——多线程(七)——定时器

T04BF &#x1f44b;专栏: 算法|JAVA|MySQL|C语言 &#x1faf5; 小比特 大梦想 此篇文章与大家分享多线程的第七篇文章——关于定时器 如果有不足的或者错误的请您指出! 目录 4.定时器4.1标准库提供的定时器4.2自己实现一个定时器4.2.1任务类4.2.2Timer类4.2.3 有一个线程来负…

计算机网络3——数据链路层5高速以太网

文章目录 一、100BASE-T 以太网二、吉比特以太网三、10吉比特以太网(10GbE)和更快的以太网四、使用以太网进行宽带接入 随着电子技术的发展&#xff0c;以太网的速率也不断提升。从传统的10Mbits以太网一直发展到现在常用的速率为1Gbits的吉比特以太网&#xff0c;甚至更快的以…

深度剖析图像处理—边缘检测

什么是边缘检测 边缘检测(Edge Detection)就是提取图像中的边缘点(Edge Point)。边缘点是与周围像素相比灰度值有阶跃变化或屋顶状变化的像素。边缘常存在于目标与背景之间、目标与目标之间、目标与其影子之间。 ​ 在图像处理和图像分析中&#xff0c;经常要用到边缘(Edge)、边…

【数学归纳法 反证法】菲蜀定理

裴蜀定理&#xff08;或贝祖定理&#xff0c;Bzout’s identity&#xff09;得名于法国数学家艾蒂安裴蜀&#xff0c;说明了对任何整数a、b和它们的最大公约 数d&#xff0c;关于未知数x和y的线性不定方程&#xff08;称为裴蜀等式&#xff09;&#xff1a;若a,b是整数,且&…

绿联 安装transmission

绿联 安装transmission及中文UI 1、镜像 linuxserver/transmission:latest 2、安装 2.1、创建容器 按需配置权重。 2.2、基础设置 2.3、网络 桥接即可。 注&#xff1a;如果使用IPV6&#xff0c;请选择"host"模式。 注&#xff1a;如果使用IPV6&#xff0c;请选…

Ts支持哪些类型和类型运算(下)

目录 1、条件判断 &#xff08;extends &#xff1f;&#xff09; 2、推导 infer 3、联合 | 4、交叉 & 5、映射类型 1、条件判断 &#xff08;extends &#xff1f;&#xff09; ts里的条件判断&#xff0c;语法为 T extends XXX ? true : false &#xff0c;叫做…

vulfocus靶场tomcat-cve_2017_12615 文件上传

7.0.0-7.0.81 影响版本 Windows上的Apache Tomcat如果开启PUT方法(默认关闭)&#xff0c;则存在此漏洞&#xff0c;攻击者可以利用该漏洞上传JSP文件&#xff0c;从而导致远程代码执行。 Tomcat 是一个小型的轻量级应用服务器&#xff0c;在中小型系统和并发访问用户不是很多…

软考 系统架构设计师系列知识点之大数据设计理论与实践(17)

接前一篇文章&#xff1a;软考 系统架构设计师系列知识点之大数据设计理论与实践&#xff08;16&#xff09; 所属章节&#xff1a; 第19章. 大数据架构设计理论与实践 第5节 Lambda架构与Kappa架构的对比和设计选择 19.5.1 Lambda架构与Kappa架构的特性对比 1. 复杂度与开发、…

智慧浪潮下的产业园区:洞察智慧化转型如何打造高效、绿色、安全的新园区

目录 一、引言 二、智慧化转型的内涵与价值 三、打造高效园区的智慧化策略 1、建设智能化基础设施 2、推广智能化应用 3、构建智慧化服务平台 四、实现绿色园区的智慧化途径 1、推动绿色能源应用 2、实施绿色建筑设计 3、加强环境监测与治理 五、保障园区安全的智慧…

Group Query Attention (GQA) 机制详解以及手动实现计算

Group Query Attention (GQA) 机制详解 1. GQA的定义 Grouped-Query Attention (GQA) 是对 Multi-Head Attention (MHA) 和 Multi-Query Attention (MQA) 的扩展。通过提供计算效率和模型表达能力之间的灵活权衡&#xff0c;实现了查询头的分组。GQA将查询头分成了G个组&#…

一文学会Amazon transit GateWay

这是一个中转网关&#xff0c;使用时候需要在需要打通的VPC内创建一个挂载点&#xff0c;TGW会管理一张路由表来决定流量的转发到对应的挂载点上。本质上是EC2的请求路由到TGW&#xff0c;然后在查询TGW的路由表来再来决定下一跳&#xff0c;所以需要同时修改VPC 内子网的路由表…

ssm071北京集联软件科技有限公司信息管理系统+jsp

北京集联软件科技有限公司信息管理系统 摘 要 现代经济快节奏发展以及不断完善升级的信息化技术&#xff0c;让传统数据信息的管理升级为软件存储&#xff0c;归纳&#xff0c;集中处理数据信息的管理方式。本信息管理系统就是在这样的大环境下诞生&#xff0c;其可以帮助管理…

使用PlantUML绘制活动图、泳道图

最近在学PlantUML 太漂亮了 给大家欣赏一下 我也记录一下 startuml |使用前| start :用户打开旅游App; |#LightSkyBlue|使用后| :用户浏览旅游信息; |#AntiqueWhite|登机前| :用户办理登机手续; :系统生成登机牌; |使用前| :用户到达机场; |登机前| :用户通过安检; |#Light…

2024HVV在即| 最新漏洞CVE库(1.5W)与历史漏洞POC总结分享!

前言 也快到护网的时间了,每年的护网都是一场攻防实战的盛宴,那么漏洞库就是攻防红蓝双方人员的弹药库,红队人员可以通过工具进行监测是否存在历史漏洞方便快速打点,而蓝队则可以对资产进行梳理和监测历史漏洞,及时处理和修复,做好准备. 下面分享的…

发布自己的Docker镜像到DockerHub

学会了Dockerfile生成Docker image 之后&#xff0c;如何上传自己的镜像到 DockerHub呢&#xff1f;下面我以自己制作的 bs-cqhttp 镜像为例&#xff0c;演示一下如何将自己的镜像发布到 Docker 仓库。 1 生成自己的 Docker 镜像 1.1 实例镜像用到的文件 图1 实例镜像制作用到…

Web前端安全问题分类综合以及XSS、CSRF、SQL注入、DoS/DDoS攻击、会话劫持、点击劫持等详解,增强生产安全意识

前端安全问题是指发生在浏览器、单页面应用、Web页面等前端环境中的各类安全隐患。Web前端作为与用户直接交互的界面&#xff0c;其安全性问题直接关系到用户体验和数据安全。近年来&#xff0c;随着前端技术的快速发展&#xff0c;Web前端安全问题也日益凸显。因此&#xff0c…

注意libaudioProcess.so和libdevice.a是不一样的,一个是动态链接,一个是静态

libaudioProcess.so是动态链接&#xff0c;修改需要改根文件系统&#xff0c;需要bsp重新配置 libdevice.a是静态链接&#xff0c;直接替换就行 动态链接文件修改 然后执行fw_update.sh

HarmonyOS ArkUI实战开发-手势密码(PatternLock)

ArkUI开发框架提供了图案密码锁 PatternLock 组件&#xff0c;它以宫格图案的方式输入密码&#xff0c;用于密码验证&#xff0c;本节读者简单介绍一下该控件的使用。 PatternLock定义介绍 interface PatternLockInterface {(controller?: PatternLockController): PatternL…