Spring AI Summary

news2024/12/23 7:44:01

版权声明

  • 本文原创作者:谷哥的小弟
  • 作者博客地址:http://blog.csdn.net/lfdfhl

在这里插入图片描述

Spring AI is a project that aims to streamline the development of AI applications by providing abstractions and reusable components that can be easily integrated into existing applications. The project is inspired by other Python projects like LangChain and LlamaIndex, but it is not a direct port of those projects. Instead, Spring AI aims to be a more general-purpose platform that can be used with a variety of programming languages.

Key Concepts

Models: Models are the core components of AI applications. They are responsible for learning from data and making predictions. Spring AI supports a variety of models, including chat models, text-to-image models, and embedding models.

Prompts: Prompts are instructions that tell a model what to do. For example, a prompt might tell a chat model to generate a conversation or a text-to-image model to generate an image from a text description.

Prompt Templates: Prompt templates are reusable patterns for prompts. They can be used to simplify the process of writing prompts and to ensure that prompts are consistent with the model’s expectations.

Embeddings: Embeddings are vectors of numbers that represent data. They can be used to represent text, images, or other types of data. Spring AI supports a variety of embedding techniques.

Tokens: Tokens are the basic units of text. They are typically words or phrases. Spring AI supports a variety of tokenization techniques.

Output Parsing: Output parsing is the process of converting a model’s output into a format that can be used by an application. Spring AI provides a variety of tools for output parsing.

Bringing Your Data to the AI Model: Spring AI provides a variety of ways to get data to an AI model. This includes support for loading data from files, databases, and APIs.

Retrieval Augmented Generation: Retrieval augmented generation is a technique for improving the quality of generated text by using a retrieval model to find relevant documents. Spring AI supports retrieval augmented generation for chat models and text-to-image models.

Benefits of Spring AI

Spring AI offers a number of benefits for developers, including:

Simplified AI application development: Spring AI provides abstractions and reusable components that make it easier to develop AI applications.

Increased developer productivity: Spring AI’s pre-built components and tools can help developers build AI applications faster.
Enhanced application flexibility: Spring AI supports a variety of models, data stores, and programming languages, which gives developers more flexibility in choosing the best solution for their needs.

Reduced development costs: Spring AI can help developers reduce development costs by simplifying the development process and providing reusable components.

Use Cases for Spring AI

Spring AI can be used for a variety of AI application development scenarios, including:

Integrating AI functionality into existing applications: Spring AI can be used to add AI functionality to existing applications, such as chatbots, recommender systems, and fraud detection systems.

Building prototypes and MVPs: Spring AI’s rapid development capabilities make it ideal for building prototypes and MVPs.
Deploying AI applications on multiple platforms: Spring AI supports deployment of AI applications on a variety of platforms, including web, mobile, and IoT devices.

Extending existing AI applications: Spring AI can be used to extend the capabilities of existing AI applications.

Conclusion

Spring AI is a powerful and easy-to-use platform that can help developers simplify AI application development and build intelligent applications. It provides a comprehensive set of features that support a wide range of AI application scenarios.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1613530.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Jmeter-非GUI模式下运行jmeter脚本-适用于服务器上持续集成测试

背景 大部分Jmeter脚本都是部署在Linux上运行,利用Jenkins做接口自动化,定时巡检任务。 执行命令 1.进入jmeter的目录,bin文件夹 cd C:\path\to\jmeter\bin2.运行脚本文件 jmeter -n -t D:\{脚本文件目录}\xxx.jmx -l D:\{脚本文件目录}…

Java代码基础算法练习-逆序输出-2024.04.22

任务描述: 输入10个数字(数字取值范围:0~1000),然后逆序输出。 任务要求: 代码示例: package April_2024;import java.util.Scanner;/*** 输入10个数字(限定在0~1000范围内&#x…

Rust基本数据类型-切片

一、切片是什么,怎么用 1、切片是什么 切片并不是 Rust 独有的概念,在 Go 语言中就非常流行,它允许你引用集合中部分连续的元素序列,而不是引用整个集合。 对于字符串而言,切片就是对 String 类型中某一部分的引用&…

FFmpeg开发笔记(二十一)Windows环境给FFmpeg集成AVS3解码器

AVS3是中国AVS工作组制定的第三代音视频编解码技术标准,也是全球首个已推出的面向8K及5G产业应用的视频编码标准。AVS工作组于2019年3月9日完成第三代AVS视频标准(AVS3)基准档次的制订工作,参考软件的测试表明,AVS3基准…

webpack-babel2

浏览器的兼容性问题 浏览器的兼容性问题不知包括随屏幕大小而变化,还包括针对浏览器支持的特性(如css特性,js特性) 做处理。 目前市场上有很多浏览器:Chrome,Safari,IE,Edge等,要根据它们的市场占有率来决…

将城市名称替换成简写

图片左边是城市全称,右边是城市简写。 现在有一句话“this is Republic of Korea,that is United States of America”,要将其中的城市全称替换成城市简写。 #"Republic of Korea"替换成 South Korea s"this is Republic of Korea,that …

三、Flask模型基础

ORM 创建模型 # exts.py:插件管理 # 扩展的第三方插件 # 1.导入第三方插件 from flask_sqlalchemy import SQLAlchemy # ORM插件 from flask_migrate import Migrate # 2. 初始化 db SQLAlchemy() # ORM migrate Migrate() # 数据迁移 # 3. 和app对象绑定 def…

生态短讯 | Tapdata 与 TDengine 完成产品兼容性互认证,打造物联网实时数据生态

近月,深圳钛铂数据有限公司(以下简称钛铂数据)自主研发的实时数据平台(Tapdata Live Data Platform)与北京涛思数据科技有限公司(以下简称涛思数据)自主研发的大数据平台 TDengine,已…

SpringBoot集成Sleuth

引入Maven依赖 <dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-starter-sleuth</artifactId></dependency> 配置yml文件 bootstrap.yml文件增加如下配置 注&#xff1a;这个配置不是必须要&#…

WordPress SQLite Docker 镜像封装细节

为了让大家用的放心&#xff0c;同时解答 GitHub 社区中的疑问。这篇文章聊聊上一篇文章的 Docker 容器封装细节。 写在前面 在前一篇文章《WordPress 告别 MySQL&#xff1a;Docker SQLite WordPress》中&#xff0c;如果你跟着文章实践&#xff0c;大概三分钟就能够启动一个…

(三)组合特征与特征变换 学习简要笔记 #机器学习特征工程 #CDA学习打卡

目录 一. 统计及组合特征 1&#xff09;统计特征 2&#xff09;业务特征 3&#xff09;组合特征 &#xff08;a&#xff09;简单组合特征 &#xff08;b&#xff09;模型特征组合 二. 特征变换 1&#xff09;对数变换&#xff08;Logarithmic Transformation&#xff0…

KingbaseES存储过程的用法

数据库版本&#xff1a;KingbaseES V008R006C008B0014 简介 存储过程是一种强大的数据库编程工具&#xff0c;可以帮助开发人员实现复杂的业务逻辑和数据操作&#xff0c;用于提高数据库的性能、安全性和可维护性。 存储过程一般是将业务逻辑和数据操作封装起来&#xff0c;以便…

深度学习之图像分割从入门到精通——基于unet++实现细胞分割

模型 import torch from torch import nn__all__ [UNet, NestedUNet]class VGGBlock(nn.Module):def __init__(self, in_channels, middle_channels, out_channels):super().__init__()self.relu nn.ReLU(inplaceTrue)self.conv1 nn.Conv2d(in_channels, middle_channels, …

Redis底层数据结构之SDS

目录 一、概述二、SDS结构三、为什么使用SDS 下一篇 redis底层数据结构之ziplist 一、概述 Redis 中的 SDS&#xff08;Simple Dynamic String&#xff0c;简单动态字符串&#xff09;是 Redis 用于存储字符串值的底层实现&#xff0c;是对 C 语言传统字符串&#xff08;以 nu…

如何使用 Node.js 发送电子邮件全解和相关工具推荐

大多数Web应用程序都需要发送电子邮件。它可能用于注册、密码重置、状态报告&#xff0c;甚至是完整的市场营销活动&#xff0c;如新闻和促销。本教程解释了如何在Node.js中发送电子邮件&#xff0c;但其概念和挑战适用于您正在使用的任何系统。 你会在 npm 上找到大量与电子邮…

深度图转点云

一、理论分析 二、其他分析 1、相机内参 相机内参主要是四个参数fx,fy,u0,v0。要明白相机内参就是相机内部参数&#xff0c;是参考像素坐标系而言&#xff0c;有了这个前提&#xff0c;这四个参数也就很好理解了。 &#xff08;1&#xff09;首先&#xff0c;。其中F是相机的…

内存管理下及模板初阶

嗨喽&#xff0c;今天阿鑫给大家带来内存管理下以及模板初阶的博客&#xff0c;下面让我们开始今天的学习吧&#xff01; 内存管理下及模板初阶 new和delete的实现原理定位new表达式(placement-new)常见面试题泛型编程函数模板类模板 1. new和delete的实现原理 1.1 内置类型…

上位机工作感想-从C#到Qt的转变-1

0.前言 接触Qt开发也有一年多的时间了&#xff0c;还记得去年初从杭州回合肥时&#xff0c;刚来公司面临的几个问题&#xff1a; 1.C#转上位机的迷茫2.新公司管理模式的差异3.试用期的各种紧急任务。 当时也是加班加点学习C和Qt的基础知识&#xff0c;做了两个考核项目后&am…

Hadoop——Yarn 生产环境核心参数

1. ResourceManager 相关参数&#xff1a; yarn.resourcemanager.hostname&#xff1a;ResourceManager 的主机名。yarn.resourcemanager.webapp.address&#xff1a;ResourceManager 的 Web 应用程序地址。yarn.resourcemanager.scheduler.address&#xff1a;ResourceManage…

MB21屏幕增强

MB21 增强 一、屏幕抬头增强 需要在屏幕的抬头添加两个字段&#xff0c;并将字段保存至自建表 二、增强步骤 首先屏幕中的收货字段找到对应的屏幕为0521。 在对应的屏幕添加增强的字段&#xff1a;命名需要和对应的表名一样 根据需求&#xff0c;增强只针对预留中的异动…