1. CAS引出
1.1 悲观锁
顾名思义,就是比较悲观的锁,总是假设最坏的情况,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会阻塞直到它拿到锁(共享资源每次只给一个线程使用,其它线程阻塞,用完后再把资源转让给其它线程)。传统的关系型数据库里边就用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁。Java中synchronized
和ReentrantLock
等独占锁就是悲观锁思想的实现。
1.2 乐观锁
反之,总是假设最好的情况,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,可以使用版本号机制和CAS算法实现。乐观锁适用于多读的应用类型,这样可以提高吞吐量,像数据库提供的类似于write_condition机制,其实都是提供的乐观锁。在Java中java.util.concurrent.atomic
包下面的原子变量类就是使用了乐观锁的一种实现方式CAS实现的。
1.3 对比
从上面对两种锁的介绍,我们知道两种锁各有优缺点,不可认为一种好于另一种,像乐观锁适用于写比较少的情况下(多读场景),即冲突真的很少发生的时候,这样可以省去了锁的开销,加大了系统的整个吞吐量。但如果是多写的情况,一般会经常产生冲突,这就会导致上层应用会不断的进行retry,这样反倒是降低了性能,所以一般多写的场景下用悲观锁就比较合适。
synchronized关键字会让没有得到锁资源的线程进入BLOCKED状态,而后在争夺到锁资源后恢复为RUNNABLE状态,这个过程中涉及到操作系统用户模式和内核模式的转换,代价比较高。
尽管JAVA 1.6为synchronized做了优化,增加了从偏向锁到轻量级锁再到重量级锁的过过度,但是在最终转变为重量级锁之后,性能仍然比较低。所以面对这种情况,我们就可以使用java中的“原子操作类”。
2. 乐观锁两种实现方式
上面其实已经说了悲观锁的实现方式了,即synchronized
和ReentrantLock。所以下面主要说说乐观锁的实现方式。主要有两种方式:
-
1.版本号机制:
一般是在数据表中加上一个数据版本号version字段,表示数据被修改的次数,当数据被修改时,version值会加一。当线程A要更新数据值时,在读取数据的同时也会读取version值,在提交更新时,若刚才读取到的version值为当前数据库中的version值相等时才更新,否则重试更新操作,直到更新成功。就是通过version版本号作为一个标识,标识这个字段所属的数据是否被改变。
update table set x=x+1, version=version+1 where id=#{id} and version=#{version};
-
2.CAS算法
即compare and swap(比较与交换),是一种有名的无锁算法。无锁编程,即不使用锁的情况下实现多线程之间的变量同步,也就是在没有线程被阻塞的情况下实现变量的同步,所以也叫非阻塞同步(Non-blocking Synchronization)。
而Atomic操作类的底层正是用到了“CAS机制”。AQS底层也用到了CAS机制。
3. CAS原理
CAS机制中使用了3个基本操作数:内存地址V,旧的预期值A,要修改的新值B。
更新一个变量的时候,只有当变量的预期值A和内存地址V当中的实际值相同时,才会将内存地址V对应的值修改为B
当且仅当 V 的值等于 A时,CAS通过原子方式用新值B来更新V的值,否则不会执行任何操作(比较和替换是一个原子操作)。一般情况下是一个自旋操作,即不断的重试。
从思想上来说,synchronized属于悲观锁,悲观的认为程序中的并发情况严重,所以严防死守,CAS属于乐观锁,乐观地认为程序中的并发情况不那么严重,所以让线程不断去重试更新。(自旋)
在java中除了上面提到的Atomic系列类,以及Lock系列类夺得底层实现,甚至在JAVA1.6以上版本,synchronized转变为重量级锁之前,也会采用CAS机制。
CAS通过调用JNI的代码实现,JNI: java Native Inter face,允许java调用其它语言。而compar eAndSwapxxx系列的方法就是借助“C语言”来调用cpu底层指令实现的。以常用的Intel x86平 台来说,最终映射到的cpu的指令为“cmpxchg”,这是一个 原子指令,cpu执行此命令时,实现比较并替换的操作!
4. CAS缺点
-
CPU开销过大
在并发量比较高的情况下,如果许多线程反复尝试更新某一个变量,却又一直更新不成功,循环往复,会给CPU带来很到的压力。
-
不能保证代码块的原子性
CAS机制所保证的只是一个变量的原子性操作,而不能保证整个代码块的原子性。比如需要保证3个变量共同进行原子性的更新,就不得不使用synchronized了。
-
ABA问题
如果一个变量V初次读取的时候是A值,并且在准备赋值的时候检查到它仍然是A值,那我们就能说明它的值没有被其他线程修改过了吗?很明显是不能的,因为在这段时间它的值可能被改为其他值,然后又改回A,那CAS操作就会误认为它从来没有被修改过。这个问题被称为CAS操作的 "ABA"问题。
如果对数据的操作十分敏感,不容许出一点错,如银行转账、支付等,是不建议使用CAS加锁的,因为会存在ABA问题;如果在大并发情况下,CAS是不错的选择;
5. CAS底层源码简述
compareAndSet方法的实现很简单,只有一行代码。这里涉及到两个重要的对象,一个是unsafe,一个是valueOffset。
什么是unsafe呢?Java语言不像C,C++那样可以直接访问底层操作系统,但是JVM为我们提供了一个后门,这个后门就是unsafe。unsafe为我们提供了硬件级别的原子操作。
至于valueOffset对象,是通过unsafe.objectFiledOffset方法得到,所代表的是AtomicInteger对象value成员变量在内存中的偏移量。我们可以简单的把valueOffset理解为value变量的内存地址。
我们上面说过,CAS机制中使用了3个基本操作数:内存地址V,旧的预期值A,要修改的新值B。
而unsafe的compareAndSwapInt方法的参数包括了这三个基本元素:valueOffset参数代表了V,expect参数代表了A,update参数代表了B。正是unsafe的compareAndSwapInt方法保证了Compare和Swap操作之间的原子性操作。
6. CAS的ABA问题解决
真正要做到严谨的CAS机制,我们在compare阶段不仅要比较期望值A和地址V中的实际值,还要比较变量的版本号是否一致。
在Java中,AtomicStampedReference类就实现了用版本号作比较额CAS机制。
- 1. java语言CAS底层如何实现? 利用unsafe提供的原子性操作方法。
- 2.什么是ABA问题?怎么解决? 当一个值从A变成B,又更新回A,普通CAS机制会误判通过检测。利用版本号比较可以有效解决ABA问题。