深度学习每周学习总结P5(运动鞋识别)

news2025/1/16 1:55:30
  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊 | 接辅导、项目定制

–来自百度网盘超级会员V5的分享

目录

    • 0. 总结
    • 1. 数据导入及处理部分
    • 2. 加载数据集
    • 3.模型构建部分
      • 3.1 模型构建
      • 3.2 公式推导
    • 4. 设置超参数(设置初始学习率,动态学习率,梯度下降优化器,损失函数)
    • 4.1 设置设置初始学习率,动态学习率,梯度下降优化器,损失函数
    • 4.2 动态学习率代码说明
    • 5. 训练函数
    • 6. 测试函数
    • 7. 正式训练
    • 8. 结果与可视化
    • 9. 保存并加载模型
    • 10. 使用训练好的模型进行预测
    • 11.不同参数模型预测
      • 11.1 固定学习率
        • 1e-1
        • 1e-2
        • 1e-3
        • 1e-4
      • 11.2 动态学习率
        • 1e-1
        • 1e-2
        • 1e-3
        • 1e-4
      • 训练集水平翻转 + 动态学习率
        • 1e-3
        • 1e-4

0. 总结

数据导入及处理部分:本次数据导入没有使用torchvision自带的数据集,需要将原始数据进行处理包括数据导入,数据类型转换。

划分数据集:划定训练集测试集后,再使用torch.utils.data中的DataLoader()加载数据.注意:与之前不同的是,本次的数据集是已经划分好的。

模型构建部分:有两个部分一个初始化部分(init())列出了网络结构的所有层,比如卷积层池化层等。第二个部分是前向传播部分,定义了数据在各层的处理过程。注意:本次与刚开始学习时使用的方式不同,使用’nn.Sequential’,旨在将一系列模块或操作封装到一个紧凑的模块中。

设置超参数:在这之前需要定义损失函数,学习率,以及根据学习率定义优化器(例如SGD随机梯度下降),用来在训练中更新参数,最小化损失函数。注意:本次与之前不同的是使用了动态学习率

定义训练函数:函数的传入的参数有四个,分别是设置好的DataLoader(),定义好的模型,损失函数,优化器。函数内部初始化损失准确率为0,接着开始循环,使用DataLoader()获取一个批次的数据,对这个批次的数据带入模型得到预测值,然后使用损失函数计算得到损失值。接下来就是进行反向传播以及使用优化器优化参数,梯度清零放在反向传播之前或者是使用优化器优化之后都是可以的,一般是默认放在反向传播之前。

定义测试函数:函数传入的参数相比训练函数少了优化器,只需传入设置好的DataLoader(),定义好的模型,损失函数。此外除了处理批次数据时无需再设置梯度清零、返向传播以及优化器优化参数,其余部分均和训练函数保持一致。

训练过程:定义训练次数,有几次就使用整个数据集进行几次训练,初始化四个空list分别存储每次训练及测试的准确率及损失。使用model.train()开启训练模式,调用训练函数得到准确率及损失。使用model.eval()将模型设置为评估模式,调用测试函数得到准确率及损失。接着就是将得到的训练及测试的准确率及损失存储到相应list中并合并打印出来,得到每一次整体训练后的准确率及损失。学习优秀大佬的调试方案,达到优化目的。

结果可视化

模型的保存,调取及使用。在PyTorch中,通常使用 torch.save(model.state_dict(), ‘model.pth’) 保存模型的参数,使用 model.load_state_dict(torch.load(‘model.pth’)) 加载参数。

需要改进优化的地方:在保证整体流程没有问题的情况下,继续细化细节研究,比如一些函数的原理及作用,如何提升训练集准确率等问题。以为训练集水平翻转等处理会降低测试集的准确率,但实际测试发现这种对训练集图片的水平翻转等处理可能会提升测试集预测的鲁棒性。

1. 数据导入及处理部分

import torch
import torch.nn as nn
import torchvision
from torchvision import transforms,datasets

import os,PIL,pathlib,random
import matplotlib.pyplot as plt
import warnings

warnings.filterwarnings("ignore") #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False   # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100  #分辨率

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
device(type='cuda')
# 查看数据分类

data_dir = './data/sneaker_recognize/test/'
data_dir = pathlib.Path(data_dir) # 使用pathlib.Path()函数将字符串类型的文件夹路径转换为pathlib.Path对象。

data_paths = list(data_dir.glob('*')) # 使用glob()方法获取data_dir路径下的所有文件路径,并以列表形式存储在data_paths中。
# classNames = [str(path).split('\\')[-1] for path in data_paths] # pathlib的.parts方法会返回路径各部分的一个元组
classNames = [path.parts[-1] for path in data_paths] # pathlib的.parts方法会返回路径各部分的一个元组
classNames
['adidas', 'nike']
train_transforms = transforms.Compose([
    transforms.Resize([224,224]),      # 将输入图片resize成统一尺寸
    # transforms.RandomHorizontalFlip(), # 随机水平翻转
    transforms.ToTensor(),             # 将PIL Image或numpy.ndarray 转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(              # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean = [0.485,0.456,0.406],
        std = [0.229,0.224,0.225]      # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
    )
])
test_transforms = transforms.Compose([
    transforms.Resize([224,224]),
    transforms.ToTensor(),
    transforms.Normalize(
        mean = [0.485,0.456,0.406],
        std = [0.229,0.224,0.225]
    )
])
train_dataset = datasets.ImageFolder("./data/sneaker_recognize/train/",transform = train_transforms)
test_dataset = datasets.ImageFolder("./data/sneaker_recognize/test",transform = test_transforms)
train_dataset.class_to_idx
{'adidas': 0, 'nike': 1}

2. 加载数据集

# 使用dataloader加载数据,并设置好基本的batch_size
batch_size = 32
train_dl = torch.utils.data.DataLoader(
    train_dataset,
    batch_size = batch_size,
    shuffle = True,
    num_workers = 1
)
test_dl = torch.utils.data.DataLoader(
    test_dataset,
    batch_size = batch_size,
    shuffle = True,
    num_workers = 1
)
for X,y in test_dl:
    print("Shape of X [N,C,H,W]: ",X.shape)
    print("Shape of y: ",y.shape,y.dtype)
    break
Shape of X [N,C,H,W]:  torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64

3.模型构建部分

3.1 模型构建

'nn.Sequential’是PyTorch提供的一个方便的容器模块,旨在将一系列模块或操作封装到一个紧凑的模块中。当你使用’nn.Sequential’时,您可以按照应该执行的顺序堆叠各种神经网络组件(如层、激活函数和规范化层),这简化了模型的构造和可读性。

import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super(Model,self).__init__()
        self.conv1 = nn.Sequential(
            nn.Conv2d(3,12,kernel_size = 5,padding=0), # 12 * 220 * 220
            nn.BatchNorm2d(12),
            nn.ReLU()
        )
        self.conv2 = nn.Sequential(
            nn.Conv2d(12,12,kernel_size = 5,padding = 0), # 12 * 216 * 216
            nn.BatchNorm2d(12),
            nn.ReLU()
        )
        self.pool3 = nn.Sequential(
            nn.MaxPool2d(2) # 12 * 108 * 108
        )
        self.conv4 = nn.Sequential(
            nn.Conv2d(12,24,kernel_size = 5,padding = 0), # 24 * 104 * 104
            nn.BatchNorm2d(24),
            nn.ReLU()
        )
        self.conv5 = nn.Sequential(
            nn.Conv2d(24,24,kernel_size = 5,padding = 0),
            nn.BatchNorm2d(24),
            nn.ReLU()
        )
        self.pool6 = nn.Sequential(
            nn.MaxPool2d(2)
        )
        self.dropout = nn.Sequential(
            nn.Dropout(0.2)
        )
        self.fc = nn.Sequential(
            nn.Linear(24*50*50,len(classNames))
        )
        
    def forward(self,x):
        batch_size = x.size(0)
        x = self.conv1(x) # 卷积-BN-激活
        x = self.conv2(x) # 卷积-BN-激活
        x = self.pool3(x) # 池化
        x = self.conv4(x) # 卷积-BN-激活
        x = self.conv5(x) # 卷积-BN-激活
        x = self.pool6(x) # 池化
        x = self.dropout(x)
        x = x.view(batch_size,-1) # flatten 变成全连接网络的重要输入()(batch, 24*50*50) ==> (batch, -1), -1 此处自动算出的是24*50*50
        x = self.fc(x)
        
        return x
    
print("Using {} device".format(device))

model = Model().to(device)
model
Using cuda device





Model(
  (conv1): Sequential(
    (0): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1))
    (1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU()
  )
  (conv2): Sequential(
    (0): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1))
    (1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU()
  )
  (pool3): Sequential(
    (0): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (conv4): Sequential(
    (0): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1))
    (1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU()
  )
  (conv5): Sequential(
    (0): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1))
    (1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU()
  )
  (pool6): Sequential(
    (0): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (dropout): Sequential(
    (0): Dropout(p=0.2, inplace=False)
  )
  (fc): Sequential(
    (0): Linear(in_features=60000, out_features=2, bias=True)
  )
)

3.2 公式推导

3, 224, 224(输入数据)

-> 12, 220, 220(经过卷积层1)

-> 12, 216, 216(经过卷积层2)-> 12, 108, 108(经过池化层1)

-> 24, 104, 104(经过卷积层3)

-> 24, 100, 100(经过卷积层4)-> 24, 50, 50(经过池化层2)

-> 60000 -> num_classes(2)

计算公式:

卷积维度计算公式:

  • 高度方向: H o u t = ( H i n − K e r n e l _ s i z e + 2 × p a d d i n g ) s t r i d e + 1 H_{out} = \frac{\left(H_{in} - Kernel\_size + 2\times padding\right)}{stride} + 1 Hout=stride(HinKernel_size+2×padding)+1

  • 宽度方向: W o u t = ( W i n − K e r n e l _ s i z e + 2 × p a d d i n g ) s t r i d e + 1 W_{out} = \frac{\left(W_{in} - Kernel\_size + 2\times padding\right)}{stride} + 1 Wout=stride(WinKernel_size+2×padding)+1

  • 卷积层通道数变化:数据通道数为卷积层该卷积层定义的输出通道数,例如:self.conv1 = nn.Conv2d(3,64,kernel_size = 3)。在这个例子中,输出的通道数为64,这意味着卷积层使用了64个不同的卷积核,每个核都在输入数据上独立进行卷积运算,产生一个新的通道。需要注意,卷积操作不是在单独的通道上进行的,而是跨所有输入通道(本例中为3个通道)进行的,每个卷积核提供一个新的输出通道。

池化层计算公式:

  • 高度方向: H o u t = ( H i n + 2 × p a d d i n g H − d i l a t i o n H × ( k e r n e l _ s i z e H − 1 ) − 1 s t r i d e H + 1 ) H_{out} = \left(\frac{H_{in} + 2 \times padding_H - dilation_H \times (kernel\_size_H - 1) - 1}{stride_H} + 1 \right) Hout=(strideHHin+2×paddingHdilationH×(kernel_sizeH1)1+1)

  • 宽度方向: W o u t = ( W i n + 2 × p a d d i n g W − d i l a t i o n W × ( k e r n e l _ s i z e W − 1 ) − 1 s t r i d e W + 1 ) W_{out} = \left( \frac{W_{in} + 2 \times padding_W - dilation_W \times (kernel\_size_W - 1) - 1}{stride_W} + 1 \right) Wout=(strideWWin+2×paddingWdilationW×(kernel_sizeW1)1+1)

其中:

  • H i n H_{in} Hin W i n W_{in} Win 是输入的高度和宽度。
  • p a d d i n g H padding_H paddingH p a d d i n g W padding_W paddingW 是在高度和宽度方向上的填充量。
  • k e r n e l _ s i z e H kernel\_size_H kernel_sizeH k e r n e l _ s i z e W kernel\_size_W kernel_sizeW 是卷积核或池化核在高度和宽度方向上的大小。
  • s t r i d e H stride_H strideH s t r i d e W stride_W strideW 是在高度和宽度方向上的步长。
  • d i l a t i o n H dilation_H dilationH d i l a t i o n W dilation_W dilationW 是在高度和宽度方向上的膨胀系数。

请注意,这里的膨胀系数 $dilation \times (kernel_size - 1) $实际上表示核在膨胀后覆盖的区域大小。例如,一个 $3 \times 3 $ 的核,如果膨胀系数为2,则实际上它覆盖的区域大小为$ 5 \times 5 $(原始核大小加上膨胀引入的间隔)。

4. 设置超参数(设置初始学习率,动态学习率,梯度下降优化器,损失函数)

4.1 设置设置初始学习率,动态学习率,梯度下降优化器,损失函数

loss_fn = nn.CrossEntropyLoss() # 创建损失函数

def adjust_learning_rate(optimizer,epoch,start_lr):
    # 每两个epoch 衰减到原来的 0.98
    lr = start_lr * (0.92**(epoch//2))
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr

learn_rate = 1e-3 # 初始学习率 
optimizer = torch.optim.SGD(model.parameters(),lr = learn_rate)
# 官方方法动态学习接口调用示例
# loss_fn = nn.CrossEntropyLoss() # 创建损失函数

# lambda1 = lambda epoch: (0.92 ** (eopch // 2))
# learn_rate = 1e-4 # 初始学习率

# optimizer = torch.optim.SGD(model.parameters(),lr = learn_rate)
# scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer,lr_lambda = lambda1) # 选定调整方法

4.2 动态学习率代码说明

计算举例:

假定初始学习率(start_lr)是0.01. 这是前10个epoch学习率的变化情况:

  • Epoch 0: ( 0.01 × 0.9 2 ( 0 / / 2 ) = 0.01 × 0.9 2 0 = 0.01 (0.01 \times 0.92^{(0 // 2)} = 0.01 \times 0.92^{0} = 0.01 (0.01×0.92(0//2)=0.01×0.920=0.01
  • Epoch 1: ( 0.01 × 0.9 2 ( 1 / / 2 ) = 0.01 × 0.9 2 0 = 0.01 (0.01 \times 0.92^{(1 // 2)} = 0.01 \times 0.92^{0} = 0.01 (0.01×0.92(1//2)=0.01×0.920=0.01
  • Epoch 2: ( 0.01 × 0.9 2 ( 2 / / 2 ) = 0.01 × 0.9 2 1 = 0.0092 (0.01 \times 0.92^{(2 // 2)} = 0.01 \times 0.92^{1} = 0.0092 (0.01×0.92(2//2)=0.01×0.921=0.0092
  • Epoch 3: ( 0.01 × 0.9 2 ( 3 / / 2 ) = 0.01 × 0.9 2 1 = 0.0092 (0.01 \times 0.92^{(3 // 2)} = 0.01 \times 0.92^{1} = 0.0092 (0.01×0.92(3//2)=0.01×0.921=0.0092
  • Epoch 4: ( 0.01 × 0.9 2 ( 4 / / 2 ) = 0.01 × 0.9 2 2 = 0.008464 (0.01 \times 0.92^{(4 // 2)} = 0.01 \times 0.92^{2} = 0.008464 (0.01×0.92(4//2)=0.01×0.922=0.008464
  • Epoch 5: ( 0.01 × 0.9 2 ( 5 / / 2 ) = 0.01 × 0.9 2 2 = 0.008464 (0.01 \times 0.92^{(5 // 2)} = 0.01 \times 0.92^{2} = 0.008464 (0.01×0.92(5//2)=0.01×0.922=0.008464
  • Epoch 6: ( 0.01 × 0.9 2 ( 6 / / 2 ) = 0.01 × 0.9 2 3 = 0.007867 (0.01 \times 0.92^{(6 // 2)} = 0.01 \times 0.92^{3} = 0.007867 (0.01×0.92(6//2)=0.01×0.923=0.007867
  • Epoch 7: ( 0.01 × 0.9 2 ( 7 / / 2 ) = 0.01 × 0.9 2 3 = 0.007867 (0.01 \times 0.92^{(7 // 2)} = 0.01 \times 0.92^{3} = 0.007867 (0.01×0.92(7//2)=0.01×0.923=0.007867
  • Epoch 8: ( 0.01 × 0.9 2 ( 8 / / 2 ) = 0.01 × 0.9 2 4 = 0.007238 (0.01 \times 0.92^{(8 // 2)} = 0.01 \times 0.92^{4} = 0.007238 (0.01×0.92(8//2)=0.01×0.924=0.007238
  • Epoch 9: ( 0.01 × 0.9 2 ( 9 / / 2 ) = 0.01 × 0.9 2 4 = 0.007238 (0.01 \times 0.92^{(9 // 2)} = 0.01 \times 0.92^{4} = 0.007238 (0.01×0.92(9//2)=0.01×0.924=0.007238

从计算中可以看出,学习率每两个epoch下降一次。这种逐渐减少有助于微调神经网络的权重,特别是当它开始收敛到最小损失时。降低学习率可以帮助避免超过这个最小值,潜在地导致更好和更稳定的训练结果。

5. 训练函数

# 训练循环
def train(dataloader,model,loss_fn,optimizer):
    size = len(dataloader.dataset) # 训练集的大小
    num_batches = len(dataloader) # 批次数目
    
    train_loss,train_acc = 0,0 # 初始话训练损失和正确率
    
    for X,y in dataloader: # 获取图片和标签
        X,y = X.to(device),y.to(device)
        
        # 计算预测误差
        pred = model(X)
        loss = loss_fn(pred,y)
        
        # 反向传播
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        # 记录acc与loss
        train_acc += (pred.argmax(1)==y).type(torch.float).sum().item()
        train_loss += loss.item()
        
    train_acc /= size
    train_loss /= num_batches
    
    return train_acc,train_loss

6. 测试函数

# 测试函数
def test(dataloader,model,loss_fn):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    
    test_acc,test_loss = 0,0
    
    with torch.no_grad():
        for X,y in dataloader:
            X,y = X.to(device),y.to(device)
            
            # 计算loss
            pred = model(X)
            loss = loss_fn(pred,y)
            
            test_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
            test_loss += loss.item()
            
    test_acc /= size
    test_loss /= num_batches
        
    return test_acc,test_loss    

7. 正式训练

epochs = 40

train_acc = []
train_loss = []
test_acc = []
test_loss = []

for epoch in range(epochs):
    # 更新学历率(使用自定义学习率时使用)
    adjust_learning_rate(optimizer,epoch,learn_rate)
    
    model.train()
    epoch_train_acc,epoch_train_loss = train(train_dl,model,loss_fn,optimizer)
    # scheduler.step() # 更新学习率(调用官方动态学习率接口时使用)
    
    model.eval()
    epoch_test_acc,epoch_test_loss = test(test_dl,model,loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    # 获取当前的学习率
    
    lr = optimizer.state_dict()['param_groups'][0]['lr']
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%,Train_loss:{:.3f},Test_acc:{:.1f}%,Test_loss:{:.3f},Lr:{:.2E}')
    print(template.format(epoch+1,epoch_train_acc * 100 ,epoch_train_loss,epoch_test_acc * 100,epoch_test_loss,lr))
    
print('Done')
Epoch: 1, Train_acc:53.8%,Train_loss:3.389,Test_acc:51.3%,Test_loss:0.933,Lr:1.00E-03
Epoch: 2, Train_acc:55.8%,Train_loss:2.331,Test_acc:53.9%,Test_loss:1.597,Lr:1.00E-03
Epoch: 3, Train_acc:69.9%,Train_loss:0.969,Test_acc:65.8%,Test_loss:0.796,Lr:9.20E-04
Epoch: 4, Train_acc:62.5%,Train_loss:1.327,Test_acc:71.1%,Test_loss:0.686,Lr:9.20E-04
Epoch: 5, Train_acc:80.9%,Train_loss:0.462,Test_acc:68.4%,Test_loss:1.011,Lr:8.46E-04
Epoch: 6, Train_acc:79.5%,Train_loss:0.522,Test_acc:73.7%,Test_loss:0.564,Lr:8.46E-04
Epoch: 7, Train_acc:85.1%,Train_loss:0.321,Test_acc:76.3%,Test_loss:0.680,Lr:7.79E-04
Epoch: 8, Train_acc:86.9%,Train_loss:0.288,Test_acc:76.3%,Test_loss:0.467,Lr:7.79E-04
Epoch: 9, Train_acc:94.6%,Train_loss:0.173,Test_acc:77.6%,Test_loss:0.425,Lr:7.16E-04
Epoch:10, Train_acc:97.0%,Train_loss:0.134,Test_acc:76.3%,Test_loss:0.439,Lr:7.16E-04
Epoch:11, Train_acc:95.8%,Train_loss:0.136,Test_acc:75.0%,Test_loss:0.400,Lr:6.59E-04
Epoch:12, Train_acc:97.2%,Train_loss:0.117,Test_acc:76.3%,Test_loss:0.450,Lr:6.59E-04
Epoch:13, Train_acc:97.4%,Train_loss:0.113,Test_acc:80.3%,Test_loss:0.448,Lr:6.06E-04
Epoch:14, Train_acc:98.4%,Train_loss:0.104,Test_acc:76.3%,Test_loss:0.379,Lr:6.06E-04
Epoch:15, Train_acc:98.8%,Train_loss:0.096,Test_acc:77.6%,Test_loss:0.441,Lr:5.58E-04
Epoch:16, Train_acc:99.0%,Train_loss:0.090,Test_acc:80.3%,Test_loss:0.428,Lr:5.58E-04
Epoch:17, Train_acc:99.0%,Train_loss:0.090,Test_acc:78.9%,Test_loss:0.367,Lr:5.13E-04
Epoch:18, Train_acc:99.4%,Train_loss:0.084,Test_acc:78.9%,Test_loss:0.429,Lr:5.13E-04
Epoch:19, Train_acc:99.0%,Train_loss:0.079,Test_acc:78.9%,Test_loss:0.403,Lr:4.72E-04
Epoch:20, Train_acc:99.2%,Train_loss:0.076,Test_acc:78.9%,Test_loss:0.341,Lr:4.72E-04
Epoch:21, Train_acc:99.6%,Train_loss:0.073,Test_acc:80.3%,Test_loss:0.392,Lr:4.34E-04
Epoch:22, Train_acc:99.4%,Train_loss:0.073,Test_acc:78.9%,Test_loss:0.424,Lr:4.34E-04
Epoch:23, Train_acc:99.6%,Train_loss:0.067,Test_acc:78.9%,Test_loss:0.409,Lr:4.00E-04
Epoch:24, Train_acc:99.6%,Train_loss:0.067,Test_acc:78.9%,Test_loss:0.407,Lr:4.00E-04
Epoch:25, Train_acc:99.6%,Train_loss:0.061,Test_acc:78.9%,Test_loss:0.431,Lr:3.68E-04
Epoch:26, Train_acc:99.8%,Train_loss:0.063,Test_acc:80.3%,Test_loss:0.376,Lr:3.68E-04
Epoch:27, Train_acc:99.8%,Train_loss:0.065,Test_acc:81.6%,Test_loss:0.397,Lr:3.38E-04
Epoch:28, Train_acc:99.6%,Train_loss:0.060,Test_acc:80.3%,Test_loss:0.446,Lr:3.38E-04
Epoch:29, Train_acc:99.8%,Train_loss:0.057,Test_acc:81.6%,Test_loss:0.378,Lr:3.11E-04
Epoch:30, Train_acc:99.8%,Train_loss:0.058,Test_acc:81.6%,Test_loss:0.391,Lr:3.11E-04
Epoch:31, Train_acc:99.6%,Train_loss:0.057,Test_acc:80.3%,Test_loss:0.380,Lr:2.86E-04
Epoch:32, Train_acc:99.8%,Train_loss:0.056,Test_acc:78.9%,Test_loss:0.353,Lr:2.86E-04
Epoch:33, Train_acc:99.6%,Train_loss:0.059,Test_acc:80.3%,Test_loss:0.438,Lr:2.63E-04
Epoch:34, Train_acc:99.8%,Train_loss:0.051,Test_acc:81.6%,Test_loss:0.420,Lr:2.63E-04
Epoch:35, Train_acc:99.6%,Train_loss:0.055,Test_acc:81.6%,Test_loss:0.368,Lr:2.42E-04
Epoch:36, Train_acc:100.0%,Train_loss:0.053,Test_acc:81.6%,Test_loss:0.417,Lr:2.42E-04
Epoch:37, Train_acc:100.0%,Train_loss:0.050,Test_acc:81.6%,Test_loss:0.412,Lr:2.23E-04
Epoch:38, Train_acc:100.0%,Train_loss:0.052,Test_acc:78.9%,Test_loss:0.366,Lr:2.23E-04
Epoch:39, Train_acc:100.0%,Train_loss:0.051,Test_acc:78.9%,Test_loss:0.349,Lr:2.05E-04
Epoch:40, Train_acc:100.0%,Train_loss:0.051,Test_acc:78.9%,Test_loss:0.427,Lr:2.05E-04
Done

8. 结果与可视化

epochs_range = range(epochs)

plt.figure(figsize = (12,3))

plt.subplot(1,2,1)
plt.plot(epochs_range,train_acc,label = 'Training Accuracy')
plt.plot(epochs_range,test_acc,label = 'Test Accuracy')
plt.legend(loc = 'lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1,2,2)
plt.plot(epochs_range,train_loss,label = 'Test Accuracy')
plt.plot(epochs_range,test_loss,label = 'Test Loss')
plt.legend(loc = 'lower right')
plt.title('Training and validation Loss')
plt.show()


在这里插入图片描述

9. 保存并加载模型

# 模型保存
# torch.save(model.'sneaker_rec_model.pth') # 保存整个模型

# 模型加载
# model2 = torch.load('sneaker_rec_model.pth') 
# model2 = model2.to(device) # 理论上在哪里保存模型,加载模型也会优先在哪里,指定一下确保不会出错
# 状态字典保存
torch.save(model.state_dict(),'sneaker_rec_model_state_dict.pth') # 仅保存状态字典

# 加载状态字典到模型
model2 = Model().to(device) # 重新定义一个模型用来加载参数
model2.load_state_dict(torch.load('sneaker_rec_model_state_dict.pth')) # 加载状态字典到模型
<All keys matched successfully>

10. 使用训练好的模型进行预测

# 指定路径图片预测
from PIL import Image
import torchvision.transforms as transforms

classes = list(train_dataset.class_to_idx) # classes = list(total_data.class_to_idx)

def predict_one_image(image_path,model,transform,classes):
    
    test_img = Image.open(image_path).convert('RGB')
    # plt.imshow(test_img) # 展示待预测的图片
    
    test_img = transform(test_img)
    img = test_img.to(device).unsqueeze(0)
    
    model.eval()
    output = model(img)
    print(output) # 观察模型预测结果的输出数据
    
    _,pred = torch.max(output,1)
    pred_class = classes[pred]
    print(f'预测结果是:{pred_class}')

# 预测训练集中的某张照片
predict_one_image(image_path='./data/sneaker_recognize/test/adidas/1.jpg',
                 model = model,
                 transform = test_transforms,
                 classes = classes
                 )
tensor([[ 0.2667, -0.2810]], device='cuda:0', grad_fn=<AddmmBackward0>)
预测结果是:adidas

11.不同参数模型预测

11.1 固定学习率

1e-1
Epoch: 1, Train_acc:47.2%,Train_loss:22.085,Test_acc:39.5%,Test_loss:16.832,Lr:1.00E-01
Epoch: 2, Train_acc:48.0%,Train_loss:0.695,Test_acc:51.3%,Test_loss:0.694,Lr:1.00E-01
Epoch: 3, Train_acc:47.2%,Train_loss:0.698,Test_acc:50.0%,Test_loss:0.694,Lr:1.00E-01
Epoch: 4, Train_acc:49.2%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.694,Lr:1.00E-01
Epoch: 5, Train_acc:49.2%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.693,Lr:1.00E-01
Epoch: 6, Train_acc:48.8%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.693,Lr:1.00E-01
Epoch: 7, Train_acc:48.0%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.693,Lr:1.00E-01
Epoch: 8, Train_acc:49.6%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.693,Lr:1.00E-01
Epoch: 9, Train_acc:50.8%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.692,Lr:1.00E-01
Epoch:10, Train_acc:46.8%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.693,Lr:1.00E-01
Epoch:11, Train_acc:49.2%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.693,Lr:1.00E-01
Epoch:12, Train_acc:48.4%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.693,Lr:1.00E-01
Epoch:13, Train_acc:50.0%,Train_loss:0.693,Test_acc:50.0%,Test_loss:0.693,Lr:1.00E-01
Epoch:14, Train_acc:50.0%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.693,Lr:1.00E-01
Epoch:15, Train_acc:46.4%,Train_loss:0.692,Test_acc:50.0%,Test_loss:0.693,Lr:1.00E-01
Epoch:16, Train_acc:47.6%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.693,Lr:1.00E-01
Epoch:17, Train_acc:46.8%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.693,Lr:1.00E-01
Epoch:18, Train_acc:45.8%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.694,Lr:1.00E-01
Epoch:19, Train_acc:49.2%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.693,Lr:1.00E-01
Epoch:20, Train_acc:48.0%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.694,Lr:1.00E-01
Epoch:21, Train_acc:46.4%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.693,Lr:1.00E-01
Epoch:22, Train_acc:47.2%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.693,Lr:1.00E-01
Epoch:23, Train_acc:50.0%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.694,Lr:1.00E-01
Epoch:24, Train_acc:48.8%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.693,Lr:1.00E-01
Epoch:25, Train_acc:50.4%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.693,Lr:1.00E-01
Epoch:26, Train_acc:50.0%,Train_loss:0.693,Test_acc:50.0%,Test_loss:0.694,Lr:1.00E-01
Epoch:27, Train_acc:50.4%,Train_loss:0.696,Test_acc:50.0%,Test_loss:0.692,Lr:1.00E-01
Epoch:28, Train_acc:47.4%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.694,Lr:1.00E-01
Epoch:29, Train_acc:47.6%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.694,Lr:1.00E-01
Epoch:30, Train_acc:48.8%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.693,Lr:1.00E-01
Epoch:31, Train_acc:49.6%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.693,Lr:1.00E-01
Epoch:32, Train_acc:49.6%,Train_loss:0.693,Test_acc:50.0%,Test_loss:0.693,Lr:1.00E-01
Epoch:33, Train_acc:49.6%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.692,Lr:1.00E-01
Epoch:34, Train_acc:48.8%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.692,Lr:1.00E-01
Epoch:35, Train_acc:50.0%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.693,Lr:1.00E-01
Epoch:36, Train_acc:49.6%,Train_loss:0.696,Test_acc:50.0%,Test_loss:0.693,Lr:1.00E-01
Epoch:37, Train_acc:50.8%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.693,Lr:1.00E-01
Epoch:38, Train_acc:47.6%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.693,Lr:1.00E-01
Epoch:39, Train_acc:50.0%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.694,Lr:1.00E-01
Epoch:40, Train_acc:50.0%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.693,Lr:1.00E-01
Done

在这里插入图片描述

1e-2
Epoch: 1, Train_acc:52.8%,Train_loss:14.123,Test_acc:50.0%,Test_loss:6.319,Lr:1.00E-02
Epoch: 2, Train_acc:54.6%,Train_loss:3.390,Test_acc:59.2%,Test_loss:1.002,Lr:1.00E-02
Epoch: 3, Train_acc:57.4%,Train_loss:1.683,Test_acc:68.4%,Test_loss:1.051,Lr:1.00E-02
Epoch: 4, Train_acc:65.7%,Train_loss:0.947,Test_acc:63.2%,Test_loss:0.971,Lr:1.00E-02
Epoch: 5, Train_acc:68.3%,Train_loss:0.705,Test_acc:71.1%,Test_loss:0.732,Lr:1.00E-02
Epoch: 6, Train_acc:73.3%,Train_loss:0.552,Test_acc:77.6%,Test_loss:0.609,Lr:1.00E-02
Epoch: 7, Train_acc:80.9%,Train_loss:0.435,Test_acc:76.3%,Test_loss:0.713,Lr:1.00E-02
Epoch: 8, Train_acc:82.7%,Train_loss:0.478,Test_acc:73.7%,Test_loss:0.665,Lr:1.00E-02
Epoch: 9, Train_acc:83.1%,Train_loss:0.398,Test_acc:78.9%,Test_loss:0.629,Lr:1.00E-02
Epoch:10, Train_acc:89.0%,Train_loss:0.325,Test_acc:60.5%,Test_loss:1.178,Lr:1.00E-02
Epoch:11, Train_acc:89.8%,Train_loss:0.280,Test_acc:72.4%,Test_loss:0.615,Lr:1.00E-02
Epoch:12, Train_acc:92.8%,Train_loss:0.219,Test_acc:78.9%,Test_loss:0.663,Lr:1.00E-02
Epoch:13, Train_acc:86.9%,Train_loss:0.331,Test_acc:76.3%,Test_loss:0.718,Lr:1.00E-02
Epoch:14, Train_acc:93.2%,Train_loss:0.171,Test_acc:76.3%,Test_loss:0.788,Lr:1.00E-02
Epoch:15, Train_acc:95.2%,Train_loss:0.160,Test_acc:71.1%,Test_loss:0.689,Lr:1.00E-02
Epoch:16, Train_acc:91.6%,Train_loss:0.247,Test_acc:77.6%,Test_loss:0.738,Lr:1.00E-02
Epoch:17, Train_acc:95.8%,Train_loss:0.166,Test_acc:76.3%,Test_loss:0.726,Lr:1.00E-02
Epoch:18, Train_acc:96.8%,Train_loss:0.129,Test_acc:77.6%,Test_loss:0.777,Lr:1.00E-02
Epoch:19, Train_acc:97.4%,Train_loss:0.110,Test_acc:77.6%,Test_loss:0.853,Lr:1.00E-02
Epoch:20, Train_acc:97.2%,Train_loss:0.105,Test_acc:73.7%,Test_loss:0.945,Lr:1.00E-02
Epoch:21, Train_acc:97.6%,Train_loss:0.107,Test_acc:77.6%,Test_loss:0.862,Lr:1.00E-02
Epoch:22, Train_acc:98.4%,Train_loss:0.089,Test_acc:75.0%,Test_loss:0.921,Lr:1.00E-02
Epoch:23, Train_acc:98.8%,Train_loss:0.071,Test_acc:77.6%,Test_loss:0.818,Lr:1.00E-02
Epoch:24, Train_acc:97.6%,Train_loss:0.084,Test_acc:75.0%,Test_loss:0.811,Lr:1.00E-02
Epoch:25, Train_acc:98.6%,Train_loss:0.064,Test_acc:77.6%,Test_loss:0.762,Lr:1.00E-02
Epoch:26, Train_acc:99.2%,Train_loss:0.052,Test_acc:75.0%,Test_loss:0.775,Lr:1.00E-02
Epoch:27, Train_acc:99.4%,Train_loss:0.053,Test_acc:76.3%,Test_loss:0.844,Lr:1.00E-02
Epoch:28, Train_acc:98.8%,Train_loss:0.051,Test_acc:75.0%,Test_loss:0.988,Lr:1.00E-02
Epoch:29, Train_acc:99.8%,Train_loss:0.045,Test_acc:76.3%,Test_loss:0.800,Lr:1.00E-02
Epoch:30, Train_acc:99.4%,Train_loss:0.044,Test_acc:75.0%,Test_loss:0.789,Lr:1.00E-02
Epoch:31, Train_acc:99.4%,Train_loss:0.044,Test_acc:76.3%,Test_loss:0.831,Lr:1.00E-02
Epoch:32, Train_acc:99.8%,Train_loss:0.029,Test_acc:76.3%,Test_loss:1.050,Lr:1.00E-02
Epoch:33, Train_acc:99.6%,Train_loss:0.034,Test_acc:77.6%,Test_loss:0.853,Lr:1.00E-02
Epoch:34, Train_acc:98.8%,Train_loss:0.050,Test_acc:78.9%,Test_loss:1.084,Lr:1.00E-02
Epoch:35, Train_acc:99.6%,Train_loss:0.049,Test_acc:77.6%,Test_loss:1.032,Lr:1.00E-02
Epoch:36, Train_acc:99.6%,Train_loss:0.034,Test_acc:78.9%,Test_loss:1.497,Lr:1.00E-02
Epoch:37, Train_acc:98.6%,Train_loss:0.056,Test_acc:76.3%,Test_loss:0.785,Lr:1.00E-02
Epoch:38, Train_acc:99.6%,Train_loss:0.025,Test_acc:81.6%,Test_loss:1.048,Lr:1.00E-02
Epoch:39, Train_acc:99.8%,Train_loss:0.024,Test_acc:76.3%,Test_loss:1.205,Lr:1.00E-02
Epoch:40, Train_acc:99.4%,Train_loss:0.024,Test_acc:72.4%,Test_loss:1.039,Lr:1.00E-02
Done

在这里插入图片描述

1e-3
Epoch: 1, Train_acc:50.0%,Train_loss:3.273,Test_acc:61.8%,Test_loss:0.652,Lr:1.00E-03
Epoch: 2, Train_acc:53.8%,Train_loss:1.732,Test_acc:56.6%,Test_loss:0.777,Lr:1.00E-03
Epoch: 3, Train_acc:72.7%,Train_loss:0.683,Test_acc:52.6%,Test_loss:1.196,Lr:1.00E-03
Epoch: 4, Train_acc:58.8%,Train_loss:1.128,Test_acc:73.7%,Test_loss:0.621,Lr:1.00E-03
Epoch: 5, Train_acc:77.7%,Train_loss:0.484,Test_acc:69.7%,Test_loss:0.703,Lr:1.00E-03
Epoch: 6, Train_acc:82.7%,Train_loss:0.360,Test_acc:61.8%,Test_loss:1.136,Lr:1.00E-03
Epoch: 7, Train_acc:72.7%,Train_loss:0.636,Test_acc:73.7%,Test_loss:0.598,Lr:1.00E-03
Epoch: 8, Train_acc:87.8%,Train_loss:0.306,Test_acc:72.4%,Test_loss:0.517,Lr:1.00E-03
Epoch: 9, Train_acc:86.9%,Train_loss:0.307,Test_acc:71.1%,Test_loss:0.652,Lr:1.00E-03
Epoch:10, Train_acc:91.8%,Train_loss:0.233,Test_acc:73.7%,Test_loss:0.706,Lr:1.00E-03
Epoch:11, Train_acc:87.1%,Train_loss:0.284,Test_acc:77.6%,Test_loss:0.459,Lr:1.00E-03
Epoch:12, Train_acc:95.2%,Train_loss:0.166,Test_acc:78.9%,Test_loss:0.605,Lr:1.00E-03
Epoch:13, Train_acc:94.8%,Train_loss:0.162,Test_acc:77.6%,Test_loss:0.513,Lr:1.00E-03
Epoch:14, Train_acc:95.4%,Train_loss:0.141,Test_acc:80.3%,Test_loss:0.546,Lr:1.00E-03
Epoch:15, Train_acc:96.2%,Train_loss:0.143,Test_acc:81.6%,Test_loss:0.442,Lr:1.00E-03
Epoch:16, Train_acc:95.6%,Train_loss:0.136,Test_acc:78.9%,Test_loss:0.452,Lr:1.00E-03
Epoch:17, Train_acc:98.2%,Train_loss:0.098,Test_acc:78.9%,Test_loss:0.516,Lr:1.00E-03
Epoch:18, Train_acc:98.2%,Train_loss:0.094,Test_acc:80.3%,Test_loss:0.428,Lr:1.00E-03
Epoch:19, Train_acc:98.4%,Train_loss:0.089,Test_acc:78.9%,Test_loss:0.432,Lr:1.00E-03
Epoch:20, Train_acc:99.0%,Train_loss:0.081,Test_acc:80.3%,Test_loss:0.391,Lr:1.00E-03
Epoch:21, Train_acc:99.8%,Train_loss:0.068,Test_acc:78.9%,Test_loss:0.437,Lr:1.00E-03
Epoch:22, Train_acc:99.6%,Train_loss:0.073,Test_acc:80.3%,Test_loss:0.499,Lr:1.00E-03
Epoch:23, Train_acc:99.4%,Train_loss:0.065,Test_acc:80.3%,Test_loss:0.448,Lr:1.00E-03
Epoch:24, Train_acc:100.0%,Train_loss:0.053,Test_acc:80.3%,Test_loss:0.388,Lr:1.00E-03
Epoch:25, Train_acc:99.8%,Train_loss:0.056,Test_acc:82.9%,Test_loss:0.374,Lr:1.00E-03
Epoch:26, Train_acc:100.0%,Train_loss:0.047,Test_acc:78.9%,Test_loss:0.403,Lr:1.00E-03
Epoch:27, Train_acc:99.8%,Train_loss:0.045,Test_acc:82.9%,Test_loss:0.491,Lr:1.00E-03
Epoch:28, Train_acc:100.0%,Train_loss:0.043,Test_acc:81.6%,Test_loss:0.473,Lr:1.00E-03
Epoch:29, Train_acc:99.8%,Train_loss:0.041,Test_acc:84.2%,Test_loss:0.437,Lr:1.00E-03
Epoch:30, Train_acc:100.0%,Train_loss:0.039,Test_acc:80.3%,Test_loss:0.443,Lr:1.00E-03
Epoch:31, Train_acc:99.6%,Train_loss:0.038,Test_acc:82.9%,Test_loss:0.465,Lr:1.00E-03
Epoch:32, Train_acc:100.0%,Train_loss:0.033,Test_acc:82.9%,Test_loss:0.452,Lr:1.00E-03
Epoch:33, Train_acc:100.0%,Train_loss:0.032,Test_acc:82.9%,Test_loss:0.453,Lr:1.00E-03
Epoch:34, Train_acc:100.0%,Train_loss:0.030,Test_acc:81.6%,Test_loss:0.653,Lr:1.00E-03
Epoch:35, Train_acc:100.0%,Train_loss:0.031,Test_acc:80.3%,Test_loss:0.568,Lr:1.00E-03
Epoch:36, Train_acc:99.8%,Train_loss:0.030,Test_acc:80.3%,Test_loss:0.403,Lr:1.00E-03
Epoch:37, Train_acc:100.0%,Train_loss:0.028,Test_acc:82.9%,Test_loss:0.459,Lr:1.00E-03
Epoch:38, Train_acc:100.0%,Train_loss:0.024,Test_acc:82.9%,Test_loss:0.432,Lr:1.00E-03
Epoch:39, Train_acc:99.8%,Train_loss:0.027,Test_acc:81.6%,Test_loss:0.382,Lr:1.00E-03
Epoch:40, Train_acc:100.0%,Train_loss:0.023,Test_acc:82.9%,Test_loss:0.456,Lr:1.00E-03
Done

在这里插入图片描述

1e-4
Epoch: 1, Train_acc:53.4%,Train_loss:0.747,Test_acc:47.4%,Test_loss:0.695,Lr:1.00E-04
Epoch: 2, Train_acc:56.0%,Train_loss:0.725,Test_acc:60.5%,Test_loss:0.668,Lr:1.00E-04
Epoch: 3, Train_acc:66.1%,Train_loss:0.617,Test_acc:64.5%,Test_loss:0.646,Lr:1.00E-04
Epoch: 4, Train_acc:66.5%,Train_loss:0.603,Test_acc:61.8%,Test_loss:0.633,Lr:1.00E-04
Epoch: 5, Train_acc:75.7%,Train_loss:0.530,Test_acc:63.2%,Test_loss:0.598,Lr:1.00E-04
Epoch: 6, Train_acc:74.3%,Train_loss:0.529,Test_acc:63.2%,Test_loss:0.600,Lr:1.00E-04
Epoch: 7, Train_acc:76.9%,Train_loss:0.499,Test_acc:65.8%,Test_loss:0.576,Lr:1.00E-04
Epoch: 8, Train_acc:78.1%,Train_loss:0.474,Test_acc:69.7%,Test_loss:0.536,Lr:1.00E-04
Epoch: 9, Train_acc:82.3%,Train_loss:0.442,Test_acc:60.5%,Test_loss:0.724,Lr:1.00E-04
Epoch:10, Train_acc:82.3%,Train_loss:0.440,Test_acc:67.1%,Test_loss:0.618,Lr:1.00E-04
Epoch:11, Train_acc:82.9%,Train_loss:0.418,Test_acc:68.4%,Test_loss:0.549,Lr:1.00E-04
Epoch:12, Train_acc:87.3%,Train_loss:0.384,Test_acc:71.1%,Test_loss:0.539,Lr:1.00E-04
Epoch:13, Train_acc:86.9%,Train_loss:0.375,Test_acc:69.7%,Test_loss:0.517,Lr:1.00E-04
Epoch:14, Train_acc:89.2%,Train_loss:0.354,Test_acc:72.4%,Test_loss:0.514,Lr:1.00E-04
Epoch:15, Train_acc:90.0%,Train_loss:0.346,Test_acc:67.1%,Test_loss:0.529,Lr:1.00E-04
Epoch:16, Train_acc:89.8%,Train_loss:0.341,Test_acc:69.7%,Test_loss:0.542,Lr:1.00E-04
Epoch:17, Train_acc:90.4%,Train_loss:0.328,Test_acc:71.1%,Test_loss:0.561,Lr:1.00E-04
Epoch:18, Train_acc:89.6%,Train_loss:0.319,Test_acc:69.7%,Test_loss:0.561,Lr:1.00E-04
Epoch:19, Train_acc:91.6%,Train_loss:0.310,Test_acc:71.1%,Test_loss:0.499,Lr:1.00E-04
Epoch:20, Train_acc:93.4%,Train_loss:0.292,Test_acc:69.7%,Test_loss:0.553,Lr:1.00E-04
Epoch:21, Train_acc:91.8%,Train_loss:0.292,Test_acc:69.7%,Test_loss:0.546,Lr:1.00E-04
Epoch:22, Train_acc:93.2%,Train_loss:0.276,Test_acc:72.4%,Test_loss:0.548,Lr:1.00E-04
Epoch:23, Train_acc:94.0%,Train_loss:0.273,Test_acc:71.1%,Test_loss:0.539,Lr:1.00E-04
Epoch:24, Train_acc:94.2%,Train_loss:0.266,Test_acc:71.1%,Test_loss:0.526,Lr:1.00E-04
Epoch:25, Train_acc:95.2%,Train_loss:0.257,Test_acc:72.4%,Test_loss:0.514,Lr:1.00E-04
Epoch:26, Train_acc:94.8%,Train_loss:0.258,Test_acc:71.1%,Test_loss:0.466,Lr:1.00E-04
Epoch:27, Train_acc:96.6%,Train_loss:0.233,Test_acc:72.4%,Test_loss:0.520,Lr:1.00E-04
Epoch:28, Train_acc:95.8%,Train_loss:0.240,Test_acc:69.7%,Test_loss:0.513,Lr:1.00E-04
Epoch:29, Train_acc:96.6%,Train_loss:0.238,Test_acc:69.7%,Test_loss:0.485,Lr:1.00E-04
Epoch:30, Train_acc:96.6%,Train_loss:0.217,Test_acc:69.7%,Test_loss:0.531,Lr:1.00E-04
Epoch:31, Train_acc:96.4%,Train_loss:0.228,Test_acc:72.4%,Test_loss:0.491,Lr:1.00E-04
Epoch:32, Train_acc:97.4%,Train_loss:0.216,Test_acc:73.7%,Test_loss:0.533,Lr:1.00E-04
Epoch:33, Train_acc:97.4%,Train_loss:0.212,Test_acc:73.7%,Test_loss:0.483,Lr:1.00E-04
Epoch:34, Train_acc:97.2%,Train_loss:0.207,Test_acc:71.1%,Test_loss:0.536,Lr:1.00E-04
Epoch:35, Train_acc:96.8%,Train_loss:0.210,Test_acc:69.7%,Test_loss:0.512,Lr:1.00E-04
Epoch:36, Train_acc:97.6%,Train_loss:0.192,Test_acc:72.4%,Test_loss:0.471,Lr:1.00E-04
Epoch:37, Train_acc:98.4%,Train_loss:0.182,Test_acc:72.4%,Test_loss:0.488,Lr:1.00E-04
Epoch:38, Train_acc:97.6%,Train_loss:0.182,Test_acc:71.1%,Test_loss:0.531,Lr:1.00E-04
Epoch:39, Train_acc:99.2%,Train_loss:0.182,Test_acc:72.4%,Test_loss:0.481,Lr:1.00E-04
Epoch:40, Train_acc:98.2%,Train_loss:0.176,Test_acc:73.7%,Test_loss:0.581,Lr:1.00E-04
Done

在这里插入图片描述

11.2 动态学习率

1e-1
Epoch: 1, Train_acc:49.8%,Train_loss:15.757,Test_acc:50.0%,Test_loss:20.521,Lr:1.00E-01
Epoch: 2, Train_acc:47.2%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.693,Lr:1.00E-01
Epoch: 3, Train_acc:48.8%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.693,Lr:9.20E-02
Epoch: 4, Train_acc:48.8%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.693,Lr:9.20E-02
Epoch: 5, Train_acc:48.8%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.693,Lr:8.46E-02
Epoch: 6, Train_acc:48.8%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.693,Lr:8.46E-02
Epoch: 7, Train_acc:46.4%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.693,Lr:7.79E-02
Epoch: 8, Train_acc:45.6%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.693,Lr:7.79E-02
Epoch: 9, Train_acc:49.2%,Train_loss:0.693,Test_acc:50.0%,Test_loss:0.693,Lr:7.16E-02
Epoch:10, Train_acc:47.6%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.693,Lr:7.16E-02
Epoch:11, Train_acc:46.4%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.693,Lr:6.59E-02
Epoch:12, Train_acc:47.6%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.693,Lr:6.59E-02
Epoch:13, Train_acc:47.2%,Train_loss:0.693,Test_acc:50.0%,Test_loss:0.693,Lr:6.06E-02
Epoch:14, Train_acc:50.0%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.693,Lr:6.06E-02
Epoch:15, Train_acc:48.8%,Train_loss:0.693,Test_acc:50.0%,Test_loss:0.693,Lr:5.58E-02
Epoch:16, Train_acc:45.2%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.693,Lr:5.58E-02
Epoch:17, Train_acc:50.0%,Train_loss:0.693,Test_acc:50.0%,Test_loss:0.693,Lr:5.13E-02
Epoch:18, Train_acc:50.0%,Train_loss:0.693,Test_acc:50.0%,Test_loss:0.693,Lr:5.13E-02
Epoch:19, Train_acc:46.8%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.693,Lr:4.72E-02
Epoch:20, Train_acc:46.0%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.693,Lr:4.72E-02
Epoch:21, Train_acc:50.0%,Train_loss:0.693,Test_acc:50.0%,Test_loss:0.693,Lr:4.34E-02
Epoch:22, Train_acc:48.0%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.693,Lr:4.34E-02
Epoch:23, Train_acc:49.2%,Train_loss:0.693,Test_acc:50.0%,Test_loss:0.693,Lr:4.00E-02
Epoch:24, Train_acc:47.2%,Train_loss:0.693,Test_acc:50.0%,Test_loss:0.693,Lr:4.00E-02
Epoch:25, Train_acc:48.0%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.693,Lr:3.68E-02
Epoch:26, Train_acc:46.4%,Train_loss:0.693,Test_acc:50.0%,Test_loss:0.693,Lr:3.68E-02
Epoch:27, Train_acc:48.8%,Train_loss:0.693,Test_acc:50.0%,Test_loss:0.693,Lr:3.38E-02
Epoch:28, Train_acc:48.8%,Train_loss:0.693,Test_acc:50.0%,Test_loss:0.693,Lr:3.38E-02
Epoch:29, Train_acc:50.0%,Train_loss:0.693,Test_acc:50.0%,Test_loss:0.693,Lr:3.11E-02
Epoch:30, Train_acc:47.2%,Train_loss:0.694,Test_acc:50.0%,Test_loss:0.693,Lr:3.11E-02
Epoch:31, Train_acc:49.2%,Train_loss:0.693,Test_acc:50.0%,Test_loss:0.693,Lr:2.86E-02
Epoch:32, Train_acc:48.4%,Train_loss:0.693,Test_acc:50.0%,Test_loss:0.693,Lr:2.86E-02
Epoch:33, Train_acc:46.0%,Train_loss:0.693,Test_acc:50.0%,Test_loss:0.693,Lr:2.63E-02
Epoch:34, Train_acc:46.4%,Train_loss:0.693,Test_acc:50.0%,Test_loss:0.693,Lr:2.63E-02
Epoch:35, Train_acc:50.0%,Train_loss:0.693,Test_acc:50.0%,Test_loss:0.693,Lr:2.42E-02
Epoch:36, Train_acc:46.0%,Train_loss:0.693,Test_acc:50.0%,Test_loss:0.693,Lr:2.42E-02
Epoch:37, Train_acc:46.4%,Train_loss:0.693,Test_acc:50.0%,Test_loss:0.693,Lr:2.23E-02
Epoch:38, Train_acc:45.6%,Train_loss:0.693,Test_acc:50.0%,Test_loss:0.693,Lr:2.23E-02
Epoch:39, Train_acc:49.2%,Train_loss:0.693,Test_acc:50.0%,Test_loss:0.693,Lr:2.05E-02
Epoch:40, Train_acc:50.0%,Train_loss:0.693,Test_acc:50.0%,Test_loss:0.693,Lr:2.05E-02
Done

在这里插入图片描述

1e-2
Epoch: 1, Train_acc:47.6%,Train_loss:13.706,Test_acc:48.7%,Test_loss:6.212,Lr:1.00E-02
Epoch: 2, Train_acc:52.0%,Train_loss:2.729,Test_acc:50.0%,Test_loss:1.496,Lr:1.00E-02
Epoch: 3, Train_acc:65.9%,Train_loss:1.144,Test_acc:65.8%,Test_loss:0.933,Lr:9.20E-03
Epoch: 4, Train_acc:69.1%,Train_loss:0.876,Test_acc:53.9%,Test_loss:1.445,Lr:9.20E-03
Epoch: 5, Train_acc:72.7%,Train_loss:0.722,Test_acc:64.5%,Test_loss:0.757,Lr:8.46E-03
Epoch: 6, Train_acc:79.7%,Train_loss:0.488,Test_acc:72.4%,Test_loss:0.614,Lr:8.46E-03
Epoch: 7, Train_acc:83.9%,Train_loss:0.396,Test_acc:75.0%,Test_loss:0.787,Lr:7.79E-03
Epoch: 8, Train_acc:83.7%,Train_loss:0.446,Test_acc:71.1%,Test_loss:0.643,Lr:7.79E-03
Epoch: 9, Train_acc:83.3%,Train_loss:0.356,Test_acc:73.7%,Test_loss:0.769,Lr:7.16E-03
Epoch:10, Train_acc:86.1%,Train_loss:0.325,Test_acc:71.1%,Test_loss:1.028,Lr:7.16E-03
Epoch:11, Train_acc:88.6%,Train_loss:0.284,Test_acc:73.7%,Test_loss:0.710,Lr:6.59E-03
Epoch:12, Train_acc:91.0%,Train_loss:0.266,Test_acc:67.1%,Test_loss:1.325,Lr:6.59E-03
Epoch:13, Train_acc:88.4%,Train_loss:0.267,Test_acc:76.3%,Test_loss:0.659,Lr:6.06E-03
Epoch:14, Train_acc:90.6%,Train_loss:0.229,Test_acc:76.3%,Test_loss:0.628,Lr:6.06E-03
Epoch:15, Train_acc:90.8%,Train_loss:0.237,Test_acc:73.7%,Test_loss:0.858,Lr:5.58E-03
Epoch:16, Train_acc:91.4%,Train_loss:0.222,Test_acc:75.0%,Test_loss:0.951,Lr:5.58E-03
Epoch:17, Train_acc:92.8%,Train_loss:0.200,Test_acc:78.9%,Test_loss:0.851,Lr:5.13E-03
Epoch:18, Train_acc:93.0%,Train_loss:0.200,Test_acc:72.4%,Test_loss:0.753,Lr:5.13E-03
Epoch:19, Train_acc:92.4%,Train_loss:0.199,Test_acc:78.9%,Test_loss:0.790,Lr:4.72E-03
Epoch:20, Train_acc:94.6%,Train_loss:0.164,Test_acc:80.3%,Test_loss:0.735,Lr:4.72E-03
Epoch:21, Train_acc:93.6%,Train_loss:0.165,Test_acc:77.6%,Test_loss:0.969,Lr:4.34E-03
Epoch:22, Train_acc:93.8%,Train_loss:0.165,Test_acc:72.4%,Test_loss:0.838,Lr:4.34E-03
Epoch:23, Train_acc:95.4%,Train_loss:0.156,Test_acc:71.1%,Test_loss:1.048,Lr:4.00E-03
Epoch:24, Train_acc:95.8%,Train_loss:0.148,Test_acc:78.9%,Test_loss:0.728,Lr:4.00E-03
Epoch:25, Train_acc:97.6%,Train_loss:0.126,Test_acc:77.6%,Test_loss:0.801,Lr:3.68E-03
Epoch:26, Train_acc:96.0%,Train_loss:0.138,Test_acc:77.6%,Test_loss:0.828,Lr:3.68E-03
Epoch:27, Train_acc:96.6%,Train_loss:0.131,Test_acc:77.6%,Test_loss:0.767,Lr:3.38E-03
Epoch:28, Train_acc:96.2%,Train_loss:0.125,Test_acc:77.6%,Test_loss:0.999,Lr:3.38E-03
Epoch:29, Train_acc:96.6%,Train_loss:0.112,Test_acc:78.9%,Test_loss:0.864,Lr:3.11E-03
Epoch:30, Train_acc:97.8%,Train_loss:0.094,Test_acc:78.9%,Test_loss:0.956,Lr:3.11E-03
Epoch:31, Train_acc:96.2%,Train_loss:0.121,Test_acc:77.6%,Test_loss:0.723,Lr:2.86E-03
Epoch:32, Train_acc:97.2%,Train_loss:0.099,Test_acc:77.6%,Test_loss:0.703,Lr:2.86E-03
Epoch:33, Train_acc:97.6%,Train_loss:0.093,Test_acc:78.9%,Test_loss:0.971,Lr:2.63E-03
Epoch:34, Train_acc:97.8%,Train_loss:0.098,Test_acc:78.9%,Test_loss:0.757,Lr:2.63E-03
Epoch:35, Train_acc:98.2%,Train_loss:0.095,Test_acc:78.9%,Test_loss:0.896,Lr:2.42E-03
Epoch:36, Train_acc:98.6%,Train_loss:0.082,Test_acc:78.9%,Test_loss:0.784,Lr:2.42E-03
Epoch:37, Train_acc:98.4%,Train_loss:0.079,Test_acc:78.9%,Test_loss:0.933,Lr:2.23E-03
Epoch:38, Train_acc:98.8%,Train_loss:0.082,Test_acc:77.6%,Test_loss:1.152,Lr:2.23E-03
Epoch:39, Train_acc:98.8%,Train_loss:0.075,Test_acc:78.9%,Test_loss:0.855,Lr:2.05E-03
Epoch:40, Train_acc:98.6%,Train_loss:0.084,Test_acc:78.9%,Test_loss:0.824,Lr:2.05E-03
Done

在这里插入图片描述

1e-3
Epoch: 1, Train_acc:53.8%,Train_loss:3.389,Test_acc:51.3%,Test_loss:0.933,Lr:1.00E-03
Epoch: 2, Train_acc:55.8%,Train_loss:2.331,Test_acc:53.9%,Test_loss:1.597,Lr:1.00E-03
Epoch: 3, Train_acc:69.9%,Train_loss:0.969,Test_acc:65.8%,Test_loss:0.796,Lr:9.20E-04
Epoch: 4, Train_acc:62.5%,Train_loss:1.327,Test_acc:71.1%,Test_loss:0.686,Lr:9.20E-04
Epoch: 5, Train_acc:80.9%,Train_loss:0.462,Test_acc:68.4%,Test_loss:1.011,Lr:8.46E-04
Epoch: 6, Train_acc:79.5%,Train_loss:0.522,Test_acc:73.7%,Test_loss:0.564,Lr:8.46E-04
Epoch: 7, Train_acc:85.1%,Train_loss:0.321,Test_acc:76.3%,Test_loss:0.680,Lr:7.79E-04
Epoch: 8, Train_acc:86.9%,Train_loss:0.288,Test_acc:76.3%,Test_loss:0.467,Lr:7.79E-04
Epoch: 9, Train_acc:94.6%,Train_loss:0.173,Test_acc:77.6%,Test_loss:0.425,Lr:7.16E-04
Epoch:10, Train_acc:97.0%,Train_loss:0.134,Test_acc:76.3%,Test_loss:0.439,Lr:7.16E-04
Epoch:11, Train_acc:95.8%,Train_loss:0.136,Test_acc:75.0%,Test_loss:0.400,Lr:6.59E-04
Epoch:12, Train_acc:97.2%,Train_loss:0.117,Test_acc:76.3%,Test_loss:0.450,Lr:6.59E-04
Epoch:13, Train_acc:97.4%,Train_loss:0.113,Test_acc:80.3%,Test_loss:0.448,Lr:6.06E-04
Epoch:14, Train_acc:98.4%,Train_loss:0.104,Test_acc:76.3%,Test_loss:0.379,Lr:6.06E-04
Epoch:15, Train_acc:98.8%,Train_loss:0.096,Test_acc:77.6%,Test_loss:0.441,Lr:5.58E-04
Epoch:16, Train_acc:99.0%,Train_loss:0.090,Test_acc:80.3%,Test_loss:0.428,Lr:5.58E-04
Epoch:17, Train_acc:99.0%,Train_loss:0.090,Test_acc:78.9%,Test_loss:0.367,Lr:5.13E-04
Epoch:18, Train_acc:99.4%,Train_loss:0.084,Test_acc:78.9%,Test_loss:0.429,Lr:5.13E-04
Epoch:19, Train_acc:99.0%,Train_loss:0.079,Test_acc:78.9%,Test_loss:0.403,Lr:4.72E-04
Epoch:20, Train_acc:99.2%,Train_loss:0.076,Test_acc:78.9%,Test_loss:0.341,Lr:4.72E-04
Epoch:21, Train_acc:99.6%,Train_loss:0.073,Test_acc:80.3%,Test_loss:0.392,Lr:4.34E-04
Epoch:22, Train_acc:99.4%,Train_loss:0.073,Test_acc:78.9%,Test_loss:0.424,Lr:4.34E-04
Epoch:23, Train_acc:99.6%,Train_loss:0.067,Test_acc:78.9%,Test_loss:0.409,Lr:4.00E-04
Epoch:24, Train_acc:99.6%,Train_loss:0.067,Test_acc:78.9%,Test_loss:0.407,Lr:4.00E-04
Epoch:25, Train_acc:99.6%,Train_loss:0.061,Test_acc:78.9%,Test_loss:0.431,Lr:3.68E-04
Epoch:26, Train_acc:99.8%,Train_loss:0.063,Test_acc:80.3%,Test_loss:0.376,Lr:3.68E-04
Epoch:27, Train_acc:99.8%,Train_loss:0.065,Test_acc:81.6%,Test_loss:0.397,Lr:3.38E-04
Epoch:28, Train_acc:99.6%,Train_loss:0.060,Test_acc:80.3%,Test_loss:0.446,Lr:3.38E-04
Epoch:29, Train_acc:99.8%,Train_loss:0.057,Test_acc:81.6%,Test_loss:0.378,Lr:3.11E-04
Epoch:30, Train_acc:99.8%,Train_loss:0.058,Test_acc:81.6%,Test_loss:0.391,Lr:3.11E-04
Epoch:31, Train_acc:99.6%,Train_loss:0.057,Test_acc:80.3%,Test_loss:0.380,Lr:2.86E-04
Epoch:32, Train_acc:99.8%,Train_loss:0.056,Test_acc:78.9%,Test_loss:0.353,Lr:2.86E-04
Epoch:33, Train_acc:99.6%,Train_loss:0.059,Test_acc:80.3%,Test_loss:0.438,Lr:2.63E-04
Epoch:34, Train_acc:99.8%,Train_loss:0.051,Test_acc:81.6%,Test_loss:0.420,Lr:2.63E-04
Epoch:35, Train_acc:99.6%,Train_loss:0.055,Test_acc:81.6%,Test_loss:0.368,Lr:2.42E-04
Epoch:36, Train_acc:100.0%,Train_loss:0.053,Test_acc:81.6%,Test_loss:0.417,Lr:2.42E-04
Epoch:37, Train_acc:100.0%,Train_loss:0.050,Test_acc:81.6%,Test_loss:0.412,Lr:2.23E-04
Epoch:38, Train_acc:100.0%,Train_loss:0.052,Test_acc:78.9%,Test_loss:0.366,Lr:2.23E-04
Epoch:39, Train_acc:100.0%,Train_loss:0.051,Test_acc:78.9%,Test_loss:0.349,Lr:2.05E-04
Epoch:40, Train_acc:100.0%,Train_loss:0.051,Test_acc:78.9%,Test_loss:0.427,Lr:2.05E-04
Done

在这里插入图片描述

1e-4
Epoch: 1, Train_acc:55.8%,Train_loss:0.747,Test_acc:50.0%,Test_loss:0.706,Lr:1.00E-04
Epoch: 2, Train_acc:62.4%,Train_loss:0.666,Test_acc:60.5%,Test_loss:0.670,Lr:1.00E-04
Epoch: 3, Train_acc:67.5%,Train_loss:0.611,Test_acc:67.1%,Test_loss:0.619,Lr:9.20E-05
Epoch: 4, Train_acc:69.7%,Train_loss:0.580,Test_acc:65.8%,Test_loss:0.628,Lr:9.20E-05
Epoch: 5, Train_acc:73.5%,Train_loss:0.530,Test_acc:64.5%,Test_loss:0.557,Lr:8.46E-05
Epoch: 6, Train_acc:73.5%,Train_loss:0.528,Test_acc:67.1%,Test_loss:0.566,Lr:8.46E-05
Epoch: 7, Train_acc:80.1%,Train_loss:0.469,Test_acc:68.4%,Test_loss:0.571,Lr:7.79E-05
Epoch: 8, Train_acc:78.3%,Train_loss:0.481,Test_acc:68.4%,Test_loss:0.551,Lr:7.79E-05
Epoch: 9, Train_acc:82.5%,Train_loss:0.449,Test_acc:69.7%,Test_loss:0.502,Lr:7.16E-05
Epoch:10, Train_acc:81.3%,Train_loss:0.443,Test_acc:68.4%,Test_loss:0.514,Lr:7.16E-05
Epoch:11, Train_acc:87.5%,Train_loss:0.412,Test_acc:72.4%,Test_loss:0.489,Lr:6.59E-05
Epoch:12, Train_acc:84.9%,Train_loss:0.417,Test_acc:68.4%,Test_loss:0.496,Lr:6.59E-05
Epoch:13, Train_acc:86.1%,Train_loss:0.395,Test_acc:72.4%,Test_loss:0.538,Lr:6.06E-05
Epoch:14, Train_acc:87.1%,Train_loss:0.374,Test_acc:71.1%,Test_loss:0.512,Lr:6.06E-05
Epoch:15, Train_acc:86.9%,Train_loss:0.371,Test_acc:72.4%,Test_loss:0.529,Lr:5.58E-05
Epoch:16, Train_acc:86.9%,Train_loss:0.377,Test_acc:72.4%,Test_loss:0.522,Lr:5.58E-05
Epoch:17, Train_acc:89.2%,Train_loss:0.347,Test_acc:72.4%,Test_loss:0.500,Lr:5.13E-05
Epoch:18, Train_acc:89.8%,Train_loss:0.341,Test_acc:69.7%,Test_loss:0.503,Lr:5.13E-05
Epoch:19, Train_acc:90.4%,Train_loss:0.334,Test_acc:72.4%,Test_loss:0.428,Lr:4.72E-05
Epoch:20, Train_acc:91.0%,Train_loss:0.330,Test_acc:77.6%,Test_loss:0.483,Lr:4.72E-05
Epoch:21, Train_acc:91.4%,Train_loss:0.322,Test_acc:72.4%,Test_loss:0.466,Lr:4.34E-05
Epoch:22, Train_acc:92.0%,Train_loss:0.327,Test_acc:75.0%,Test_loss:0.437,Lr:4.34E-05
Epoch:23, Train_acc:91.0%,Train_loss:0.314,Test_acc:75.0%,Test_loss:0.461,Lr:4.00E-05
Epoch:24, Train_acc:92.0%,Train_loss:0.313,Test_acc:75.0%,Test_loss:0.485,Lr:4.00E-05
Epoch:25, Train_acc:91.0%,Train_loss:0.301,Test_acc:75.0%,Test_loss:0.451,Lr:3.68E-05
Epoch:26, Train_acc:92.8%,Train_loss:0.293,Test_acc:73.7%,Test_loss:0.505,Lr:3.68E-05
Epoch:27, Train_acc:93.6%,Train_loss:0.300,Test_acc:73.7%,Test_loss:0.441,Lr:3.38E-05
Epoch:28, Train_acc:94.2%,Train_loss:0.291,Test_acc:75.0%,Test_loss:0.470,Lr:3.38E-05
Epoch:29, Train_acc:92.8%,Train_loss:0.293,Test_acc:76.3%,Test_loss:0.437,Lr:3.11E-05
Epoch:30, Train_acc:92.6%,Train_loss:0.289,Test_acc:75.0%,Test_loss:0.465,Lr:3.11E-05
Epoch:31, Train_acc:92.8%,Train_loss:0.292,Test_acc:75.0%,Test_loss:0.446,Lr:2.86E-05
Epoch:32, Train_acc:94.0%,Train_loss:0.277,Test_acc:75.0%,Test_loss:0.466,Lr:2.86E-05
Epoch:33, Train_acc:92.6%,Train_loss:0.281,Test_acc:75.0%,Test_loss:0.483,Lr:2.63E-05
Epoch:34, Train_acc:93.8%,Train_loss:0.287,Test_acc:75.0%,Test_loss:0.467,Lr:2.63E-05
Epoch:35, Train_acc:93.8%,Train_loss:0.283,Test_acc:76.3%,Test_loss:0.454,Lr:2.42E-05
Epoch:36, Train_acc:94.6%,Train_loss:0.273,Test_acc:76.3%,Test_loss:0.447,Lr:2.42E-05
Epoch:37, Train_acc:94.0%,Train_loss:0.278,Test_acc:76.3%,Test_loss:0.454,Lr:2.23E-05
Epoch:38, Train_acc:96.2%,Train_loss:0.264,Test_acc:75.0%,Test_loss:0.464,Lr:2.23E-05
Epoch:39, Train_acc:93.6%,Train_loss:0.260,Test_acc:76.3%,Test_loss:0.451,Lr:2.05E-05
Epoch:40, Train_acc:96.4%,Train_loss:0.258,Test_acc:76.3%,Test_loss:0.411,Lr:2.05E-05
Done

在这里插入图片描述

训练集水平翻转 + 动态学习率

1e-3
Epoch: 1, Train_acc:49.0%,Train_loss:3.819,Test_acc:50.0%,Test_loss:1.180,Lr:1.00E-03
Epoch: 2, Train_acc:59.4%,Train_loss:1.948,Test_acc:59.2%,Test_loss:0.703,Lr:1.00E-03
Epoch: 3, Train_acc:59.8%,Train_loss:1.444,Test_acc:67.1%,Test_loss:0.705,Lr:9.20E-04
Epoch: 4, Train_acc:65.5%,Train_loss:0.848,Test_acc:50.0%,Test_loss:2.079,Lr:9.20E-04
Epoch: 5, Train_acc:70.5%,Train_loss:0.769,Test_acc:72.4%,Test_loss:0.577,Lr:8.46E-04
Epoch: 6, Train_acc:72.3%,Train_loss:0.689,Test_acc:67.1%,Test_loss:0.657,Lr:8.46E-04
Epoch: 7, Train_acc:77.3%,Train_loss:0.539,Test_acc:56.6%,Test_loss:1.008,Lr:7.79E-04
Epoch: 8, Train_acc:72.1%,Train_loss:0.627,Test_acc:59.2%,Test_loss:0.954,Lr:7.79E-04
Epoch: 9, Train_acc:76.7%,Train_loss:0.590,Test_acc:72.4%,Test_loss:0.515,Lr:7.16E-04
Epoch:10, Train_acc:83.3%,Train_loss:0.368,Test_acc:67.1%,Test_loss:0.875,Lr:7.16E-04
Epoch:11, Train_acc:83.5%,Train_loss:0.379,Test_acc:72.4%,Test_loss:0.554,Lr:6.59E-04
Epoch:12, Train_acc:86.3%,Train_loss:0.332,Test_acc:72.4%,Test_loss:0.487,Lr:6.59E-04
Epoch:13, Train_acc:86.7%,Train_loss:0.307,Test_acc:72.4%,Test_loss:0.642,Lr:6.06E-04
Epoch:14, Train_acc:88.6%,Train_loss:0.302,Test_acc:73.7%,Test_loss:0.740,Lr:6.06E-04
Epoch:15, Train_acc:87.8%,Train_loss:0.278,Test_acc:76.3%,Test_loss:0.560,Lr:5.58E-04
Epoch:16, Train_acc:86.3%,Train_loss:0.304,Test_acc:75.0%,Test_loss:0.597,Lr:5.58E-04
Epoch:17, Train_acc:85.7%,Train_loss:0.302,Test_acc:73.7%,Test_loss:0.569,Lr:5.13E-04
Epoch:18, Train_acc:90.4%,Train_loss:0.249,Test_acc:75.0%,Test_loss:0.538,Lr:5.13E-04
Epoch:19, Train_acc:92.2%,Train_loss:0.229,Test_acc:77.6%,Test_loss:0.525,Lr:4.72E-04
Epoch:20, Train_acc:91.6%,Train_loss:0.230,Test_acc:72.4%,Test_loss:0.493,Lr:4.72E-04
Epoch:21, Train_acc:94.4%,Train_loss:0.196,Test_acc:77.6%,Test_loss:0.545,Lr:4.34E-04
Epoch:22, Train_acc:92.2%,Train_loss:0.220,Test_acc:76.3%,Test_loss:0.491,Lr:4.34E-04
Epoch:23, Train_acc:93.0%,Train_loss:0.217,Test_acc:78.9%,Test_loss:0.486,Lr:4.00E-04
Epoch:24, Train_acc:95.2%,Train_loss:0.189,Test_acc:75.0%,Test_loss:0.690,Lr:4.00E-04
Epoch:25, Train_acc:94.8%,Train_loss:0.185,Test_acc:80.3%,Test_loss:0.556,Lr:3.68E-04
Epoch:26, Train_acc:94.4%,Train_loss:0.187,Test_acc:80.3%,Test_loss:0.571,Lr:3.68E-04
Epoch:27, Train_acc:94.8%,Train_loss:0.183,Test_acc:75.0%,Test_loss:0.534,Lr:3.38E-04
Epoch:28, Train_acc:95.2%,Train_loss:0.169,Test_acc:76.3%,Test_loss:0.469,Lr:3.38E-04
Epoch:29, Train_acc:96.6%,Train_loss:0.163,Test_acc:80.3%,Test_loss:0.596,Lr:3.11E-04
Epoch:30, Train_acc:96.0%,Train_loss:0.165,Test_acc:76.3%,Test_loss:0.483,Lr:3.11E-04
Epoch:31, Train_acc:95.2%,Train_loss:0.170,Test_acc:78.9%,Test_loss:0.485,Lr:2.86E-04
Epoch:32, Train_acc:95.0%,Train_loss:0.167,Test_acc:77.6%,Test_loss:0.480,Lr:2.86E-04
Epoch:33, Train_acc:95.4%,Train_loss:0.161,Test_acc:80.3%,Test_loss:0.471,Lr:2.63E-04
Epoch:34, Train_acc:95.6%,Train_loss:0.159,Test_acc:76.3%,Test_loss:0.572,Lr:2.63E-04
Epoch:35, Train_acc:98.4%,Train_loss:0.148,Test_acc:80.3%,Test_loss:0.456,Lr:2.42E-04
Epoch:36, Train_acc:96.0%,Train_loss:0.153,Test_acc:78.9%,Test_loss:0.592,Lr:2.42E-04
Epoch:37, Train_acc:96.4%,Train_loss:0.156,Test_acc:77.6%,Test_loss:0.487,Lr:2.23E-04
Epoch:38, Train_acc:97.0%,Train_loss:0.144,Test_acc:78.9%,Test_loss:0.488,Lr:2.23E-04
Epoch:39, Train_acc:96.8%,Train_loss:0.148,Test_acc:76.3%,Test_loss:0.584,Lr:2.05E-04
Epoch:40, Train_acc:96.6%,Train_loss:0.154,Test_acc:78.9%,Test_loss:0.562,Lr:2.05E-04
Done

在这里插入图片描述

1e-4
Epoch: 1, Train_acc:54.8%,Train_loss:0.790,Test_acc:61.8%,Test_loss:0.672,Lr:1.00E-04
Epoch: 2, Train_acc:61.0%,Train_loss:0.668,Test_acc:65.8%,Test_loss:0.660,Lr:1.00E-04
Epoch: 3, Train_acc:63.5%,Train_loss:0.654,Test_acc:65.8%,Test_loss:0.583,Lr:9.20E-05
Epoch: 4, Train_acc:65.5%,Train_loss:0.627,Test_acc:67.1%,Test_loss:0.583,Lr:9.20E-05
Epoch: 5, Train_acc:67.1%,Train_loss:0.594,Test_acc:67.1%,Test_loss:0.565,Lr:8.46E-05
Epoch: 6, Train_acc:70.7%,Train_loss:0.586,Test_acc:73.7%,Test_loss:0.556,Lr:8.46E-05
Epoch: 7, Train_acc:71.5%,Train_loss:0.578,Test_acc:71.1%,Test_loss:0.532,Lr:7.79E-05
Epoch: 8, Train_acc:73.7%,Train_loss:0.541,Test_acc:69.7%,Test_loss:0.599,Lr:7.79E-05
Epoch: 9, Train_acc:74.3%,Train_loss:0.540,Test_acc:71.1%,Test_loss:0.529,Lr:7.16E-05
Epoch:10, Train_acc:72.9%,Train_loss:0.521,Test_acc:72.4%,Test_loss:0.516,Lr:7.16E-05
Epoch:11, Train_acc:76.5%,Train_loss:0.497,Test_acc:75.0%,Test_loss:0.523,Lr:6.59E-05
Epoch:12, Train_acc:75.7%,Train_loss:0.505,Test_acc:76.3%,Test_loss:0.530,Lr:6.59E-05
Epoch:13, Train_acc:78.1%,Train_loss:0.487,Test_acc:75.0%,Test_loss:0.491,Lr:6.06E-05
Epoch:14, Train_acc:79.5%,Train_loss:0.472,Test_acc:77.6%,Test_loss:0.529,Lr:6.06E-05
Epoch:15, Train_acc:76.7%,Train_loss:0.489,Test_acc:78.9%,Test_loss:0.484,Lr:5.58E-05
Epoch:16, Train_acc:79.3%,Train_loss:0.467,Test_acc:80.3%,Test_loss:0.520,Lr:5.58E-05
Epoch:17, Train_acc:80.5%,Train_loss:0.455,Test_acc:81.6%,Test_loss:0.527,Lr:5.13E-05
Epoch:18, Train_acc:81.5%,Train_loss:0.447,Test_acc:77.6%,Test_loss:0.463,Lr:5.13E-05
Epoch:19, Train_acc:81.5%,Train_loss:0.441,Test_acc:81.6%,Test_loss:0.471,Lr:4.72E-05
Epoch:20, Train_acc:83.3%,Train_loss:0.425,Test_acc:78.9%,Test_loss:0.469,Lr:4.72E-05
Epoch:21, Train_acc:79.7%,Train_loss:0.441,Test_acc:81.6%,Test_loss:0.492,Lr:4.34E-05
Epoch:22, Train_acc:80.7%,Train_loss:0.447,Test_acc:80.3%,Test_loss:0.474,Lr:4.34E-05
Epoch:23, Train_acc:84.5%,Train_loss:0.410,Test_acc:80.3%,Test_loss:0.485,Lr:4.00E-05
Epoch:24, Train_acc:82.5%,Train_loss:0.422,Test_acc:81.6%,Test_loss:0.469,Lr:4.00E-05
Epoch:25, Train_acc:81.3%,Train_loss:0.439,Test_acc:81.6%,Test_loss:0.460,Lr:3.68E-05
Epoch:26, Train_acc:83.1%,Train_loss:0.405,Test_acc:81.6%,Test_loss:0.488,Lr:3.68E-05
Epoch:27, Train_acc:85.5%,Train_loss:0.411,Test_acc:80.3%,Test_loss:0.476,Lr:3.38E-05
Epoch:28, Train_acc:83.7%,Train_loss:0.414,Test_acc:78.9%,Test_loss:0.462,Lr:3.38E-05
Epoch:29, Train_acc:84.7%,Train_loss:0.398,Test_acc:81.6%,Test_loss:0.465,Lr:3.11E-05
Epoch:30, Train_acc:86.1%,Train_loss:0.405,Test_acc:81.6%,Test_loss:0.478,Lr:3.11E-05
Epoch:31, Train_acc:85.5%,Train_loss:0.396,Test_acc:81.6%,Test_loss:0.447,Lr:2.86E-05
Epoch:32, Train_acc:85.3%,Train_loss:0.402,Test_acc:81.6%,Test_loss:0.451,Lr:2.86E-05
Epoch:33, Train_acc:85.3%,Train_loss:0.387,Test_acc:80.3%,Test_loss:0.421,Lr:2.63E-05
Epoch:34, Train_acc:85.7%,Train_loss:0.382,Test_acc:81.6%,Test_loss:0.466,Lr:2.63E-05
Epoch:35, Train_acc:85.5%,Train_loss:0.390,Test_acc:81.6%,Test_loss:0.500,Lr:2.42E-05
Epoch:36, Train_acc:85.7%,Train_loss:0.383,Test_acc:81.6%,Test_loss:0.469,Lr:2.42E-05
Epoch:37, Train_acc:86.1%,Train_loss:0.378,Test_acc:80.3%,Test_loss:0.466,Lr:2.23E-05
Epoch:38, Train_acc:84.3%,Train_loss:0.396,Test_acc:81.6%,Test_loss:0.456,Lr:2.23E-05
Epoch:39, Train_acc:88.0%,Train_loss:0.360,Test_acc:81.6%,Test_loss:0.484,Lr:2.05E-05
Epoch:40, Train_acc:87.1%,Train_loss:0.373,Test_acc:81.6%,Test_loss:0.478,Lr:2.05E-05
Done

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1608923.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

深度强化学习开端——DQN算法求解车杆游戏

深度强化学习开端——DQN算法求解车杆游戏 DQN&#xff0c;即深度Q网络&#xff08;Deep Q-Network&#xff09;&#xff0c;是一种结合了深度学习和强化学习的算法&#xff0c;其主要用于解决序列决策问题&#xff0c;并且在许多复杂的决策任务中展现出了显著的效果。DQN算法…

C++:map和set的使用

一、关联式容器介绍 在学习map和set之前&#xff0c;我们接触到的容器有&#xff1a;vector、list、stack、queue、priority_queue、array&#xff0c;这些容器统称为序列式容器&#xff0c;因为其底层为线性序列的数据结构&#xff0c;里面存储的是元素本身。 关联式容器也是用…

【JavaEE多线程】线程中断 interrupt()

系列文章目录 &#x1f308;座右铭&#x1f308;&#xff1a;人的一生这么长、你凭什么用短短的几年去衡量自己的一生&#xff01; &#x1f495;个人主页:清灵白羽 漾情天殇_计算机底层原理,深度解析C,自顶向下看Java-CSDN博客 ❤️相关文章❤️&#xff1a;清灵白羽 漾情天…

用FRP配置toml文件搭建内网穿透

需求场景 1、一台外网可访问的有固定ip的云服务器&#xff0c;Ubuntu系统 2、一台外网无法访问的无固定ip的本地家用电脑&#xff0c;Ubuntu系统 需求&#xff1a;将云服务器搭建为一台内网穿透服务器&#xff0c;实现通过外网访问家用电脑&#xff08;网页&#xff09;的功能。…

Unity 中(提示框Tweet)

using UnityEngine; using UnityEngine.UI; using DG.Tweening; using System; public class Message : MonoBehaviour {public float dropDuration 0.5f; // 掉落持续时间public float persisterDuration 1f; // 持续显示时间public float dorpHeight;public static Message…

AWS账号注册以及Claude 3 模型使用教程!

哈喽哈喽大家好呀&#xff0c;伙伴们&#xff01;你听说了吗&#xff1f;最近AWS托管了大热模型&#xff1a;Claude 3 Opus&#xff01;想要一探究竟吗&#xff1f;那就赶紧来注册AWS账号吧&#xff01;别担心&#xff0c;现在注册还免费呢&#xff01;而且在AWS上还有更多的大…

macos知名的清理软件 cleanmymac和腾讯柠檬哪个好 cleanmymacx有必要买吗

MacOS是一款优秀的操作系统&#xff0c;但是随着使用时间的增加&#xff0c;它也会产生一些不必要的垃圾文件&#xff0c;占用磁盘空间和内存资源&#xff0c;影响系统的性能和稳定性。为了保持MacOS的清洁和高效&#xff0c;我们需要使用一些专业的清理软件来定期扫描和清除这…

DePIN 赛道黑马,peaq network 如何打造全新 Web3 物联网?

当 Web2 公司仍对用户数据和资料进行“中心化”的收集与控制时&#xff0c;我们虽享受到了物联网技术的便利&#xff0c;却依旧没有逃脱个人数据和价值所有权的剥夺。由此&#xff0c;Web3 技术开始深入物联网世界&#xff0c;智能家居、智能汽车、智能手机都成为重要发力点&am…

三大层次学习企业架构框架TOGAF

前言 对于一名架构师来讲&#xff0c;如果说编程语言是知识库层次中的入门石&#xff0c;那么企业架构框架则相当于知识库层次中的金字塔尖。如果想成长为企业级的架构师&#xff0c;企业架构框架是必须要攀登的高塔。 目前国内绝大多数企业采用TOGAF标准&#xff0c;因此我们…

XSS漏洞---类型+实战案例+防止

文章目录 目录 文章目录 一.XSS漏洞简介 二.XSS漏洞类型 三.实战案例 反射型XSS 存储型XSS 四.防护措施 一.XSS漏洞简介 XSS漏洞&#xff08;Cross-Site Scripting&#xff09;是一种常见的Web应用程序安全漏洞&#xff0c;它允许攻击者在受害者的浏览器中注入恶意脚本。当受…

记录一下flume中因为taildir_position.json因位置不对导致数据无法从kafka被采到hdfs上的问题

【背景说明】 我需要用flume将kafka上的数据采集到hdfs上&#xff0c;发现数据怎么到不了hdfs。 【问题排查】 1.kafka上已有相应的数据 2.我的flume配置文档&#xff08;没问题&#xff09;&#xff0c; 3.时间拦截器&#xff08;没问题&#xff09;&#xff0c; 4.JSONObje…

IDEA开启自动导包,自动删包

找到file----------->Settings选项 找到Editor-------->General------------>Auto Import选项 勾选两个选项&#xff0c;在点击Apply,在点击ok 最后就ok了

记录——FPGA的学习路线

文章目录 一、前言二、编程语言2.1 书籍2.2 刷题网站2.3 仿真工具 三、基础知识3.1 专业基础课3.2 fpga相关专业知识 四、开发工具五、动手实验 一、前言 也不是心血来潮想学习fpga了&#xff0c;而是祥哥还有我一个国科大的同学都在往fpga这个方向走 并且看过我之前文章的同…

基于SSH的通讯录管理系统

&#x1f449;文末查看项目功能视频演示获取源码sql脚本视频导入教程视频 1 、功能描述 基于SSH的通讯录管理系统拥有两种角色&#xff1a;管理员和用户 管理员&#xff1a;用户管理、公告管理、系别管理、班级管理、通讯信息管理等 用户&#xff1a;拥有管理员中的查看功能…

数据可视化(五):Pandas高级统计——函数映射、数据结构、分组聚合等问题解决,能否成为你的工作备用锦囊?

Tips&#xff1a;"分享是快乐的源泉&#x1f4a7;&#xff0c;在我的博客里&#xff0c;不仅有知识的海洋&#x1f30a;&#xff0c;还有满满的正能量加持&#x1f4aa;&#xff0c;快来和我一起分享这份快乐吧&#x1f60a;&#xff01; 喜欢我的博客的话&#xff0c;记得…

Vast+产品展厅 | Vastbase G100数据库是什么架构?(1)

Vastbase G100是海量数据融合了多年对各行业应用场景的深入理解&#xff0c;基于openGauss内核开发的企业级关系型数据库。 了解Vastbase G100的架构&#xff0c;可以帮助您确保数据库系统的高效、可靠和安全运行。 “Vast产品展厅”将分两期&#xff0c;为您详细讲解Vastbas…

创新指南|利用 AI 工具转变您的内容策略

内容策略涉及规划、创建和管理内容。无论您是在策划博客文章、社交媒体更新还是网站内容&#xff0c;精心制定的内容策略是营销活动成功的关键。然而&#xff0c;如果没有合适的工具&#xff0c;维持强大的内容策略可能会具有挑战性。这就是人工智能(AI) 工具发挥作用的地方&am…

微信小程序四(全局配置和页面配置页面跳转)

全局配置&#xff1a; 小程序根目录下的 app.json 文件用来对微信小程序进行全局配置&#xff0c;决定页面文件的路径、窗口表现、设置网络超时时间、设置多 tab 等 tabBar设置&#xff1a;最少两个最多5个 "tabBar": {"list":[{"pagePath": &qu…

【机器学习300问】76、早停法(Early Stopping)是如何防止过拟合的?

本文带大家介绍一个非常简单的防止过拟合的方法——早停&#xff08;Early Stopping&#xff09;&#xff0c;首先给出概念&#xff0c;然后通过损失图像来加深对它的理解。 一、早停是什么呀&#xff1f; 早停&#xff08;Early Stopping&#xff09;是一种常用的深度学习模型…

STM32F401RCT6电子元器件芯片LQFP64 32位微控制器MCU单片机

STM32F401RCT6微控制器具有丰富的外设接口和较高的处理能力&#xff0c;适用于多种嵌入式应用。以下是一些典型的STM32F401RCT6应用案例&#xff1a; 1. 机器人控制&#xff1a;STM32F401RCT6可以用于制作自动导航机器人、遥控机器人等&#xff0c;负责处理传感器数据、控制电…