1、介绍
CAME:一种以置信度为导向的策略,以减少现有内存高效优化器的不稳定性。基于此策略,我们提出CAME同时实现两个目标:传统自适应方法的快速收敛和内存高效方法的低内存使用。大量的实验证明了CAME在各种NLP任务(如BERT和GPT-2训练)中的训练稳定性和优异的性能。
2、Pytorch中调用该优化算法
(1)定义CAME
import math
import torch
import torch.optim
class CAME(torch.optim.Optimizer):
"""Implements CAME algorithm.
This implementation is based on:
`CAME: Confidence-guided Adaptive Memory Efficient Optimization`
Args:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): external learning rate (default: None)
eps (tuple[float, float]): regularization constants for square gradient
and instability respectively (default: (1e-30, 1e-16))
clip_threshold (float): threshold of root-mean-square of
final gradient update (default: 1.0)
betas (tuple[float, float, float]): coefficient used for computing running averages of
update, square gradient and instability (default: (0.9, 0.999, 0.9999)))
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
"""
def __init__(
self,
params,
lr=None,
eps=(1e-30, 1e-16),
clip_threshold=1.0,
betas=(0.9, 0.999, 0.9999),
weight_decay=0.0,
):
assert lr > 0.
assert all([0. <= beta <= 1. for beta in betas])
defaults = dict(
lr=lr,
eps=eps,
clip_threshold=clip_threshold,
betas=betas,
weight_decay=weight_decay,
)
super(CAME, self).__init__(params, defaults)
@property
def supports_memory_efficient_fp16(self):
return True
@property
def supports_flat_params(self):
return False
def _get_options(self, param_shape):
factored = len(param_shape) >= 2
return factored
def _rms(self, tensor):
return tensor.norm(2) / (tensor.numel() ** 0.5)
def _approx_sq_grad(self, exp_avg_sq_row, exp_avg_sq_col):
r_factor = (
(exp_avg_sq_row / exp_avg_sq_row.mean(dim=-1, keepdim=True))
.rsqrt_()
.unsqueeze(-1)
)
c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt()
return torch.mul(r_factor, c_factor)
def step(self, closure=None):
"""Performs a single optimization step.
Args:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad.data
if grad.dtype in {torch.float16, torch.bfloat16}:
grad = grad.float()
if grad.is_sparse:
raise RuntimeError("CAME does not support sparse gradients.")
state = self.state[p]
grad_shape = grad.shape
factored = self._get_options(grad_shape)
# State Initialization
if len(state) == 0:
state["step"] = 0
state["exp_avg"] = torch.zeros_like(grad)
if factored:
state["exp_avg_sq_row"] = torch.zeros(grad_shape[:-1]).type_as(grad)
state["exp_avg_sq_col"] = torch.zeros(
grad_shape[:-2] + grad_shape[-1:]
).type_as(grad)
state["exp_avg_res_row"] = torch.zeros(grad_shape[:-1]).type_as(grad)
state["exp_avg_res_col"] = torch.zeros(
grad_shape[:-2] + grad_shape[-1:]
).type_as(grad)
else:
state["exp_avg_sq"] = torch.zeros_like(grad)
state["RMS"] = 0
state["step"] += 1
state["RMS"] = self._rms(p.data)
update = (grad**2) + group["eps"][0]
if factored:
exp_avg_sq_row = state["exp_avg_sq_row"]
exp_avg_sq_col = state["exp_avg_sq_col"]
exp_avg_sq_row.mul_(group["betas"][1]).add_(
update.mean(dim=-1), alpha=1.0 - group["betas"][1]
)
exp_avg_sq_col.mul_(group["betas"][1]).add_(
update.mean(dim=-2), alpha=1.0 - group["betas"][1]
)
# Approximation of exponential moving average of square of gradient
update = self._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col)
update.mul_(grad)
else:
exp_avg_sq = state["exp_avg_sq"]
exp_avg_sq.mul_(group["betas"][1]).add_(update, alpha=1.0 - group["betas"][1])
update = exp_avg_sq.rsqrt().mul_(grad)
update.div_(
(self._rms(update) / group["clip_threshold"]).clamp_(min=1.0)
)
exp_avg = state["exp_avg"]
exp_avg.mul_(group["betas"][0]).add_(update, alpha=1 - group["betas"][0])
# Confidence-guided strategy
# Calculation of instability
res = (update - exp_avg)**2 + group["eps"][1]
if factored:
exp_avg_res_row = state["exp_avg_res_row"]
exp_avg_res_col = state["exp_avg_res_col"]
exp_avg_res_row.mul_(group["betas"][2]).add_(
res.mean(dim=-1), alpha=1.0 - group["betas"][2]
)
exp_avg_res_col.mul_(group["betas"][2]).add_(
res.mean(dim=-2), alpha=1.0 - group["betas"][2]
)
# Approximation of exponential moving average of instability
res_approx = self._approx_sq_grad(exp_avg_res_row, exp_avg_res_col)
update = res_approx.mul_(exp_avg)
else:
update = exp_avg
if group["weight_decay"] != 0:
p.data.add_(
p.data, alpha=-group["weight_decay"] * group["lr"]
)
update.mul_(group["lr"])
p.data.add_(-update)
return loss
(2)在深度学习中调用CAME优化器
本文以使用LSTM算法对鸢尾花数据集进行分类为例,并且在代码中加入早停和十折交叉验证技术。
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.datasets import load_iris
from sklearn.model_selection import StratifiedKFold
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score
# 定义 LSTM 模型
class LSTMClassifier(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(LSTMClassifier, self).__init__()
self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, batch_first=True)
self.fc = nn.Linear(hidden_size, num_classes)
def forward(self, x):
_, (hn, _) = self.lstm(x)
out = self.fc(hn[-1]) # 选择最后一个 LSTM 隐层输出
return out
# 早停
class EarlyStopping:
def __init__(self, patience=5, min_delta=0):
self.patience = patience
self.min_delta = min_delta
self.best_loss = float('inf')
self.counter = 0
self.early_stop = False
def step(self, val_loss):
if val_loss < self.best_loss - self.min_delta:
self.best_loss = val_loss
self.counter = 0
else:
self.counter += 1
if self.counter >= self.patience:
self.early_stop = True
# 读取数据
iris = load_iris()
X = iris.data
y = iris.target
# 标准化数据
scaler = StandardScaler()
X = scaler.fit_transform(X)
# 将数据转换为 PyTorch 张量
X = torch.tensor(X, dtype=torch.float32)
y = torch.tensor(y, dtype=torch.long)
# 配置模型参数
input_size = X.shape[1] # 特征数量
hidden_size = 32
num_classes = 3
batch_size = 16
num_epochs = 100
learning_rate = 0.001
patience = 5
# 进行十折交叉验证
kf = StratifiedKFold(n_splits=10, shuffle=True, random_state=42)
fold_idx = 0
for train_index, val_index in kf.split(X, y):
fold_idx += 1
print(f"Fold {fold_idx}")
# 划分训练集和验证集
X_train, X_val = X[train_index], X[val_index]
y_train, y_val = y[train_index], y[val_index]
# 定义模型和优化器
model = LSTMClassifier(input_size, hidden_size, num_classes)
optimizer = CAME(model.parameters(), lr=2e-4, weight_decay=1e-2, betas=(0.9, 0.999, 0.9999), eps=(1e-30, 1e-16))
# optimizer = optim.Adam(model.parameters(), lr=learning_rate)
criterion = nn.CrossEntropyLoss()
# 早停设置
early_stopping = EarlyStopping(patience=patience)
# 训练模型
for epoch in range(num_epochs):
# 训练阶段
model.train()
optimizer.zero_grad()
outputs = model(X_train.unsqueeze(1))
loss = criterion(outputs, y_train)
loss.backward()
optimizer.step()
# 验证阶段
model.eval()
with torch.no_grad():
val_outputs = model(X_val.unsqueeze(1))
val_loss = criterion(val_outputs, y_val)
# 打印每轮迭代的损失值
print(f"Epoch {epoch + 1}: Train Loss = {loss.item():.4f}, Val Loss = {val_loss.item():.4f}")
# 早停检查
early_stopping.step(val_loss.item())
if early_stopping.early_stop:
print(f"Early stopping at epoch {epoch + 1}")
break
# 评估模型
model.eval()
with torch.no_grad():
val_outputs = model(X_val.unsqueeze(1))
_, predicted = torch.max(val_outputs, 1)
accuracy = accuracy_score(y_val, predicted)
print(f"Fold {fold_idx} Validation Accuracy: {accuracy:.4f}\n")
由于CAME主要面向NLP数据集,因此对于鸢尾花效果不算好,本文仅展示CAME的使用方法,并非提升acc和epoch。
参考文献:Luo, Yang, et al. “CAME: Confidence-guided Adaptive Memory Efficient Optimization.” arXiv preprint arXiv:2307.02047 (2023).