文章目录
- 单元0 前言
- 单元1 数学建模与机器学习
- 学习目标
- (一)什么是模型
- (二)数学模型的分类
- (三)数学建模的一般步骤
- (四)机器学习的概念
【我选择这本书的理由】
这本书比较简单,案例是常见的经典案例,算法也是最基本的。还有就是数据集比较好获取,有些甚至是三方包里面自带的。
感觉对初学者比较友好。
【说明】
本笔记的结构框架与书中内容并不完全一致,依据个人兴趣及理解等做了筛选。有些知识点并不连贯,只是按条进行简单记录。
前面理论比较多,虽然简单基础,但我觉得还是有必要梳理一下,让思路更清晰。
单元2开始有代码,单元5开始才有案例。
单元0 前言
作者给出教学建议:共64学时,也就是说,一个星期就能学完啦~
单元1 数学建模与机器学习
学习目标
【知识目标】
1、掌握数学模型的概念和建模步骤
2、了解机器学习的概念和算法
【能力目标】
能够对常见问题进行简单的数学建模
(一)什么是模型
1、模型是相对于原型而言的。
所谓原型,就是客观世界中存在的现实对象、实际问题、研究对象和系统。
而模型是根据实物按比例、生态或其他特征制成的与实物相似的一种物体,模型是原型的替代品。
2、模型分为物理模型和数学模型。
物理模型是指对原型按照保留主要特征、设计次要特征……比如飞机模型、火箭模型……(不写了哈,就是乐高好吧。。反正物理模型与机器学习无关)
数学模型是用数学语言对原型进行表示的数学公式、图形或算法等形式,它是真是系统的一种抽象。
数学模型是分析、设计、预报或预测、控制实际系统的基础。
一般来说,数学模型是指用字母、数字和其他数学符号构成的等式或不等式,或用图表、图像、框图、数理逻辑等来描述系统的特征及其内部或与外部联系的模型。
数学模型的理解示意图:
假设输入数据是x,输出结果是y,那中间的模型就是一个x和y之间的方程,当然,这只是一种片面的解释,但有助于理解模型是什么。
3、模型由结构和参数两部分构成。结构一般是根据人的理解和对事物的认识而选择或创建的,参数是通过算法根据样本数据逐步确定的,确定参数的过程叫做训练。
我的理解
结构就是选择什么模型;不同的模型结构不一样,里面的x、y以及方程的解(也就是参数)就不同。
4、机器学习算法中的深度学习,实际上就是增加了结点(又称为算子,代表一个操作,一般用来表示施加的数字运算,也可以表示数据输入的起点以及输出的终点)的层数和个数,从而增加了模型的复杂度。
(二)数学模型的分类
这里了解即可。我感觉说的不是很对,黑白灰箱那里。等学习深入以后再验证吧。反正这里不是重要的知识点。
为什么不用脑图?不喜欢看,乱。。
(三)数学建模的一般步骤
数学建模:问题定义 ==> 数学模型 的过程。
懒得自己画了,直接上图片。
【第1步】模型准备
了解问题的实际背景,明确建模目的 ==> 搜集必需的信息(如数据)=> 尽量弄清研究对象的主要特征
【第2步】模型假设
根据对象的特征和建模目的,抓住问题本质,忽略次要因素 => 对问题进行必要的、合理的简化假设
【第3步】模型构成
根据所做的假设,用数学语言、符号描述对象的内在规律,建立包含常量、变量等的数学模型,如优化模型、微分方程模型等。
建立数学模型是为了让更多人明了并加以应用,因此尽量采用简单的数学工具。
【第4步】模型求解
可以采用解方程、画图形、优化方法、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是数学软件和计算机技术。
【第5步】模型分析
对结果进行分析,如结果的误差分析、统计分析、模型对数据的灵敏性分析、对假设的强健性分析等。
【第6步】模型检验
将求解和分析结果返回到实际问题,与实际的现象、数据比较,检验模型的合理性和适用性。
如果结果与实际不符,问题常常出现在模型假设上,应该修改、补充假设,重新建模(图中虚线部分)。
直到检验结果获得某种程度上的满意为止。
【第7步】模型应用
用建立的模型解决实际问题。
(四)机器学习的概念
1、人工智能的应用范围包括计算机科学、金融贸易、医疗、交通、农业、服务业等行业。
其中,机器学习是解决人工智能问题的主要技术,在人工智能体系中处于基础与核心的地位。它广泛应用与机器视觉、语音识别、自然语言处理、数据挖掘等领域。
2、通俗来讲,机器学习是让计算机通过模拟人类的学习行为,来获取新的知识和技能,重新组织已有的知识结构,以不断改善自身智能。(这个说法我不喜欢……感觉又笼统又不准确)
看到现在为止,感觉这本书的理论一般,是一个搞云计算的公司 组编 的。
看看就得了。主要是想学习后面的简单经典案例。
今天饿了,先学到这里,吃串去了。
后面内容敬请期待……