文章目录
- 【`获取资源`请见文章第6节:资源获取】
- 1. 配电网故障定位
- 2. 二进制混合灰狼粒子群算法
- 3. 算例展示
- 4. 部分代码展示
- 5. 仿真结果展示
- 6. 资源获取
【获取资源
请见文章第6节:资源获取】
1. 配电网故障定位
配电系统故障定位,即在配电网络发生故障的时候,利用智能化的设备和系统,对故障点做出快
速、精准的位置锁定。我国早期使用的故障定位技术是利用分段器和重合器完成的,简单且容易实
现。现阶段,考虑到经济性因素,大多使用基于FTU和人工智能算法的定位技术。对配电网系统故障间接定位的方法主要有神经网络算法和人工智能算法。本文运用智能算法对配电系统的故障进行定位,其原理是把拟定的故障位置作为变量,用智能算法对构造的目标函数进行优化计算,最后得出的解即定位的故障位置。
本文采用的是33节点配电系统模型:
2. 二进制混合灰狼粒子群算法
二进制混合灰狼粒子群算法(Binary Mixed Grey Wolf Particle Swarm Optimization,简称BMGWPSO)是一种结合了灰狼优化算法(Grey Wolf Optimization,GWO)和粒子群优化算法(Particle Swarm Optimization,PSO)的进化算法。这个算法的目标是利用两种算法的优点,以更高效地解决优化问题。
灰狼优化算法(GWO):
-
GWO是一种模拟灰狼群体行为的优化算法,包括了模拟灰狼猎物寻找过程的步骤。
算法的核心思想是模拟灰狼群体的社会结构和行为,包括“领袖”、“副领导”和“普通成员”等角色。
灰狼通过个体的位置和适应度值来调整自己的位置,从而逐步靠近最优解。
粒子群优化算法(PSO): -
PSO是一种基于群体智能的优化算法,模拟了鸟群或鱼群等生物群体的集体行为。
算法中的每个“粒子”代表了搜索空间中的一个潜在解,它们通过不断地调整自身位置和速度来搜索最优解。粒子通过比较自身位置和邻居位置的适应度值来更新自己的速度和位置。
在BGWOPSO中,将这两种算法结合起来,采用不同的策略,同时利用GWO的社会结构和灰狼的寻找策略来进行优化搜索,又利用了粒子群的向最优解靠近的优点。这样的结合可以在解决复杂的优化问题时更快地收敛到全局最优解。
3. 算例展示
4. 部分代码展示
clc
clear
close all
global y K
SearchAgents_no=1000; % 种群数量
Max_iteration=100; % 最大迭代次数
dim=33; % 维度(33节点配电网系统)
lb=0; % 表示非故障位置
ub=1; % 表示该位置故障
% 多点故障
y=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 0];
%% 计算
K=[1 1 1];
[TargetFitness,TargetPosition,Convergence_curve]=BGWOPSO(SearchAgents_no, Max_iteration, dim); % 利用二进制混合灰狼粒子群算法进行优化求解
fprintf('\n')
display(['最优值为 : ', num2str(TargetFitness)]);
display(['最优解为 : ', num2str(TargetPosition)]);
[row, col] = find(TargetPosition == 1);
display(['故障位置为 : ', num2str(col)]);
figure
plot(Convergence_curve(2:end),'r')
ylabel('适应度值');
xlabel('迭代次数');
title('BGWOPSO优化曲线');
5. 仿真结果展示
6. 资源获取
可以获取完整代码资源。👇👇👇👀名片