书生·浦语大模型全链路开源体系-第4课

news2024/11/28 17:44:48

书生·浦语大模型全链路开源体系-第4课

  • 书生·浦语大模型全链路开源体系-第4课
    • 相关资源
    • XTuner 微调 LLM
    • XTuner 微调小助手认知
      • 环境安装
      • 前期准备
      • 启动微调
      • 模型格式转换
      • 模型合并
      • 微调结果验证
    • 将认知助手上传至OpenXLab
    • 将认知助手应用部署到OpenXLab
    • 使用XTuner微调多模态LLM
      • 前期准备
      • 启动微调
      • 结果验证
        • 微调前的模型验证
        • 微调后的模型验证

书生·浦语大模型全链路开源体系-第4课

为了推动大模型在更多行业落地应用,让开发人员更高效地学习大模型的开发与应用,上海人工智能实验室重磅推出书生·浦语大模型实战营,为开发人员提供大模型学习和开发实践的平台。
本文是书生·浦语大模型全链路开源体系-第4课的课程实战。

相关资源

  • InternLM项目地址

https://github.com/InternLM/InternLM

https://github.com/InternLM/XTuner

  • InternLM2技术报告

https://arxiv.org/pdf/2403.17297.pdf

  • 书生·万卷 数据

https://opendatalab.org.cn/

  • 课程链接

https://www.bilibili.com/video/BV15m421j78d/

XTuner 微调 LLM

XTuner 一个大语言模型&多模态模型微调工具箱。 MMRazor MMDeploy 联合开发。

  • 🤓 傻瓜化: 以 配置文件 的形式封装了大部分微调场景,0基础的非专业人员也能一键开始微调
  • 🍃 轻量级: 对于 7B 参数量的LLM,微调所需的最小显存仅为 8GB消费级显卡✅,colab✅

使用 XTuner 进行大模型微调的步骤:

  1. 环境安装:假如我们想要用 XTuner 这款简单易上手的微调工具包来对模型进行微调的话,那我们最最最先开始的第一步必然就是安装XTuner!安装基础的工具是一切的前提,只有安装了 XTuner 在我们本地后我们才能够去思考说具体怎么操作。

  2. 前期准备:那在完成了安装后,我们下一步就需要去明确我们自己的微调目标了。我们想要利用微调做一些什么事情呢,那我为了做到这个事情我有哪些硬件的资源和数据呢?假如我们有对于一件事情相关的数据集,并且我们还有足够的算力资源,那当然微调就是一件水到渠成的事情。就像 OpenAI 不就是如此吗?但是对于普通的开发者而言,在资源有限的情况下,我们可能就需要考虑怎么采集数据,用什么样的手段和方式来让模型有更好的效果。

  3. 启动微调:在确定了自己的微调目标后,我们就可以在 XTuner 的配置库中找到合适的配置文件并进行对应的修改。修改完成后即可一键启动训练!训练好的模型也可以仅仅通过在终端输入一行指令来完成转换和部署工作!

XTuner 微调小助手认知

环境安装

执行以下命令,创建一个新的conda虚拟环境。

/root/share/install_conda_env_internlm_base.sh xtuner0.1.17

image-20240416112612680.png

新的虚拟环境创建完成。

image-20240416113279601.png

执行以下命令,安装 xtuner。

conda activate xtuner0.1.17
mkdir -p /root/xtuner && cd /root/xtuner
git clone -b v0.1.17  https://github.com/InternLM/xtuner
cd xtuner
pip install -e '.[all]'

image-20240416113420902.png

xtuner安装完成。

image-20240416113823003.png

前期准备

执行以下命令,创建微调的工作目录、准备微调用的数据集。

mkdir -p /root/xtuner/xtuner0117/ft-sales && cd /root/xtuner/xtuner0117/ft-sales
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b ./internlm2-chat-1_8b
mkdir sales
touch sales/sales.json
vi sales/sales.json

image-20240416114704104.png

执行以下命令,复制微调需要用到的配置文件。

xtuner list-cfg -p internlm2_chat
xtuner copy-cfg internlm2_chat_1_8b_qlora_alpaca_e3 .
mv internlm2_chat_1_8b_qlora_alpaca_e3_copy.py internlm2_chat_1_8b_qlora_sales_e3.py

image-20240416120118805.png

修改配置文件internlm2_chat_1_8b_qlora_sales_e3.py,主要指定模型路径和数据集路径。

image-20240416120299906.png

启动微调

当所有准备工作的完成后,可以执行以下命令开始启动微调。

xtuner train ./internlm2_chat_1_8b_qlora_sales_e3.py

image-20240416124025986.png

模型加载。

image-20240416124233175.png

数据集加载。

image-20240416124345655.png

开始微调,并评估微调结果。

image-20240416124806337.png

微调完成后,会得到work_dirs目录,该目录下的*.pth文件就是微调的结果。

image-20240416131448195.png

模型格式转换

模型转换的本质其实就是将原本使用 Pytorch 训练出来的模型权重文件转换为目前通用的 Huggingface 格式文件,那么我们可以通过以下指令来实现一键转换。

mkdir hf
export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU
xtuner convert pth_to_hf ./internlm2_chat_1_8b_qlora_sales_e3.py ./work_dirs/internlm2_chat_1_8b_qlora_sales_e3/iter_684.pth ./hf

image-20240416132010837.png

转换完成后,会得到Huggingface格式的文件,在hf目录下。

image-20240416132117605.png

模型合并

对于 LoRA 或者 QLoRA 微调出来的模型其实并不是一个完整的模型,而是一个额外的层(adapter)。那么训练完的这个层最终还是要与原模型进行组合才能被正常的使用。

而对于全量微调的模型(full)其实是不需要进行整合这一步的,因为全量微调修改的是原模型的权重而非微调一个新的 adapter ,因此是不需要进行模型整合的。

在 XTuner 中也是提供了一键整合的指令。

xtuner convert merge ./internlm2-chat-1_8b ./hf ./merged --max-shard-size 2GB

整合完成后的模型在merged目录下,这是一个具有完整结构的模型目录。

image-20240416132630425.png

微调结果验证

整合完成后,可以对微调结果进行验证。

在 XTuner 中也直接的提供了一套基于 transformers 的对话代码,让我们可以直接在终端与 Huggingface 格式的模型进行对话操作。我们只需要准备我们刚刚转换好的模型路径并选择对应的提示词模版(prompt-template)即可进行对话。假如 prompt-template 选择有误,很有可能导致模型无法正确的进行回复。

在命令行模式下,执行以下命令即可进行结果验证。

xtuner chat ./merged --prompt-template internlm2_chat

image-20240416133014362.png

我们也可以创建streamlit应用,通过Web端进行验证。

image-20240416134652630.png

通过命令启动streamlit应用。

streamlit run sreamlit_demo.py

image-20240416134747544.png

建立SSH隧道,实现端口转发之后,打开浏览器,访问应用。

image-20240416142416878.png

输入对话内容,可以看到微调效果。

image-20240416142510974.png

将认知助手上传至OpenXLab

在OpenXLab,点击创建创建模型,进入创建模型界面。

image-20240416144053975.png

在模型配置界面输入模型的详细信息,点击立即创建,创建一个空的模型仓库。

image-20240416144149394.png

通过模型文件页的下载按钮,可以获取到模型仓库的地址。

image-20240416144343993.png

通过密钥管理菜单,创建一个Git访问令牌,权限设置为可写。

image-20240416145202975.png

通过带密钥的仓库地址,克隆模型仓库到开发机,将本地合并后的merged目录下的所有文件复制到克隆的仓库目录sales-chat-1_8b下,并使用git命令添加所有文件并进行提交。

image-20240416145310424.png

提交以后,OpenXLab中模型仓库的模型文件如下。

image-20240416145355847.png

将认知助手应用部署到OpenXLab

首先,在Github上创建一个项目仓库,将项目文件上传到仓库中,文件包含:

├─OpenXLab-IntelligentSalesAssistant
│  ├─app.py                 # 应用默认启动文件为app.py,应用代码相关的文件包含模型推理、前端配置代码
│  ├─requirements.txt       # 安装运行所需要的 Python 库依赖(pip 安装)
│  ├─packages.txt           # 安装运行所需要的 Debian 依赖项( apt-get 安装)
|  ├─README.md              # 编写应用相关的介绍性的文档
│  └─... 

image-20240416153854044.png

在OpenXLab,点击创建创建应用

image-20240416145850688.png

在弹出的对话框中,选择应用类型是Streamlit。

image-20240416145910731.png

在详情页面,输入应用的详细信息、指定Github仓库地址、选择应用协议和硬件资源等信息,点击立即创建。

image-20240416155707161.png

接下来,等待代码拉取、构建、应用启动。

image-20240416161539947.png

应用启动完成后,即可正常访问使用。

应用地址:https://openxlab.org.cn/apps/detail/AI-Labs/IntelligentSalesAssistant

image-20240416161639747.png

使用XTuner微调多模态LLM

前期准备

激活用于微调的虚拟环境,创建一个新的目录,复制官方提供的多模态微调配置脚本,用于进行多模态微调。

image-20240417100313019.png

准备一幅用于微调的图片。

image-20240417092628750.png

准备对于该图片的微调数据集。

image-20240417095633039.png

对微调配置脚本进行修改,主要修改其中的模型路径、数据集路径、图片路径等信息。

image-20240417100214671.png

启动微调

执行命令启动微调。

xtuner train llava_internlm2_chat_1_8b_qlora_finetune.py

image-20240417100658429.png

加载模型。

image-20240417100742480.png

加载数据集。

image-20240417101531776.png

执行微调并进行评估。

image-20240417102048184.png

微调完成后,在work_dirs目录下会生成一个*.pth文件,这个就是微调的结果文件。

image-20240417102347739.png

结果验证

微调前的模型验证

执行命令,将微调前的*.pth文件转换成HuggingFace格式的文件。

export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU

xtuner convert pth_to_hf llava_internlm2_chat_1_8b_clip_vit_large_p14_336_e1_gpu8_pretrain /root/share/new_models/xtuner/iter_2181.pth iter_2181_hf

image-20240417110352349.png

转换完成。

image-20240417110753580.png

通过xtuner chat命令可以与微调前的模型进行对话。

xtuner chat /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b --visual-encoder /root/share/new_models/openai/clip-vit-large-patch14-336 --llava iter_2181_hf --prompt-template internlm2_chat --image images/image.jpg

可以看到,微调前的模型只会标注图片。

image-20240417111707801.png

微调后的模型验证

执行命令,将微调后的*.pth文件转换成HuggingFace格式的文件。

export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU

xtuner convert pth_to_hf llava_internlm2_chat_1_8b_qlora_finetune.py work_dirs/llava_internlm2_chat_1_8b_qlora_finetune/iter_212.pth iter_212_hf

image-20240417112636725.png

转换完成。

image-20240417112814574.png

通过xtuner chat命令可以与微调前的模型进行对话。

xtuner chat /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b --visual-encoder /root/share/new_models/openai/clip-vit-large-patch14-336 --llava iter_2181_hf --prompt-template internlm2_chat --image images/image.jpg

可以看到,,微调后的模型认识了该图片,并且能够描述、回答关于该图片的信息。

image-20240417113330650.png

至此,使用XTuner微调大模型、多模态的内容完成。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1603485.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Python基础】MySQL

文章目录 [toc]创建数据库创建数据表数据插入数据查询数据更新 个人主页:丷从心 系列专栏:Python基础 学习指南:Python学习指南 创建数据库 import pymysqldef create_database():db pymysql.connect(hostlocalhost, userroot, passwordr…

Nginx第2篇-HTTPS配置教程

背景 我最近做个项目要上线,接口部署到服务器,总不能给别人个ip地址加端口吧,而且小程序上线要有接口不能是ip和http协议,必须是https协议。这里记录下使用Nginx配置HTTPS的过程,主要包含以下三部分。 申请域名SSL证…

IDEA plugins 好用的插件集

IDEA plugins RestfulToolkit 1. 安装插件 File–>Settings --> plugins --> RestfulToolkit 2.插件有点: 2.1、帮助把项目中的 RestURL 按照项目汇总出来,找到对应URL直接在IDEA上面进行请求测试。 2.2、开发Java Web页面项目,经…

SpringCloud系列(3)--SpringCloud新建父工程

1、新建项目 2、填写项目名称和工作组名称 3、选择构建项目的Maven版本 4、查看项目编码,若不是UTF-8,需要设置为UTF-8 5、启用注解处理 6、选择项目的编译版本为JDK8 7、查看项目结构,若JDK版本不是8,则给它设置为8 8、删掉父工程…

全国产化无风扇嵌入式车载电脑在车队管理嵌入式车载行业应用

车队管理嵌入式车载行业应用 车队管理方案能有效解决车辆繁多管理困难问题,配合调度系统让命令更加精确有效执行。实时监控车辆状况、行驶路线和位置,指导驾驶员安全有序行驶,有效降低保险成本、事故概率以及轮胎和零部件的磨损与损坏。 方…

短视频矩阵系统----技术源头开发

短视频矩阵系统--- 1. 确定账号类型和目标受众 2. 准备账号资料 3. 搭建系统框架 4. 开发核心功能 5. 测试和调试 6. 部署和维护 7. 推广和运营 在开发短视频账号矩阵系统源码时,可以使用一些开源框架和工具来提高开发效率和降低开发难度。同时,需要组…

pajamas 1 daydream.sequence-template

0. 老实交代,最近对于python,非常之感冒 热天气常驻之后,各种毛病就来了:蚊子很彪悍,牙齿不舒服,肠胃那更是一坨 … 虽然不久前,荷包大残,但是关注到 mac mini 之后,就…

Java面试八股之Iterator和ListIterator的区别是什么

Iterator和ListIterator的区别是什么 这道题也是考查我们对迭代器相关的接口的了解程度,从代码中我们可以看出后者是前者的子接口,在此基础上做了一些增强,并且只用于List集合类型。 定义与基本概念 Iterator: 定义&#xff1a…

【Pytorch】VSCode实用技巧 - 默认终端修改为conda activate pytorch

VScode修改配置使得启动终端为conda环境 VScode跑项目,在启动pytorch项目时往往会有千奇百怪的问题,最常见的就是显示“conda activate pytorch”后会要求“conda init”,但输入后实际上也不行,这是因为VSCode默认终端为 Powersh…

Redis中的基本指令

回顾 上一篇文章介绍了redis的一些特性和安装方式,但光说不练假把式~ 本文就来着重来介绍一下redis中的基本指令 Redis基本结构 Redis是一个客户端-服务器结构的程序(MySQL也是),客户端和服务器可以在同一台主机上,也可以不在同一台主机(本…

OpenCV杂记(1):绘制OSD(cv::getTextSize, cv::putText)

1. 简述 我们使用OpenCV时,有时会在图像的某个位置绘制OSD信息,如绘制一些字符串作为指示信息。 本文将简要介绍在图像(cv::Mat)上绘制固定的字符串信息。 2. 使用的API (1)cv::getTextSize() CV_EXPORT…

Qt 6子窗口全屏显示

一、全屏显示效果 二、全屏相关函数 1,全屏显示函数 QWidget::showFullScreen(); // 此方法只对顶级窗口有效,对子窗口无效 2,恢复显示函数 QWidget::showNormal(); // 此方法也只对顶级窗口有效,对子窗口无效 3,最小化显示函…

陇剑杯 省赛 攻击者1 CTF wireshark 流量分析

陇剑杯 省赛 攻击者1 题目 链接:https://pan.baidu.com/s/1KSSXOVNPC5hu_Mf60uKM2A?pwdhaek 提取码:haek ├───LogAnalize │ ├───linux简单日志分析 │ │ linux-log_2.zip │ │ │ ├───misc日志分析 │ │ acce…

【数学】主成分分析(PCA)的应用案例解析(Python)

接着上文PCA的数学详细推导过程,本文介绍使用Python结合图像压缩案例解释PCA的具体实现流程,以了解数据处理的一些方法 Jupyter Notebook file 文章目录 借助 scikit-learn 实现 PCA输入数据PCA降维并重建 手动实现 PCA 过程输入数据数据居中处理协方差矩…

PPTist在线编辑、播放幻灯片

PPTist简介 “一个基于 Vue3.x TypeScript 的在线演示文稿(幻灯片)应用,还原了大部分 Office PowerPoint 常用功能,支持 文字、图片、形状、线条、图表、表格、视频、音频、公式 几种最常用的元素类型,每一种元素都拥…

多模态大语言模型综述

节前,我们星球组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、参加社招和校招面试的同学,针对算法岗技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备、面试常考点分享等热门话题进行了深入的讨论。 汇总…

arcgis中坡向计算工作原理说明

用于识别出从每个像元到其相邻像元方向上值的变化率最大的下坡方向。坡向可以被视为坡度方向。输出栅格中各像元的值可指示出各像元位置处表面的朝向的罗盘方向。将按照顺时针方向进行测量,角度范围介于 0(正北)到 360(仍是正北&a…

Stable Diffusion 模型分享:CyberRealistic XL(真实)cyberrealisticXL_v11VAE.safetensors

本文收录于《AI绘画从入门到精通》专栏,专栏总目录:点这里,订阅后可阅读专栏内所有文章。 文章目录 模型介绍生成案例案例一案例二案例三案例四案例五案例六案例七案例八 下载地址 模型介绍 这是 CyberRealistic 的 SDXL 版本。 该模型的标准…

朗思-我的家园正式上线:朗思科技Agent工具软件--人人拥有“Ai-机器人”

4月16日,朗思科技正式发布"朗思-我的家园"。朗思科技是国内领先的Ai Agent智能自动化工具软件产品及方案的提供商,始终坚持自主研发,全面支持国产信创,不断加快产品创新迭代。基于技术领先性和战略前瞻性,其…

DDoS攻击愈演愈烈,谈如何做好DDoS防御

DDoS攻击是目前最常见的网络攻击方式之一,各种规模的企业包括组织机构都在受其影响。对于未受保护的企业来讲,每次DDoS攻击的平均成本为20万美元。可见,我们显然需要开展更多的DDoS防御工作。除考虑如何规避已发生的攻击外,更重要…