【数据挖掘】实验8:分类与预测建模

news2024/12/24 8:09:33

实验8:分类与预测建模

一:实验目的与要求

1:学习和掌握回归分析、决策树、人工神经网络、KNN算法、朴素贝叶斯分类等机器学习算法在R语言中的应用。

2:了解其他分类与预测算法函数。

3:学习和掌握分类与预测算法的评价。

二:实验内容

【回归分析】

Eg.1:

attach(women)

fit<-lm(weight ~ height)

plot(height,weight)

abline(fit,col="red")

detach(women)

【线性回归模型】

Eg.1:利用数据集women建立简单线性回归模型

data(women)

lm.model <- lm( weight ~ height - 1, data = women)  # 建立线性回归模型

summary(lm.model)  # 输出模型的统计信息

coefficients(lm.model)  # 输出参数估计值

confint(lm.model, parm = "speed", level = 0.95)  # parm缺省则计算所有参数的置信区间

fitted(lm.model)  # 列出拟合模型的预测值

anova(lm.model)  # 生成一个拟合模型的方差分析表

vcov(lm.model)  # 列出模型参数的协方差矩阵

residuals(lm.model)  # 列出模型的残差

AIC(lm.model)  # 输出AIC值

par(mfrow = c(2, 2))

plot(lm.model)  # 生成评价拟合模型的诊断图

【逻辑回归模型】

Eg.1:结婚时间、教育、宗教等其它变量对出轨次数的影响

install.packages("AER")

library(AER)

data(Affairs, package = "AER")

# 由于变量affairs为正整数,为了进行Logistic回归先要将其转化为二元变量。

Affairs$ynaffair[Affairs$affairs > 0] <- 1

Affairs$ynaffair[Affairs$affairs == 0] <- 0

Affairs$ynaffair <- factor(Affairs$ynaffair, levels = c(0, 1),

                           labels = c("No", "Yes"))

# 建立Logistic回归模型

model.L <- glm(ynaffair ~ age + yearsmarried + religiousness + rating,

               data = Affairs, family = binomial (link = logit))

summary(model.L)  # 展示拟合模型的详细结果

predictdata <- data.frame(Affairs[, c("age", "yearsmarried", "religiousness", "rating")])

# 由于拟合结果是给每个观测值一个概率值,下面以0.4作为分类界限

predictdata$y <- (predict(model.L, predictdata, type = "response") > 0.4)

predictdata$y[which(predictdata$y == FALSE)] = "No"  # 把预测结果转换成原先的值(Yes或No)

predictdata$y[which(predictdata$y == TRUE)] = "Yes"

confusion <- table(actual = Affairs$ynaffair, predictedclass = predictdata$y)  # 混淆矩阵

confusion

(sum(confusion) - sum(diag(confusion))) / sum(confusion)  # 计算错判率

【Bonferroni离群点检验】

Eg.1:对美国妇女的平均身高和体重数据进行Bonferroni离群点检验

install.packages("car")

library(car)

fit <- lm(weight ~ height, data = women)  # 建立线性模型

outlierTest(fit)   # Bonferroni离群点检验

women[10, ] <- c(70, 200)  # 将第10个观测的数据该成height = 70,weight = 200

fit <- lm(weight ~ height, data = women)

outlierTest(fit)  # Bonferroni离群点检验

【检验误差项的自相关性】

Eg.1:对模型lm.model的误差做自相关性检验

durbinWatsonTest(lm.model)

【自变量选择】

Eg.1:使用数据集freeny建立逻辑回归模型,并进行自变量选择

Data <-  freeny

lm <- lm(y ~ ., data = Data)  # logistic回归模型

summary(lm)

lm.step <- step(lm, direction = "both")  # 一切子集回归

summary(lm.step)

lm.step <- step(lm, direction = "forward")  # 前进法

summary(lm.step)

lm.step <- step(lm, direction = "backward")  # 后退法

summary(lm.step)

【C4.5决策树】

Eg.1:C4.5决策树预测客户是否流失

Data <- read.csv("Telephone.csv",fileEncoding = "GB2312")  # 读入数据

Data[, "流失"] <- as.factor(Data[, "流失"])  # 将目标变量转换成因子型

set.seed(1234)  # 设置随机种子

# 数据集随机抽70%定义为训练数据集,30%为测试数据集

ind <- sample(2, nrow(Data), replace = TRUE, prob = c(0.7, 0.3))

traindata <- Data[ind == 1, ]

testdata <- Data[ind == 2, ]

# 建立决策树模型预测客户是否流失

install.packages("matrixStats")

install.packages("party")

library(party)  # 加载决策树的包

ctree.model <- ctree(流失 ~ ., data = traindata)  # 建立C4.5决策树模型

plot(ctree.model, type = "simple")  # 输出决策树图

# 预测结果

train_predict <- predict(ctree.model)  # 训练数据集

test_predict <- predict(ctree.model, newdata = testdata)  # 测试数据集

# 输出训练数据的分类结果

# 输出训练数据的分类结果

train_predictdata <- cbind(traindata, predictedclass = train_predict)

#输出训练数据的混淆矩阵

(train_confusion <- table(actual = traindata$流失, predictedclass = train_predict) )

# 输出测试数据的分类结果

test_predictdata <- cbind(testdata, predictedclass = test_predict)

# 输出测试数据的混淆矩阵

(test_confusion <- table(actual = testdata$流失, predictedclass = test_predict))

【CART决策树】

Eg.1:CART决策树预测客户是否流失

Data <- read.csv("telephone.csv",fileEncoding = "GB2312")  # 读入数据

Data[, "流失"] <- as.factor(Data[, "流失"])  # 将目标变量转换成因子型

set.seed(1234)  # 设置随机种子

# 数据集随机抽70%定义为训练数据集,30%为测试数据集

ind <- sample(2, nrow(Data), replace = TRUE, prob = c(0.7, 0.3))

traindata <- Data[ind == 1, ]

testdata <- Data[ind == 2, ]

# 建立决策树模型预测客户是否流失

install.packages("tree")

library(tree)  # 加载决策树的包

tree.model <- tree(流失 ~ ., data = traindata)  # 建立CART决策树模型

plot(tree.model, type = "uniform")  # 输出决策树图

text(tree.model)

# 预测结果

train_predict <- predict(tree.model, type = "class")  # 训练数据集

test_predict <- predict(tree.model, newdata = testdata, type = "class")  # 测试数据集

# 输出训练数据的分类结果

train_predictdata <- cbind(traindata, predictedclass = train_predict)

# 输出训练数据的混淆矩阵

(train_confusion <- table(actual = traindata$流失, predictedclass = train_predict))

# 输出测试数据的分类结果

test_predictdata <- cbind(testdata, predictedclass = test_predict)

# 输出测试数据的混淆矩阵

(test_confusion <- table(actual = testdata$流失, predictedclass = test_predict))

【C5.0决策树】

Eg.1:C5.0决策树预测客户是否流失

Data <- read.csv("telephone.csv",fileEncoding = "GB2312")  # 读入数据

Data[, "流失"] <- as.factor(Data[, "流失"])  # 将目标变量转换成因子型

set.seed(1234)  # 设置随机种子

# 数据集随机抽70%定义为训练数据集,30%为测试数据集

ind <- sample(2, nrow(Data), replace = TRUE, prob = c(0.7, 0.3))

traindata <- Data[ind == 1, ]

testdata <- Data[ind == 2, ]

# 建立决策树模型预测客户是否流失

install.packages("C50")

library(C50)  # 加载决策树的包

c50.model <- C5.0(流失 ~ ., data = traindata)  # 建立C5.0决策树模型

plot(c50.model)  # 输出决策树图

# 预测结果

train_predict <- predict(c50.model, newdata = traindata, type = "class")  # 训练数据集

test_predict <- predict(c50.model, newdata = testdata, type = "class")  # 测试数据集

# 输出训练数据的分类结果

train_predictdata <- cbind(traindata, predictedclass = train_predict)

# 输出训练数据的混淆矩阵

(train_confusion <- table(actual = traindata$流失, predictedclass = train_predict))

# 输出测试数据的分类结果

test_predictdata <- cbind(testdata, predictedclass = test_predict)

# 输出测试数据的混淆矩阵

(test_confusion <- table(actual = testdata$流失, predictedclass = test_predict))

【BP神经网络】

Eg.1:BP神经网络算法预测客户是否流失

Data[, "流失"] <- as.factor(Data[, "流失"])  # 将目标变量转换成因子型

set.seed(1234)  # 设置随机种子

# 数据集随机抽70%定义为训练数据集,30%为测试数据集

ind <- sample(2, nrow(Data), replace = TRUE, prob = c(0.7, 0.3))

traindata <- Data[ind == 1, ]

testdata <- Data[ind == 2, ]

# BP神经网络建模

library(nnet) #加载nnet包

# 设置参数

size <- 10  # 隐层节点数为10

decay <- 0.05  # 权值的衰减参数为0.05

nnet.model <- nnet(流失 ~ ., traindata, size = size, decay = decay)  # 建立BP神经网络模型

summary(nnet.model)  # 输出模型概要

# 预测结果

train_predict <- predict(nnet.model, newdata = traindata, type = "class")  # 训练数据集

test_predict <- predict(nnet.model, newdata = testdata, type = "class")  # 测试数据集

# 输出训练数据的分类结果

train_predictdata <- cbind(traindata, predictedclass = train_predict)

# 输出训练数据的混淆矩阵

(train_confusion <- table(actual = traindata$流失, predictedclass = train_predict))

# 输出测试数据的分类结果

test_predictdata <- cbind(testdata, predictedclass = test_predict)

# 输出测试数据的混淆矩阵

(test_confusion <- table(actual = testdata$流失, predictedclass = test_predict))

【KNN算法】

Eg.1:KNN算法预测客户是否流失

Data[, "流失"] <- as.factor(Data[, "流失"])  # 将目标变量转换成因子型

set.seed(1234)  # 设置随机种子

# 数据集随机抽70%定义为训练数据集,30%为测试数据集

ind <- sample(2, nrow(Data), replace = TRUE, prob = c(0.7, 0.3))

traindata <- Data[ind == 1, ]

testdata <- Data[ind == 2, ]

# 使用kknn函数建立knn分类模型

install.packages("kknn")

library(kknn)  # 加载kknn包

# knn分类模型

kknn.model <- kknn(流失 ~ ., train = traindata, test = traindata, k = 5)  # 训练数据

kknn.model2 <- kknn(流失 ~ ., train = traindata, test = testdata, k = 5)  # 测试数据

summary(kknn.model)  # 输出模型概要

# 预测结果

train_predict <- predict(kknn.model)  # 训练数据

test_predict <- predict(kknn.model2)  # 测试数据

# 输出训练数据的混淆矩阵

(train_confusion <- table(actual = traindata$流失, predictedclass = train_predict))

# 输出测试数据的混淆矩阵

(test_confusion <- table(actual = testdata$流失, predictedclass = test_predict))

# 使用knn函数建立knn分类模型

library(class)  # 加载class包

# 建立knn分类模型

knn.model <- knn(traindata, testdata, cl = traindata[, "流失"])

# 输出测试数据的混淆矩阵

(test_confusion = table(actual = testdata$流失, predictedclass = knn.model))

# 使用train函数建立knn分类模型

install.packages("caret")

library(caret)  # 加载caret包

# 建立knn分类模型

train.model <- train(traindata, traindata[, "流失"], method = "knn")

# 预测结果

train_predict <- predict(train.model, newdata = traindata)      #训练数据集

test_predict <- predict(train.model, newdata = testdata)       #测试数据集

# 输出训练数据的混淆矩阵

(train_confusion <- table(actual = traindata$流失, predictedclass = train_predict))

# 输出测试数据的混淆矩阵

(test_confusion <- table(actual = testdata$流失, predictedclass = test_predict))

运行结果:

模型概要输出

Call:

kknn(formula = 流失 ~ ., train = traindata, test = traindata,     k = 5)

Response: "nominal"

    fit     prob.0     prob.1

1     1 0.33609798 0.66390202

2     1 0.25597771 0.74402229

3     0 0.97569952 0.02430048

4     0 0.51243637 0.48756363

5     0 1.00000000 0.00000000

6     1 0.17633839 0.82366161

7     0 0.59198438 0.40801562

8     0 1.00000000 0.00000000

9     0 1.00000000 0.00000000

10    1 0.36039846 0.63960154

11    0 0.74402229 0.25597771

12    0 0.84796209 0.15203791

13    0 0.89557925 0.10442075

14    0 1.00000000 0.00000000

15    0 1.00000000 0.00000000

16    0 0.74402229 0.25597771

17    1 0.02430048 0.97569952

18    1 0.15203791 0.84796209

19    0 1.00000000 0.00000000

20    0 0.97569952 0.02430048

21    0 0.97569952 0.02430048

22    0 1.00000000 0.00000000

23    0 0.76784183 0.23215817

24    0 0.74354135 0.25645865

25    0 0.74402229 0.25597771

26    0 1.00000000 0.00000000

27    0 1.00000000 0.00000000

28    0 0.51186411 0.48813589

29    0 1.00000000 0.00000000

30    0 0.97569952 0.02430048

31    0 1.00000000 0.00000000

32    0 0.56768390 0.43231610

33    0 0.84796209 0.15203791

34    0 0.66390202 0.33609798

35    1 0.00000000 1.00000000

36    0 1.00000000 0.00000000

37    0 1.00000000 0.00000000

38    0 0.84796209 0.15203791

39    1 0.25597771 0.74402229

40    1 0.48813589 0.51186411

41    1 0.36039846 0.63960154

42    0 0.97569952 0.02430048

43    0 0.89557925 0.10442075

44    0 1.00000000 0.00000000

45    0 0.51243637 0.48756363

46    0 0.66390202 0.33609798

47    0 0.74402229 0.25597771

48    0 1.00000000 0.00000000

49    0 1.00000000 0.00000000

50    0 1.00000000 0.00000000

51    1 0.36039846 0.63960154

52    0 0.91987973 0.08012027

53    0 1.00000000 0.00000000

54    0 0.91987973 0.08012027

55    1 0.25597771 0.74402229

56    0 0.89557925 0.10442075

57    0 0.91987973 0.08012027

58    0 1.00000000 0.00000000

59    0 0.56768390 0.43231610

60    1 0.48813589 0.51186411

61    0 1.00000000 0.00000000

62    0 1.00000000 0.00000000

63    1 0.48756363 0.51243637

64    0 0.51243637 0.48756363

65    0 0.51243637 0.48756363

66    0 0.84796209 0.15203791

67    0 0.84796209 0.15203791

68    0 0.76784183 0.23215817

69    1 0.02430048 0.97569952

70    1 0.00000000 1.00000000

71    0 0.84796209 0.15203791

72    0 0.76784183 0.23215817

73    0 0.76784183 0.23215817

74    1 0.15203791 0.84796209

75    1 0.02430048 0.97569952

76    0 1.00000000 0.00000000

77    0 0.51243637 0.48756363

78    1 0.36039846 0.63960154

79    0 0.71972181 0.28027819

80    0 0.82366161 0.17633839

81    1 0.36039846 0.63960154

82    1 0.23215817 0.76784183

83    0 0.76784183 0.23215817

84    1 0.00000000 1.00000000

85    0 1.00000000 0.00000000

86    0 0.66390202 0.33609798

87    0 1.00000000 0.00000000

88    0 0.91987973 0.08012027

89    1 0.23215817 0.76784183

90    0 1.00000000 0.00000000

91    0 0.91987973 0.08012027

92    0 1.00000000 0.00000000

93    0 1.00000000 0.00000000

94    1 0.10442075 0.89557925

95    0 0.91987973 0.08012027

96    0 0.74354135 0.25645865

97    1 0.25645865 0.74354135

98    1 0.33609798 0.66390202

99    0 0.91987973 0.08012027

100   1 0.25645865 0.74354135

101   0 1.00000000 0.00000000

102   1 0.28027819 0.71972181

103   0 0.66390202 0.33609798

104   0 0.51186411 0.48813589

105   0 0.56768390 0.43231610

106   0 0.84796209 0.15203791

107   0 0.76784183 0.23215817

108   0 1.00000000 0.00000000

109   0 0.76784183 0.23215817

110   0 0.91987973 0.08012027

111   1 0.43231610 0.56768390

112   0 1.00000000 0.00000000

113   0 0.97569952 0.02430048

114   0 1.00000000 0.00000000

115   0 0.76784183 0.23215817

116   0 0.63960154 0.36039846

117   0 0.97569952 0.02430048

118   1 0.15203791 0.84796209

119   0 0.74402229 0.25597771

120   0 1.00000000 0.00000000

121   0 1.00000000 0.00000000

122   0 0.91987973 0.08012027

123   0 1.00000000 0.00000000

124   0 0.74354135 0.25645865

125   0 1.00000000 0.00000000

126   1 0.43231610 0.56768390

127   0 0.71972181 0.28027819

128   1 0.08012027 0.91987973

129   0 0.91987973 0.08012027

130   1 0.10442075 0.89557925

131   0 1.00000000 0.00000000

132   0 0.91987973 0.08012027

133   0 0.51243637 0.48756363

134   0 0.66390202 0.33609798

135   1 0.02430048 0.97569952

136   0 1.00000000 0.00000000

137   0 0.74354135 0.25645865

138   0 0.97569952 0.02430048

139   0 1.00000000 0.00000000

140   0 1.00000000 0.00000000

141   1 0.25597771 0.74402229

142   0 1.00000000 0.00000000

143   0 1.00000000 0.00000000

144   1 0.36039846 0.63960154

145   0 1.00000000 0.00000000

146   0 0.74402229 0.25597771

147   0 0.84796209 0.15203791

148   0 0.91987973 0.08012027

149   0 0.51243637 0.48756363

150   0 1.00000000 0.00000000

151   1 0.28027819 0.71972181

152   0 1.00000000 0.00000000

153   0 0.59198438 0.40801562

154   0 0.51243637 0.48756363

155   1 0.33609798 0.66390202

156   0 0.97569952 0.02430048

157   0 1.00000000 0.00000000

158   0 1.00000000 0.00000000

159   0 0.59198438 0.40801562

160   1 0.48756363 0.51243637

161   0 1.00000000 0.00000000

162   0 0.97569952 0.02430048

163   1 0.25645865 0.74354135

164   1 0.33609798 0.66390202

165   0 0.51186411 0.48813589

166   1 0.43231610 0.56768390

167   0 1.00000000 0.00000000

168   0 1.00000000 0.00000000

169   0 1.00000000 0.00000000

170   0 1.00000000 0.00000000

171   0 1.00000000 0.00000000

172   0 0.76784183 0.23215817

173   0 0.56768390 0.43231610

174   0 0.76784183 0.23215817

175   0 0.84796209 0.15203791

176   0 1.00000000 0.00000000

177   0 0.51243637 0.48756363

178   0 0.51243637 0.48756363

179   0 0.63960154 0.36039846

180   0 0.74402229 0.25597771

181   0 1.00000000 0.00000000

182   1 0.15203791 0.84796209

183   0 0.66390202 0.33609798

184   1 0.02430048 0.97569952

185   0 0.97569952 0.02430048

186   1 0.23215817 0.76784183

187   0 0.97569952 0.02430048

188   0 0.51186411 0.48813589

189   1 0.25597771 0.74402229

190   0 1.00000000 0.00000000

191   0 1.00000000 0.00000000

192   0 1.00000000 0.00000000

193   0 1.00000000 0.00000000

194   0 1.00000000 0.00000000

195   0 0.91987973 0.08012027

196   0 1.00000000 0.00000000

197   0 0.91987973 0.08012027

198   0 0.74402229 0.25597771

199   0 1.00000000 0.00000000

200   0 1.00000000 0.00000000

201   0 1.00000000 0.00000000

202   0 1.00000000 0.00000000

203   0 0.97569952 0.02430048

204   0 0.84796209 0.15203791

205   1 0.00000000 1.00000000

206   0 0.89557925 0.10442075

207   0 1.00000000 0.00000000

208   0 1.00000000 0.00000000

209   0 0.91987973 0.08012027

210   0 0.84796209 0.15203791

211   0 1.00000000 0.00000000

212   0 0.74402229 0.25597771

213   0 0.74402229 0.25597771

214   0 0.66390202 0.33609798

215   0 1.00000000 0.00000000

216   0 0.91987973 0.08012027

217   0 1.00000000 0.00000000

218   0 1.00000000 0.00000000

219   0 0.51186411 0.48813589

220   0 1.00000000 0.00000000

221   1 0.00000000 1.00000000

222   1 0.15203791 0.84796209

223   0 0.51243637 0.48756363

224   1 0.28027819 0.71972181

225   1 0.08012027 0.91987973

226   0 1.00000000 0.00000000

227   0 1.00000000 0.00000000

228   1 0.25597771 0.74402229

229   1 0.15203791 0.84796209

230   1 0.15203791 0.84796209

231   0 0.51243637 0.48756363

232   1 0.08012027 0.91987973

233   1 0.28027819 0.71972181

234   1 0.40801562 0.59198438

235   0 0.51186411 0.48813589

236   0 1.00000000 0.00000000

237   1 0.43231610 0.56768390

238   0 0.89557925 0.10442075

239   1 0.33609798 0.66390202

240   0 0.74354135 0.25645865

241   0 0.97569952 0.02430048

242   0 1.00000000 0.00000000

243   0 0.97569952 0.02430048

244   0 0.89557925 0.10442075

245   0 0.74402229 0.25597771

246   0 1.00000000 0.00000000

247   0 1.00000000 0.00000000

248   0 0.84796209 0.15203791

249   1 0.36039846 0.63960154

250   0 0.84796209 0.15203791

251   1 0.48813589 0.51186411

252   0 1.00000000 0.00000000

253   0 1.00000000 0.00000000

254   0 0.91987973 0.08012027

255   0 0.56768390 0.43231610

256   0 1.00000000 0.00000000

257   0 0.84796209 0.15203791

258   1 0.33609798 0.66390202

259   0 0.76784183 0.23215817

260   0 1.00000000 0.00000000

261   1 0.36039846 0.63960154

262   0 1.00000000 0.00000000

263   0 1.00000000 0.00000000

264   1 0.48756363 0.51243637

265   1 0.48756363 0.51243637

266   0 0.89557925 0.10442075

267   0 1.00000000 0.00000000

268   0 0.66390202 0.33609798

269   0 0.56768390 0.43231610

270   0 0.74402229 0.25597771

271   1 0.25597771 0.74402229

272   0 1.00000000 0.00000000

273   0 0.66390202 0.33609798

274   0 1.00000000 0.00000000

275   0 1.00000000 0.00000000

276   0 0.89557925 0.10442075

277   0 1.00000000 0.00000000

278   0 0.51243637 0.48756363

279   0 0.84796209 0.15203791

280   0 1.00000000 0.00000000

281   0 0.84796209 0.15203791

282   0 0.91987973 0.08012027

283   0 1.00000000 0.00000000

284   0 1.00000000 0.00000000

285   0 0.97569952 0.02430048

286   0 1.00000000 0.00000000

287   0 1.00000000 0.00000000

288   0 1.00000000 0.00000000

289   0 1.00000000 0.00000000

290   0 0.91987973 0.08012027

291   0 1.00000000 0.00000000

292   0 1.00000000 0.00000000

293   0 0.91987973 0.08012027

294   0 0.76784183 0.23215817

295   1 0.17633839 0.82366161

296   1 0.10442075 0.89557925

297   0 0.84796209 0.15203791

298   0 0.97569952 0.02430048

299   1 0.36039846 0.63960154

300   0 1.00000000 0.00000000

301   0 0.84796209 0.15203791

302   0 0.91987973 0.08012027

303   0 0.89557925 0.10442075

304   0 0.97569952 0.02430048

305   0 1.00000000 0.00000000

306   1 0.02430048 0.97569952

307   1 0.15203791 0.84796209

308   1 0.40801562 0.59198438

309   0 0.84796209 0.15203791

310   1 0.00000000 1.00000000

311   0 0.89557925 0.10442075

312   0 1.00000000 0.00000000

313   0 1.00000000 0.00000000

314   1 0.48756363 0.51243637

315   0 0.51243637 0.48756363

316   0 0.97569952 0.02430048

317   0 1.00000000 0.00000000

318   0 0.97569952 0.02430048

319   1 0.25645865 0.74354135

320   0 1.00000000 0.00000000

321   1 0.08012027 0.91987973

322   1 0.33609798 0.66390202

323   0 0.91987973 0.08012027

324   0 0.89557925 0.10442075

325   0 0.91987973 0.08012027

326   0 1.00000000 0.00000000

327   1 0.25597771 0.74402229

328   0 1.00000000 0.00000000

329   0 1.00000000 0.00000000

330   1 0.43231610 0.56768390

331   0 0.84796209 0.15203791

332   0 0.51243637 0.48756363

333   1 0.33609798 0.66390202

 [ reached 'max' / getOption("max.print") -- omitted 365 rows ]

【朴素贝叶斯分类算法】

Eg.1:朴素贝叶斯算法预测客户是否流失

Data[, "流失"] <- as.factor(Data[, "流失"])  # 将目标变量转换成因子型

set.seed(1234)  # 设置随机种子

# 数据集随机抽70%定义为训练数据集,30%为测试数据集

ind <- sample(2, nrow(Data), replace = TRUE, prob = c(0.7, 0.3))

traindata <- Data[ind == 1, ]

testdata <- Data[ind == 2, ]

# 使用naiveBayes函数建立朴素贝叶斯分类模型

library(e1071)  # 加载e1071包

naiveBayes.model <- naiveBayes(流失 ~ ., data = traindata)  # 建立朴素贝叶斯分类模型

# 预测结果

train_predict <- predict(naiveBayes.model, newdata = traindata)  # 训练数据集

test_predict <- predict(naiveBayes.model, newdata = testdata)  # 测试数据集

# 输出训练数据的分类结果

train_predictdata <- cbind(traindata, predictedclass = train_predict)

# 输出训练数据的混淆矩阵

(train_confusion <- table(actual = traindata$流失, predictedclass = train_predict))

# 输出测试数据的分类结果

test_predictdata <- cbind(testdata, predictedclass = test_predict)

# 输出测试数据的混淆矩阵

(test_confusion <- table(actual = testdata$流失, predictedclass = test_predict))

# 使用NaiveBayes函数建立朴素贝叶斯分类模型

install.packages("klaR")

library(klaR)  # 加载klaR包

NaiveBayes.model <- NaiveBayes(流失 ~ ., data = traindata)  # 建立朴素贝叶斯分类模型

# 预测结果

train_predict <- predict(NaiveBayes.model)  # 训练数据集

test_predict <- predict(NaiveBayes.model, newdata = testdata)  # 测试数据集

# 输出训练数据的分类结果

train_predictdata <- cbind(traindata, predictedclass = train_predict$class)

# 输出训练数据的混淆矩阵

(train_confusion <- table(actual = traindata$流失, predictedclass = train_predict$class))

# 输出测试数据的分类结果

test_predictdata <- cbind(testdata, predictedclass = test_predict$class)

# 输出测试数据的混淆矩阵

(test_confusion <- table(actual = testdata$流失, predictedclass = test_predict$class))

【lda模型】

Eg.1:建立lda模型并进行分类预测

Data[, "流失"] <- as.factor(Data[, "流失"]) #将目标变量转换成因子型

set.seed(1234)  # 设置随机种子

# 数据集随机抽70%定义为训练数据集,30%为测试数据集

ind <- sample(2, nrow(Data), replace = TRUE, prob = c(0.7, 0.3))

traindata <- Data[ind == 1, ]

testdata <- Data[ind == 2, ]

# 建立lda分类模型

install.packages("MASS")

library(MASS)

lda.model <- lda(流失 ~ ., data = traindata)

# 预测结果

train_predict <- predict(lda.model, newdata = traindata)  # 训练数据集

test_predict <- predict(lda.model, newdata = testdata)  # 测试数据集

# 输出训练数据的分类结果

train_predictdata <- cbind(traindata, predictedclass = train_predict$class)

# 输出训练数据的混淆矩阵

(train_confusion <- table(actual = traindata$流失, predictedclass = train_predict$class))

# 输出测试数据的分类结果

test_predictdata <- cbind(testdata, predictedclass = test_predict$class)

# 输出测试数据的混淆矩阵

(test_confusion <- table(actual = testdata$流失, predictedclass = test_predict$class))

【rpart模型】

Eg.1:构建rpart模型并进行分类预测

Data[, "流失"] <- as.factor(Data[, "流失"])  # 将目标变量转换成因子型

set.seed(1234)  # 设置随机种子

# 数据集随机抽70%定义为训练数据集,30%为测试数据集

ind <- sample(2, nrow(Data), replace = TRUE, prob = c(0.7, 0.3))

traindata <- Data[ind == 1, ]

testdata <- Data[ind == 2, ]

# 建立rpart分类模型

library(rpart)

install.packages("rpart.plot")

library(rpart.plot)

rpart.model <- rpart(流失 ~ ., data = traindata, method = "class", cp = 0.03)  # cp为复杂的参数

# 输出决策树图

rpart.plot(rpart.model, branch = 1, branch.type = 2, type = 1, extra = 102, 

           border.col = "blue", split.col = "red", 

           split.cex = 1, main = "客户流失决策树")

# 预测结果

train_predict <- predict(rpart.model, newdata = traindata, type = "class")  # 训练数据集

test_predict <- predict(rpart.model, newdata = testdata, type = "class")  # 测试数据集

# 输出训练数据的分类结果

train_predictdata <- cbind(traindata, predictedclass = train_predict)

# 输出训练数据的混淆矩阵

(train_confusion <- table(actual = traindata$流失, predictedclass = train_predict))

# 输出测试数据的分类结果

test_predictdata <- cbind(testdata, predictedclass = test_predict)

# 输出测试数据的混淆矩阵

(test_confusion <- table(actual = testdata$流失, predictedclass = test_predict))

【bagging模型】

Eg.1:构建bagging模型并进行分类预测

Data[, "流失"] <- as.factor(Data[, "流失"])  # 将目标变量转换成因子型

set.seed(1234)  # 设置随机种子

# 数据集随机抽70%定义为训练数据集,30%为测试数据集

ind <- sample(2, nrow(Data), replace = TRUE, prob = c(0.7, 0.3))

traindata <- Data[ind == 1, ]

testdata <- Data[ind == 2, ]

# 建立bagging分类模型

install.packages("adabag")

library(adabag)

bagging.model <- bagging(流失 ~ ., data = traindata)

# 预测结果

train_predict <- predict(bagging.model, newdata = traindata)  # 训练数据集

test_predict <- predict(bagging.model, newdata = testdata)  # 测试数据集

# 输出训练数据的分类结果

train_predictdata <- cbind(traindata, predictedclass = train_predict$class)

# 输出训练数据的混淆矩阵

(train_confusion <- table(actual = traindata$流失, predictedclass = train_predict$class))

# 输出测试数据的分类结果

test_predictdata <- cbind(testdata, predictedclass = test_predict$class)

# 输出测试数据的混淆矩阵

(test_confusion <- table(actual = testdata$流失, predictedclass = test_predict$class))

【randomForest模型】

Eg.1:构建randomForest模型并进行分类预测

Data[, "流失"] <- as.factor(Data[, "流失"])  # 将目标变量转换成因子型

set.seed(1234)  # 设置随机种子

# 数据集随机抽70%定义为训练数据集,30%为测试数据集

ind <- sample(2, nrow(Data), replace = TRUE, prob = c(0.7, 0.3))

traindata <- Data[ind == 1, ]

testdata <- Data[ind == 2, ]

# 建立randomForest模型

install.packages("randomForest")

library(randomForest)

randomForest.model <- randomForest(流失 ~ ., data = traindata)

# 预测结果

test_predict <- predict(randomForest.model, newdata = testdata)  # 测试数据集

# 输出训练数据的混淆矩阵

(train_confusion <- randomForest.model$confusion)

# 输出测试数据的混淆矩阵

(test_confusion <- table(actual = testdata$流失, predictedclass = test_predict))

【svm模型】

Eg.1:构建svm模型并进行分类预测

Data[, "流失"] = as.factor(Data[, "流失"])  # 将目标变量转换成因子型

set.seed(1234)  # 设置随机种子

# 数据集随机抽70%定义为训练数据集,30%为测试数据集

ind <- sample(2, nrow(Data), replace = TRUE, prob = c(0.7, 0.3))

traindata <- Data[ind == 1, ]

testdata <- Data[ind == 2, ]

# 建立svm模型

install.packages("e1071")

library(e1071)

svm.model <- svm(流失 ~ ., data = traindata)

# 预测结果

train_predict <- predict(svm.model, newdata = traindata)  # 训练数据集

test_predict <- predict(svm.model, newdata = testdata)  # 测试数据集

# 输出训练数据的分类结果

train_predictdata <- cbind(traindata, predictedclass = train_predict)

# 输出训练数据的混淆矩阵

(train_confusion <- table(actual = traindata$流失, predictedclass = train_predict))

# 输出测试数据的分类结果

test_predictdata <- cbind(testdata, predictedclass = test_predict)

# 输出测试数据的混淆矩阵

(test_confusion <- table(actual = testdata$流失, predictedclass = test_predict))

【ROC曲线和PR曲线】

Eg.1:ROC曲线和PR曲线图代码

install.packages("ROCR")

library(ROCR)

library(gplots)

# 预测结果

train_predict <- predict(lda.model, newdata = traindata)  # 训练数据集

test_predict <- predict(lda.model, newdata = testdata)  # 测试数据集

par(mfrow = c(1, 2))

# ROC曲线

# 训练集

predi <- prediction(train_predict$posterior[, 2], traindata$流失)

perfor <- performance(predi, "tpr", "fpr")

plot(perfor, col = "red", type = "l", main = "ROC曲线", lty = 1)  # 训练集的ROC曲线

# 测试集

predi2 <- prediction(test_predict$posterior[, 2], testdata$流失)

perfor2 <- performance(predi2, "tpr", "fpr")

par(new = T)

plot(perfor2, col = "blue", type = "l", pch = 2, lty = 2)  # 测试集的ROC曲线

abline(0, 1)

legend("bottomright", legend = c("训练集", "测试集"), bty = "n",

       lty = c(1, 2), col = c("red", "blue"))  # 图例

# PR曲线

# 训练集

perfor <- performance(predi, "prec", "rec")

plot(perfor, col = "red", type = "l", main = "PR曲线", xlim = c(0, 1),

     ylim = c(0, 1), lty = 1)  # 训练集的PR曲线

# 测试集

perfor2 <- performance(predi2, "prec", "rec")

par(new = T)

plot(perfor2, col = "blue", type = "l", pch = 2, xlim = c(0, 1),

     ylim = c(0, 1), lty = 2)  # 测试集的PR曲线

abline(1, -1)

legend("bottomleft", legend = c("训练集", "测试集"), bty = "n",

       lty = c(1, 2), col = c("red", "blue"))  # 图例

【BIC图和一阶差分】

Eg.1:

install.packages("TSA")

library(TSA)

Data <- read.csv("arima_data.csv", header = T,fileEncoding = "GB2312")[, 2]

sales <- ts(Data)

plot.ts(sales, xlab = "时间", ylab = "销量 / 元")

# 一阶差分

difsales <- diff(sales)

# BIC图

res <- armasubsets(y = difsales, nar = 5, nma = 5, y.name = 'test',

                   ar.method = 'ols')

plot(res)

【逻辑回归】

Eg.1:

Data <- read.csv("bankloan.csv",fileEncoding = "GB2312")[2:701, ]

# 数据命名

colnames(Data) <- c("x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "y")

# logistic回归模型

glm <- glm(y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8,

           family = binomial(link = logit), data = Data)

summary(glm)

# 逐步寻优法

logit.step <- step(glm, direction = "both")

summary(logit.step)

# 前向选择法

logit.step <- step(glm, direction = "forward")

summary(logit.step)

# 后向选择法

logit.step <- step(glm, direction = "backward")

summary(logit.step)

【ID3_decision_tree】

Eg.1:

data <- read.csv("sales_data.csv",fileEncoding = "GB2312")[, 2:5]

# 数据命名

colnames(data) <- c("x1", "x2", "x3", "result")

# 计算一列数据的信息熵

calculateEntropy <- function(data) {

  t <- table(data)   

  sum <- sum(t)      

  t <- t[t != 0]       

  entropy <- -sum(log2(t / sum) * (t / sum))

  return(entropy)

}

# 计算两列数据的信息熵

calculateEntropy2 <- function(data) {

  var <- table(data[1])

  p <- var/sum(var)

  varnames <- names(var)

  array <- c()

  for (name in varnames) {

    array <- append(array, calculateEntropy(subset(data, data[1] == name,

                                                   select = 2)))

  }

  return(sum(array * p))

}

buildTree <- function(data) {

  if (length(unique(data$result)) == 1) {

    cat(data$result[1])

    return()

  }

  if (length(names(data)) == 1) {

    cat("...")

    return()

  }

  entropy <- calculateEntropy(data$result) 

  labels <- names(data)

  label <- ""

  temp <- Inf

  subentropy <- c()

  for (i in 1:(length(data) - 1)) {

    temp2 <- calculateEntropy2(data[c(i, length(labels))])

    if (temp2 < temp) {        

      temp <- temp2         

      label <- labels[i]     

    }

    subentropy <- append(subentropy,temp2) 

  }

  cat(label)

  cat("[")

  nextLabels <- labels[labels != label]

  for (value in unlist(unique(data[label]))) {

    cat(value,":")

    buildTree(subset(data,data[label] == value, select = nextLabels))

    cat(";")

  }

  cat("]")

}

# 构建分类树

buildTree(data)

【bp_neural_network】

Eg.1:

Data <- read.csv("sales_data.csv",fileEncoding = "GB2312")[, 2:5]

# 数据命名

library(nnet)

colnames(Data) <- c("x1", "x2", "x3", "y")

print(names(Data))

print(class(Data$y))

Data$y <- as.factor(Data$y)

print(class(Data$y))

# 最终模型

model1 <- nnet(y ~ ., data = Data, size = 6, decay = 5e-4, maxit = 1000) 

pred <- predict(model1, Data[, 1:3], type = "class")

(P <- sum(as.numeric(pred == Data$y)) / nrow(Data))

table(Data$y, pred)

prop.table(table(Data$y, pred), 1)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1602361.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【VTKExamples::Meshes】第十二期 QuadricDecimation

很高兴在雪易的CSDN遇见你 VTK技术爱好者 QQ:870202403 公众号:VTK忠粉 前言 本文分享VTK样例QuadricDecimation,并解析接口vtkQuadricDecimation,希望对各位小伙伴有所帮助! 感谢各位小伙伴的点赞+关注,小易会继续努力分享,一起进步! 你的点赞就是我的动力(…

服务器raid卡,守护数据安全,赋能新质生产力

RAID卡&#xff0c;全称为独立冗余磁盘阵列卡&#xff0c;在数据中心、服务器、网络存储等领域得到广泛应用&#xff0c;RAID卡通过不同的RAID级别实现数据容错和冗余。例如&#xff0c;RAID 0主要适用于需要高速数据传输但对数据安全要求不高的场景&#xff0c;如数据的缓存&a…

C++ 一些编程问题解决 (C++ some programming error solutions)

电脑配置&#xff1a;window10, 64位操作系统&#xff0c;基于x64的处理器&#xff0c;Microsoft Visual Studio Community 2019 Version 16.4.5 问题1&#xff1a;Unhandled exception at 0x00007FFDB39AA839 in TesseractLACadd1.exe: Microsoft C exception: boost::filesy…

Oracle执行计划优化SPM案例

1.现象 执行下面这段代码&#xff0c;发现子库存表走了全表扫描 SELECT msi.secondary_inventory_name, --子库存msi.description --库存说明FROM inv.mtl_secondary_inventories msi,csi_item_instances ciiWHERE msi.secondary_inventory_name cii.inv_subinve…

【Linux--多线程】

1 . Linux线程概念 1.1 什么是线程 在一个程序里的一个执行路线就叫做线程&#xff08;thread&#xff09;。更准确的定义是&#xff1a;线程是“一个进程内部的控制序列” 一切进程至少都有一个执行线程 线程在进程内部执行&#xff0c;本质是在进程地址空间内运行 Linux系…

P1157 组合的输出 (dfs深搜)

题目连接&#xff1a;P1157 组合的输出 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 思路&#xff1a; AC代码&#xff1a; #include<iostream> #include<cstring>using namespace std;const int N 30; int st[N];//用来存这个数用没用过&#xff08;1~n个…

第十五届蓝桥杯复盘python大学A组——试题B 召唤数学精灵

按照正常思路解决&#xff0c;由于累乘消耗大量时间&#xff0c;因此这不是一个明智的解决方案。 这段代码执行速度非常慢的原因在于它试图计算非常大的数的阶乘&#xff08;累乘&#xff09;&#xff0c;并且对于每一个i的值都执行这个计算。阶乘的增长是极其迅速的&#xff…

graylog使用Sidecars方式收集springboot程序的日志

1、部署graylog后台服务 使用docker-compose启动三个服务程序&#xff0c;包括graylog、mongodb、opensearch。 docker-compose.yml内容如下 version: 3 services: # MongoDB: https://hub.docker.com/_/mongo/ mongodb: image: mongo:6.0.14 privileged: true …

Mybatis-plus动态数据源

由于服务没有做微服务部署&#xff0c;需要在后台管理系统访问其他服务的库&#xff0c;所以需要用到动态数据源切换 引入依赖 mybatis-plus动态数据源依赖 <dependency><groupId>com.baomidou</groupId><artifactId>dynamic-datasource-spring-boot…

掼蛋小技巧(下篇)

一、记断张和单牌 如果我们手上有断张&#xff0c;那么外面有九成概率成炸&#xff1b;我们的单张外面有七张&#xff0c;有七成概率成炸&#xff0c;实战中两家同时断同一张牌的概率很低&#xff0c;所以要时刻关注自己的断张和单张。 二、情况不明&#xff0c;对子先行 对子可…

【进程地址空间】进程的独立性 | 虚拟地址物理地址 | 页表 | 写时拷贝

目录 前言 基本概念 进程的独立性 虚拟地址&物理地址 进程地址空间 页表&#xff08;虚拟地址☞物理地址&#xff09; 写时拷贝 基本理解 地址空间 写时拷贝&#xff08;浅拷贝&#xff09; 数据独立性的保证☞写时拷贝 写时拷贝的优点 图解分析 前言 我们…

MySQL-多表查询:多表查询分类、SQL99语法实现多表查询、UNION的使用、7种SQL JOINS的实现、SQL99语法新特性、多表查询SQL练习

多表查询 1. 一个案例引发的多表连接1.1 案例说明1.2 笛卡尔积&#xff08;或交叉连接&#xff09;的理解1.3 案例分析与问题解决 2. 多表查询分类讲解分类1&#xff1a;等值连接 vs 非等值连接等值连接非等值连接 分类2&#xff1a;自连接 vs 非自连接分类3&#xff1a;内连接…

JavaSE图书管理系统实战

代码仓库地址&#xff1a;Java图书管理系统 1.前言 该项目将JavaSE的封装继承多态三大特性&#xff0c;使用了大量面向对象的操作&#xff0c;有利于巩固理解 &#xff08;1&#xff09;实现效果 2.实现步骤 第一步先把框架搭建起来&#xff0c;即创建出人&#xff1a;管理员和…

九、OOP面向对象程序设计(四)

1、this、super、static和final关键字的使用 (1)this关键字的使用 当成员变量和局部变量重名时,在方法中使用this时,表示的是该方法所在类中的成员变量。 把当前对象当作参数传递时,可以用this。 有时候,我们会用到一些内部类和匿名类,如事件处理。当在匿名类中用thi…

第20天:信息打点-红蓝队自动化项目资产侦察企查产权武器库部署网络空间

第二十天 一、工具项目-红蓝队&自动化部署 自动化-武器库部署-F8x 项目地址&#xff1a;https://github.com/ffffffff0x/f8x 介绍&#xff1a;一款红/蓝队环境自动化部署工具,支持多种场景,渗透,开发,代理环境,服务可选项等.下载&#xff1a;wget -O f8x https://f8x.io…

从入门到精通C++之类和对象(续)

目录 初始化列表构造函数&#xff1f;拷贝构造&#xff1f;浅谈explicit关键字友元 内部类static成员总结 初始化列表 引入初始化列表&#xff1a;简化代码&#xff0c;提高效率 在编程中&#xff0c;初始化列表是一种用于在创建对象时初始化成员变量的快捷方式。通过初始化列…

神仙级Python入门教程(超级详细),从零基础入门到精通!!

关于Python学习指南 学好 Python 不论是就业还是做副业赚钱都不错&#xff0c;但要学会 Python 还是要有一个学习规划。最后给大家分享一份全套的 Python 学习资料&#xff0c;给那些想学习 Python 的小伙伴们一点帮助&#xff01; 包括&#xff1a;Python激活码安装包、Pyth…

RAG原理详解

什么是RAG 检索增强生成&#xff08;Retrieval Augmented Generation&#xff0c;简称RAG&#xff09;为大型语言模型&#xff08;LLMs&#xff09;提供了从某些数据源检索到的信息&#xff0c;以此作为生成答案的基础。简而言之&#xff0c;RAG是搜索LLM提示的结合&#xff0…

新标准日本语 课后练习

自学错误可能较多&#xff0c;听力题不需要听力的就没听录音 第二十課 スミスさんはピアノを弾くことができます 練習&#xff11;&#xff0d;&#xff11; &#xff11;張さんは日本の歌を歌うことができます 张先生会唱日本歌 &#xff12;小野さんは自転車に乗ることがで…

Doris Manager 24.0 版本正式发布!

Cluster Manager for Apache Doris&#xff08;简称 Doris Manager&#xff09;是 SelectDB 推出的管理运维 Apache Doris 集群的工具。用户可以轻松通过该工具部署和接管集群&#xff0c;实时查看集群的运行状态和详情&#xff0c;快捷地对集群进行扩缩容、升级及重启操作。同…