深度强化学习(DRL)算法 附录 6 —— NLP 回顾之预训练模型篇

news2025/2/28 15:30:47

Self-Attention

模型结构

上图架构以 batch_size 为 1,两个时间步的 X 为例子,计算过程如下:

位置编码

根据 self-attention 的模型结构,改变 X 的输入顺序,不影响 attention 的结果,所以还需要引入额外的位置信息,即位置编码。

图里计算机二进制编码的低位和位置编码矩阵的前面几列对应。

除了上面捕获绝对位置信息之外,上述的位置编码还允许模型学习得到输入序列中相对位置信息。 这是因为对于任何确定的位置偏移δ,位置 i+δ 处的位置编码可以线性投影位置 i 处的位置编码来表示。

\begin{aligned} & {\left[\begin{array}{cc} \cos \left(\delta \omega_j\right) & \sin \left(\delta \omega_j\right) \\ -\sin \left(\delta \omega_j\right) & \cos \left(\delta \omega_j\right) \end{array}\right]\left[\begin{array}{c} p_{i, 2 j} \\ p_{i, 2 j+1} \end{array}\right] } \\ = & {\left[\begin{array}{c} \cos \left(\delta \omega_j\right) \sin \left(i \omega_j\right)+\sin \left(\delta \omega_j\right) \cos \left(i \omega_j\right) \\ -\sin \left(\delta \omega_j\right) \sin \left(i \omega_j\right)+\cos \left(\delta \omega_j\right) \cos \left(i \omega_j\right) \end{array}\right] } \\ = & {\left[\begin{array}{l} \sin \left((i+\delta) \omega_j\right) \\ \cos \left((i+\delta) \omega_j\right) \end{array}\right] } \\ = & {\left[\begin{array}{c} p_{i+\delta, 2 j} \\ p_{i+\delta, 2 j+1} \end{array}\right] } \end{aligned}

代码

#@save
class PositionalEncoding(nn.Module):
    """位置编码"""
    def __init__(self, num_hiddens, dropout, max_len=1000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(dropout)
        # 创建一个足够长的P
        self.P = torch.zeros((1, max_len, num_hiddens))
        X = torch.arange(max_len, dtype=torch.float32).reshape(
            -1, 1) / torch.pow(10000, torch.arange(
            0, num_hiddens, 2, dtype=torch.float32) / num_hiddens)
        self.P[:, :, 0::2] = torch.sin(X)
        self.P[:, :, 1::2] = torch.cos(X)

    def forward(self, X):
        X = X + self.P[:, :X.shape[1], :].to(X.device)
        return self.dropout(X)

多头注意力

模型结构

  • 两头注意力

  • 七头注意力

添加图片注释,不超过 140 字(可选)

  • 七头注意力连接进行信息融合

  • 掩码多头注意力

和多头注意力是一样的,只不过每个头的 self-attention 变成了 masked self-attention

代码

import math
import torch
from torch import nn
from d2l import torch as d2l

#@save
def transpose_qkv(X, num_heads):
    """为了多注意力头的并行计算而变换形状"""
    # 输入X的形状:(batch_size,查询或者“键-值”对的个数,num_hiddens)
    # 输出X的形状:(batch_size,查询或者“键-值”对的个数,num_heads,
    # num_hiddens/num_heads)
    X = X.reshape(X.shape[0], X.shape[1], num_heads, -1)

    # 输出X的形状:(batch_size,num_heads,查询或者“键-值”对的个数,
    # num_hiddens/num_heads)
    X = X.permute(0, 2, 1, 3)

    # 最终输出的形状:(batch_size*num_heads,查询或者“键-值”对的个数,
    # num_hiddens/num_heads)
    return X.reshape(-1, X.shape[2], X.shape[3])


#@save
def transpose_output(X, num_heads):
    """逆转transpose_qkv函数的操作"""
    X = X.reshape(-1, num_heads, X.shape[1], X.shape[2])
    X = X.permute(0, 2, 1, 3)
    return X.reshape(X.shape[0], X.shape[1], -1)

#@save
class DotProductAttention(nn.Module):
    """Scaled dot product attention.
    Defined in :numref:`subsec_additive-attention`"""
    def __init__(self, dropout, **kwargs):
        super(DotProductAttention, self).__init__(**kwargs)
        self.dropout = nn.Dropout(dropout)

    # Shape of `queries`: (`batch_size`, no. of queries, `d`)
    # Shape of `keys`: (`batch_size`, no. of key-value pairs, `d`)
    # Shape of `values`: (`batch_size`, no. of key-value pairs, value
    # dimension)
    # Shape of `valid_lens`: (`batch_size`,) or (`batch_size`, no. of queries)
    def forward(self, queries, keys, values, valid_lens=None):
        d = queries.shape[-1]
        # Set `transpose_b=True` to swap the last two dimensions of `keys`
        scores = torch.bmm(queries, keys.transpose(1,2)) / math.sqrt(d)
        self.attention_weights = masked_softmax(scores, valid_lens)
        return torch.bmm(self.dropout(self.attention_weights), values)

#@save
class MultiHeadAttention(nn.Module):
    """多头注意力"""
    def __init__(self, key_size, query_size, value_size, num_hiddens,
                 num_heads, dropout, bias=False, **kwargs):
        super(MultiHeadAttention, self).__init__(**kwargs)
        self.num_heads = num_heads
        self.attention = d2l.DotProductAttention(dropout)
        self.W_q = nn.Linear(query_size, num_hiddens, bias=bias)
        self.W_k = nn.Linear(key_size, num_hiddens, bias=bias)
        self.W_v = nn.Linear(value_size, num_hiddens, bias=bias)
        self.W_o = nn.Linear(num_hiddens, num_hiddens, bias=bias)

    def forward(self, queries, keys, values, valid_lens):
        # queries,keys,values的形状:
        # (batch_size,查询或者“键-值”对的个数,num_hiddens)
        # valid_lens 的形状:
        # (batch_size,)或(batch_size,查询的个数)
        # 经过变换后,输出的queries,keys,values 的形状:
        # (batch_size*num_heads,查询或者“键-值”对的个数,
        # num_hiddens/num_heads)
        queries = transpose_qkv(self.W_q(queries), self.num_heads)
        keys = transpose_qkv(self.W_k(keys), self.num_heads)
        values = transpose_qkv(self.W_v(values), self.num_heads)

        if valid_lens is not None:
            # 在轴0,将第一项(标量或者矢量)复制num_heads次,
            # 然后如此复制第二项,然后诸如此类。
            valid_lens = torch.repeat_interleave(
                valid_lens, repeats=self.num_heads, dim=0)

        # output的形状:(batch_size*num_heads,查询的个数,
        # num_hiddens/num_heads)
        output = self.attention(queries, keys, values, valid_lens)

        # output_concat的形状:(batch_size,查询的个数,num_hiddens)
        output_concat = transpose_output(output, self.num_heads)
        return self.W_o(output_concat)

Transformer

模型结构

encoder

decoder

代码

import math
import pandas as pd
import torch
from torch import nn
from d2l import torch as d2l

#@save
class PositionWiseFFN(nn.Module):
    """基于位置的前馈网络"""
    def __init__(self, ffn_num_input, ffn_num_hiddens, ffn_num_outputs,
                 **kwargs):
        super(PositionWiseFFN, self).__init__(**kwargs)
        self.dense1 = nn.Linear(ffn_num_input, ffn_num_hiddens)
        self.relu = nn.ReLU()
        self.dense2 = nn.Linear(ffn_num_hiddens, ffn_num_outputs)

    def forward(self, X):
        return self.dense2(self.relu(self.dense1(X)))

#@save
class AddNorm(nn.Module):
    """残差连接后进行层规范化"""
    def __init__(self, normalized_shape, dropout, **kwargs):
        super(AddNorm, self).__init__(**kwargs)
        self.dropout = nn.Dropout(dropout)
        self.ln = nn.LayerNorm(normalized_shape)

    def forward(self, X, Y):
        return self.ln(self.dropout(Y) + X)

#@save
class EncoderBlock(nn.Module):
    """Transformer编码器块"""
    def __init__(self, key_size, query_size, value_size, num_hiddens,
                 norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,
                 dropout, use_bias=False, **kwargs):
        super(EncoderBlock, self).__init__(**kwargs)
        self.attention = d2l.MultiHeadAttention(
            key_size, query_size, value_size, num_hiddens, num_heads, dropout,
            use_bias)
        self.addnorm1 = AddNorm(norm_shape, dropout)
        self.ffn = PositionWiseFFN(
            ffn_num_input, ffn_num_hiddens, num_hiddens)
        self.addnorm2 = AddNorm(norm_shape, dropout)

    def forward(self, X, valid_lens):
        Y = self.addnorm1(X, self.attention(X, X, X, valid_lens))
        return self.addnorm2(Y, self.ffn(Y))

#@save
class TransformerEncoder(d2l.Encoder):
    """Transformer编码器"""
    def __init__(self, vocab_size, key_size, query_size, value_size,
                 num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens,
                 num_heads, num_layers, dropout, use_bias=False, **kwargs):
        super(TransformerEncoder, self).__init__(**kwargs)
        self.num_hiddens = num_hiddens
        self.embedding = nn.Embedding(vocab_size, num_hiddens)
        self.pos_encoding = d2l.PositionalEncoding(num_hiddens, dropout)
        self.blks = nn.Sequential()
        for i in range(num_layers):
            self.blks.add_module("block"+str(i),
                EncoderBlock(key_size, query_size, value_size, num_hiddens,
                             norm_shape, ffn_num_input, ffn_num_hiddens,
                             num_heads, dropout, use_bias))

    def forward(self, X, valid_lens, *args):
        # 因为位置编码值在-1和1之间,
        # 因此嵌入值乘以嵌入维度的平方根进行缩放,
        # 然后再与位置编码相加。
        X = self.pos_encoding(self.embedding(X) * math.sqrt(self.num_hiddens))
        self.attention_weights = [None] * len(self.blks)
        for i, blk in enumerate(self.blks):
            X = blk(X, valid_lens)
            self.attention_weights[
                i] = blk.attention.attention.attention_weights
        return X

class DecoderBlock(nn.Module):
    """解码器中第i个块"""
    def __init__(self, key_size, query_size, value_size, num_hiddens,
                 norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,
                 dropout, i, **kwargs):
        super(DecoderBlock, self).__init__(**kwargs)
        self.i = i
        self.attention1 = d2l.MultiHeadAttention(
            key_size, query_size, value_size, num_hiddens, num_heads, dropout)
        self.addnorm1 = AddNorm(norm_shape, dropout)
        self.attention2 = d2l.MultiHeadAttention(
            key_size, query_size, value_size, num_hiddens, num_heads, dropout)
        self.addnorm2 = AddNorm(norm_shape, dropout)
        self.ffn = PositionWiseFFN(ffn_num_input, ffn_num_hiddens,
                                   num_hiddens)
        self.addnorm3 = AddNorm(norm_shape, dropout)

    def forward(self, X, state):
        enc_outputs, enc_valid_lens = state[0], state[1]
        # 训练阶段,输出序列的所有词元都在同一时间处理,
        # 因此state[2][self.i]初始化为None。
        # 预测阶段,输出序列是通过词元一个接着一个解码的,
        # 因此state[2][self.i]包含着直到当前时间步第i个块解码的输出表示
        if state[2][self.i] is None:
            key_values = X
        else:
            key_values = torch.cat((state[2][self.i], X), axis=1)
        state[2][self.i] = key_values
        if self.training:
            batch_size, num_steps, _ = X.shape
            # dec_valid_lens的开头:(batch_size,num_steps),
            # 其中每一行是[1,2,...,num_steps]
            dec_valid_lens = torch.arange(
                1, num_steps + 1, device=X.device).repeat(batch_size, 1)
        else:
            dec_valid_lens = None

        # 自注意力
        X2 = self.attention1(X, key_values, key_values, dec_valid_lens)
        Y = self.addnorm1(X, X2)
        # 编码器-解码器注意力。
        # enc_outputs的开头:(batch_size,num_steps,num_hiddens)
        Y2 = self.attention2(Y, enc_outputs, enc_outputs, enc_valid_lens)
        Z = self.addnorm2(Y, Y2)
        return self.addnorm3(Z, self.ffn(Z)), state

class TransformerDecoder(d2l.AttentionDecoder):
    def __init__(self, vocab_size, key_size, query_size, value_size,
                 num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens,
                 num_heads, num_layers, dropout, **kwargs):
        super(TransformerDecoder, self).__init__(**kwargs)
        self.num_hiddens = num_hiddens
        self.num_layers = num_layers
        self.embedding = nn.Embedding(vocab_size, num_hiddens)
        self.pos_encoding = d2l.PositionalEncoding(num_hiddens, dropout)
        self.blks = nn.Sequential()
        for i in range(num_layers):
            self.blks.add_module("block"+str(i),
                DecoderBlock(key_size, query_size, value_size, num_hiddens,
                             norm_shape, ffn_num_input, ffn_num_hiddens,
                             num_heads, dropout, i))
        self.dense = nn.Linear(num_hiddens, vocab_size)

    def init_state(self, enc_outputs, enc_valid_lens, *args):
        return [enc_outputs, enc_valid_lens, [None] * self.num_layers]

    def forward(self, X, state):
        X = self.pos_encoding(self.embedding(X) * math.sqrt(self.num_hiddens))
        self._attention_weights = [[None] * len(self.blks) for _ in range (2)]
        for i, blk in enumerate(self.blks):
            X, state = blk(X, state)
            # 解码器自注意力权重
            self._attention_weights[0][
                i] = blk.attention1.attention.attention_weights
            # “编码器-解码器”自注意力权重
            self._attention_weights[1][
                i] = blk.attention2.attention.attention_weights
        return self.dense(X), state

    @property
    def attention_weights(self):
        return self._attention_weights

num_hiddens, num_layers, dropout, batch_size, num_steps = 32, 2, 0.1, 64, 10
lr, num_epochs, device = 0.005, 200, d2l.try_gpu()
ffn_num_input, ffn_num_hiddens, num_heads = 32, 64, 4
key_size, query_size, value_size = 32, 32, 32
norm_shape = [32]

train_iter, src_vocab, tgt_vocab = d2l.load_data_nmt(batch_size, num_steps)

encoder = TransformerEncoder(
    len(src_vocab), key_size, query_size, value_size, num_hiddens,
    norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,
    num_layers, dropout)
decoder = TransformerDecoder(
    len(tgt_vocab), key_size, query_size, value_size, num_hiddens,
    norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,
    num_layers, dropout)
net = d2l.EncoderDecoder(encoder, decoder)
d2l.train_seq2seq(net, train_iter, lr, num_epochs, tgt_vocab, device)

Bert

bert 开启了预训练模型的风潮,使用了带掩码的语言模型,具体就是通过大量的数据,模型获取了语言信息抽取的能力,从而可以通过 fine-tune 应用到各种 NLP 任务上。

3w 的词典,使用了 WordPiece。[cls] A [seq] B [seq]

位置嵌入换成了学习的矩阵。

模型结构

截取了 transformer 的 encoder(代码没有改动)

不同点:

  • 输入

  • 训练(类似完形填空,以及下一个句子预测)

尽管掩蔽语言建模能够编码双向上下文来表示单词,但它不能显式地建模文本对之间的逻辑关系。为了帮助理解两个文本序列之间的关系,BERT在预训练中考虑了一个二元分类任务——下一句预测。在为预训练生成句子对时,有一半的时间它们确实是标签为“真”的连续句子;在另一半的时间里,第二个句子是从语料库中随机抽取的,标记为“假”。

模型参数计算

BERT-base(H = 768,L = 12,A = 12)

Transformer encoder block 里面主要参数有:

  1. 嵌入层:H x 30000(vocab_size 约等于 30000)

2. 全连接层:H x 4H + 4H x H(一个 block 里面有两个全连接层)

3. 多头注意力机制层:H x H / head_num x 3(一个头的参数,3代表 Q,K,V 用不同矩阵做线性变换),所有头加起来 H x H x 3,再加上多头注意力机制层的线性变换 H x H,这里可以结合下图理解:

添加图片注释,不超过 140 字(可选)

1,2,3 加起来就是 BERT-base 的参数数量。

计算公式: L*12H^{2} + 30000*H \approx 110M (H=768, L=12)

BERT-large 同理可以计算出参数数量约等于 340M。

GPT-3

截取了 transformer 的 decoder(代码没有改动)

参考

51 序列模型【动手学深度学习v2】-跟李沐学AI-【完结】动手学深度学习 PyTorch版-哔哩哔哩视频

8.1. 序列模型 - 动手学深度学习 2.0.0 documentation

Visualizing A Neural Machine Translation Model (Mechanics of Seq2seq Models With Attention)

The Illustrated Transformer

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1601438.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

读《AI营销画布》步骤三 扩场景(八)

前言 扩场景写起来有点吃力和干巴,为了文章的连续性,还是写点。 扩场景实际上是需要考虑在第一步和第二步之后是否增加业务流程、节点和场景。在确定增加场景之前,我们需要确保的是第一二步的成功,而且模式是可以复制的。所以&…

【数据分析面试】22.补充缺失数据(Python:数据插值interpolate()用法)

题目 数据集来自一个气候研究组织,列表里带有不同城市每日温度读数的时间序列数据。该数据框有三列:date、city 和 temperature。 由于数据记录问题,某些日期的温度读数可能丢失。该组织需要每天的温度读数,因此他们要求你用线性…

2024中国内燃机展-北京汽车发动机零部件展

2024第二十三届中国国际内燃机与零部件展览会 由中国内燃机工业协会主办、中国机床专用技术设备有限公司、汽车工艺装备成套开发集团协办的2024中国国际内燃机及动力装备博览会(简称“动博会”)将于2024年10月11日-13日在亦创国际会展中心隆重举办。本届…

linux@内核@内核版本发展@镜像文件查看内核

文章目录 linux内核介绍简介小结 linux发行版和内核各个linux发行版和内核的关系内核更新追踪GAHWE版的内核 内核版本查看😊linux当前系统内核查看未安装时查看网络搜索内核版本号挂载镜像查看虚拟机启动镜像体验版查看内核版本 linux(内核)版本演进😊相…

Android 自定义SwitchPreference

1. 为SwitchPreference 添加背景&#xff1a;custom_preference_background.xml <?xml version"1.0" encoding"utf-8"?> <selector xmlns:android"http://schemas.android.com/apk/res/android"><item><shape android:s…

计算机网络——实现smtp和pop3邮件客户端

实验目的 运用各种编程语言实现基于 smtp 协议的 Email 客户端软件。 实验内容 1. 选择合适的编程语言编程实现基于 smtp 协议的 Email 客户端软件。 2. 安装 Email 服务器或选择已有的 Email 服务器&#xff0c;验证自己的 Email 客户端软件是否能进行正常的 Email 收发功…

BoostCompass( 查找功能实现 )

阅读导航 一、查找功能基本思路二、详细代码三、代码介绍四、运行结果 一、查找功能基本思路 通过实现一个基于倒排索引的搜索引擎&#xff0c;来提供高效、准确的搜索服务。其核心在于快速准确地从大量文档中检索出与用户查询关键词相关的文档&#xff0c;并按照相关性对结果…

小程序视频怎么保存到mp4

小程序上的视频如何下载成mp4&#xff0c;本文就将教大家如何将小程序视频保存到mp4&#xff0c;这里要用到一个工具:下载高手 下载高手的文件我已经打包好了 下载高手链接&#xff1a;https://pan.baidu.com/s/1qJ81sNBzzzU0w6DWf-9Nxw?pwdl09r 提取码&#xff1a;l09r -…

项目7-音乐播放器3(删除模块+播放音乐模块设计)

1.播放音乐模块设计 1.1 请求响应设计 请求&#xff1a; { get, /music/get?pathxxx.mp3 } 响应&#xff1a; { 音乐数据本身的字节信息 } 1.2 后端代码 1. Files.readAllBytes(String path) : 读取文件中的所有字节&#xff0c;读入内存 &#xff…

实体识别方法

文章目录 实体识别方法求观测序列的概率 实体识别方法 从文本中识别实体边界及其类型 实体识别的常用方法&#xff1a;基于模板和规则。将文本与规则进行匹配来识别出命名实体“说”、“老师”;“大学”、“医院”。优点&#xff1a;准确&#xff0c;有些实体识别只能依靠规则…

APEX开发过程中需要注意的小细节5.5

oracle保留小数点后两位的函数 在日常开发中经常用到百分比做数据对比&#xff0c;但是有可能得到的数据是一个多位小数&#xff0c;结果如下所示&#xff1a; 如果想截取部分小数如保留小数点后两位可以怎么做呢&#xff1f; 在Oracle中&#xff0c;可以使用ROUND函数来四舍…

Nature Climate Change | CO2施肥效应导致1981-2020年的全球陆地植被光合作用增加

在全球范围内&#xff0c;光合作用是大气和生物圈之间最大的单一CO2通量。因此&#xff0c;光合作用的长期变化&#xff0c;例如对大气CO2上升的响应&#xff0c;可能为气候变化提供重要的反馈。理论预测&#xff0c;CO2的增加增加了全球光合作用&#xff0c;这一过程被称为CO2…

根据 Figma 设计稿自动生成 Python GUI | 开源日报 No.221

ParthJadhav/Tkinter-Designer Stars: 8.0k License: BSD-3-Clause Tkinter-Designer 是一个用于快速创建 Python GUI 的工具&#xff0c;通过使用 Figma 设计软件&#xff0c;可以轻松地生成美观的 Tkinter GUI。 主要功能和优势包括&#xff1a; 拖放界面设计比手写代码更快…

SCI一区 | Matlab实现POA-TCN-BiGRU-Attention鹈鹕算法优化时间卷积双向门控循环单元注意力机制多变量时间序列预测

SCI一区 | Matlab实现POA-TCN-BiGRU-Attention鹈鹕算法优化时间卷积双向门控循环单元注意力机制多变量时间序列预测 目录 SCI一区 | Matlab实现POA-TCN-BiGRU-Attention鹈鹕算法优化时间卷积双向门控循环单元注意力机制多变量时间序列预测预测效果基本介绍模型描述程序设计参考…

Spring Boot 处理过滤器(filter )中抛出的异常

前言&#xff1a; 在改造老项目登录功能的时候&#xff0c;使用了过滤器对 token 进行有效性验证&#xff0c;验证通过继续进行业务请求&#xff0c;验证不通过则抛出校验异常。 过程&#xff1a; 技术方案拟定后&#xff0c;就着手开始改造&#xff0c;一切都很顺畅&#x…

OpenStack云平台实战

1、环境准备 主机CPU数量内存硬盘IPV4发行版controller48GB100GBens33: 192.168.110.27/24 esn34: 192.168.237.131/24CentOS 7.9compute48GB200GB、100GBens33: 192.168.110.26/24 esn34: 192.168.237.132/24CentOS 7.9 1.1 虚拟机安装部署 1.1.1 创建虚拟机 这里16或者17都…

机器学习——模型评价

概述 在机器学习中&#xff0c;模型评价是评估和比较不同模型性能的关键步骤之一。它是通过对模型的预测结果与真实标签进行比较&#xff0c;从而量化模型的预测能力、泛化能力和稳定性。模型评价旨在选择最佳的模型&#xff0c;理解模型的行为&#xff0c;并为模型的改进提供…

c++11 标准模板(STL)本地化库 - 平面类别 - 在字符编码间转换,包括 UTF-8、UTF-16、UTF-32 (七)

本地化库 本地环境设施包含字符分类和字符串校对、数值、货币及日期/时间格式化和分析&#xff0c;以及消息取得的国际化支持。本地环境设置控制流 I/O 、正则表达式库和 C 标准库的其他组件的行为。 平面类别 在字符编码间转换&#xff0c;包括 UTF-8、UTF-16、UTF-32 std::…

03.卸载MySQL

卸载MySQL 1.Windows卸载MySQL8 停止服务 用命令停止或者在服务中停止都可以 net stop mysql&#xff08;服务名字可以去服务里面看一下&#xff09;控制面板卸载MySQL 卸载MySQL8.0的程序可以和其他桌面应用程序一样直接在控制面板选择卸载程序&#xff0c;并在程序列表中…

nacos配置mysql(windows)

nacos默认是使用的内置数据库derby ,可通过配置修改成mysql,修改成mysql之后&#xff0c;之前配置在derby的数据会丢失 本文使用mysql版本为8.0.22 nacos版本为2.3.1 在mysql里面先创建一个数据库test(名称自定义&#xff0c;和后面配置文件里面的一样就好了) 在上面创建的数据…