动态规划|01背包理论基础

news2025/2/5 2:56:04

卡码网
第46题

//二维dp数组实现
#include <bits/stdc++.h>
using namespace std;

int n, bagweight;// bagweight代表行李箱空间
void solve() {
    vector<int> weight(n, 0); // 存储每件物品所占空间
    vector<int> value(n, 0);  // 存储每件物品价值
    for(int i = 0; i < n; ++i) {
        cin >> weight[i];
    }
    for(int j = 0; j < n; ++j) {
        cin >> value[j];
    }
    // dp数组, dp[i][j]代表行李箱空间为j的情况下,从下标为[0, i]的物品里面任意取,能达到的最大价值
    vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));

    // 初始化, 因为需要用到dp[i - 1]的值
    // j < weight[0]已在上方被初始化为0
    // j >= weight[0]的值就初始化为value[0]
    for (int j = weight[0]; j <= bagweight; j++) {
        dp[0][j] = value[0];
    }

    for(int i = 1; i < weight.size(); i++) { // 遍历科研物品
        for(int j = 0; j <= bagweight; j++) { // 遍历行李箱容量
            // 如果装不下这个物品,那么就继承dp[i - 1][j]的值
            if (j < weight[i]) dp[i][j] = dp[i - 1][j];
            // 如果能装下,就将值更新为 不装这个物品的最大值 和 装这个物品的最大值 中的 最大值
            // 装这个物品的最大值由容量为j - weight[i]的包任意放入序号为[0, i - 1]的最大值 + 该物品的价值构成
            else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
        }
    }
    cout << dp[weight.size() - 1][bagweight] << endl;
}

int main() {
    while(cin >> n >> bagweight) {
        solve();
    }
    return 0;
}

代码随想录 (programmercarl.com) 

虽然之前上算法课时老师讲过很多次,但是还是吃不消啊!

带你学透0-1背包问题!| 关于背包问题,你不清楚的地方,这里都讲了!| 动态规划经典问题 | 数据结构与算法_哔哩哔哩_bilibili

思路

这周我们正式开始讲解背包问题!

背包问题的经典资料当然是:背包九讲。在公众号「代码随想录」后台回复:背包九讲,就可以获得背包九讲的pdf。

但说实话,背包九讲对于小白来说确实不太友好,看起来还是有点费劲的,而且都是伪代码理解起来也吃力。

对于面试的话,其实掌握01背包,和完全背包,就够用了,最多可以再来一个多重背包。

如果这几种背包,分不清,我这里画了一个图,如下:

416.分割等和子集1

至于背包九讲其他背包,面试几乎不会问,都是竞赛级别的了,leetcode上连多重背包的题目都没有,所以题库也告诉我们,01背包和完全背包就够用了。

而完全背包又是也是01背包稍作变化而来,即:完全背包的物品数量是无限的。

所以背包问题的理论基础重中之重是01背包,一定要理解透!

leetcode上没有纯01背包的问题,都是01背包应用方面的题目,也就是需要转化为01背包问题。

所以我先通过纯01背包问题,把01背包原理讲清楚,后续再讲解leetcode题目的时候,重点就是讲解如何转化为01背包问题了

之前可能有些录友已经可以熟练写出背包了,但只要把这个文章仔细看完,相信你会意外收获!

#01 背包

有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

动态规划-背包问题

这是标准的背包问题,以至于很多同学看了这个自然就会想到背包,甚至都不知道暴力的解法应该怎么解了。

这样其实是没有从底向上去思考,而是习惯性想到了背包,那么暴力的解法应该是怎么样的呢?

每一件物品其实只有两个状态,取或者不取,所以可以使用回溯法搜索出所有的情况,那么时间复杂度就是$o(2^n)$,这里的n表示物品数量。

所以暴力的解法是指数级别的时间复杂度。进而才需要动态规划的解法来进行优化!

在下面的讲解中,我举一个例子:

背包最大重量为4。

物品为:

重量价值
物品0115
物品1320
物品2430

问背包能背的物品最大价值是多少?

以下讲解和图示中出现的数字都是以这个例子为例。

#二维dp数组01背包

依然动规五部曲分析一波。

  1. 确定dp数组以及下标的含义

对于背包问题,有一种写法, 是使用二维数组,即dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少

只看这个二维数组的定义,大家一定会有点懵,看下面这个图:

动态规划-背包问题1

要时刻记着这个dp数组的含义,下面的一些步骤都围绕这dp数组的含义进行的,如果哪里看懵了,就来回顾一下i代表什么,j又代表什么。

  1. 确定递推公式

再回顾一下dp[i][j]的含义:从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。

那么可以有两个方向推出来dp[i][j],

  • 不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以背包内的价值依然和前面相同。)
  • 放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值

所以递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

  1. dp数组如何初始化

关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱

首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。如图:

动态规划-背包问题2

在看其他情况。

状态转移方程 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出i 是由 i-1 推导出来,那么i为0的时候就一定要初始化。

dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。

那么很明显当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。

当j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。

代码初始化如下:

for (int j = 0 ; j < weight[0]; j++) {  // 当然这一步,如果把dp数组预先初始化为0了,这一步就可以省略,但很多同学应该没有想清楚这一点。
    dp[0][j] = 0;
}
// 正序遍历
for (int j = weight[0]; j <= bagweight; j++) {
    dp[0][j] = value[0];
}

此时dp数组初始化情况如图所示:

动态规划-背包问题7

dp[0][j] 和 dp[i][0] 都已经初始化了,那么其他下标应该初始化多少呢?

其实从递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出dp[i][j] 是由左上方数值推导出来了,那么 其他下标初始为什么数值都可以,因为都会被覆盖。

初始-1,初始-2,初始100,都可以!

但只不过一开始就统一把dp数组统一初始为0,更方便一些。

如图:

动态规划-背包问题10

最后初始化代码如下:

// 初始化 dp
vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));
for (int j = weight[0]; j <= bagweight; j++) {
    dp[0][j] = value[0];
}

费了这么大的功夫,才把如何初始化讲清楚,相信不少同学平时初始化dp数组是凭感觉来的,但有时候感觉是不靠谱的

  1. 确定遍历顺序

在如下图中,可以看出,有两个遍历的维度:物品与背包重量

动态规划-背包问题3

那么问题来了,先遍历 物品还是先遍历背包重量呢?

其实都可以!! 但是先遍历物品更好理解

那么我先给出先遍历物品,然后遍历背包重量的代码。

// weight数组的大小 就是物品个数
for(int i = 1; i < weight.size(); i++) { // 遍历物品
    for(int j = 0; j <= bagweight; j++) { // 遍历背包容量
        if (j < weight[i]) dp[i][j] = dp[i - 1][j];
        else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

    }
}

先遍历背包,再遍历物品,也是可以的!(注意我这里使用的二维dp数组)

例如这样:

// weight数组的大小 就是物品个数
for(int j = 0; j <= bagweight; j++) { // 遍历背包容量
    for(int i = 1; i < weight.size(); i++) { // 遍历物品
        if (j < weight[i]) dp[i][j] = dp[i - 1][j];
        else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
    }
}

为什么也是可以的呢?

要理解递归的本质和递推的方向

dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 递归公式中可以看出dp[i][j]是靠dp[i-1][j]和dp[i - 1][j - weight[i]]推导出来的。

dp[i-1][j]和dp[i - 1][j - weight[i]] 都在dp[i][j]的左上角方向(包括正上方向),那么先遍历物品,再遍历背包的过程如图所示:

动态规划-背包问题5

再来看看先遍历背包,再遍历物品呢,如图:

动态规划-背包问题6

大家可以看出,虽然两个for循环遍历的次序不同,但是dp[i][j]所需要的数据就是左上角,根本不影响dp[i][j]公式的推导!

但先遍历物品再遍历背包这个顺序更好理解。

其实背包问题里,两个for循环的先后循序是非常有讲究的,理解遍历顺序其实比理解推导公式难多了

  1. 举例推导dp数组

来看一下对应的dp数组的数值,如图:

动态规划-背包问题4

最终结果就是dp[2][4]。

建议大家此时自己在纸上推导一遍,看看dp数组里每一个数值是不是这样的。

做动态规划的题目,最好的过程就是自己在纸上举一个例子把对应的dp数组的数值推导一下,然后在动手写代码!

很多同学做dp题目,遇到各种问题,然后凭感觉东改改西改改,怎么改都不对,或者稀里糊涂就改过了。

主要就是自己没有动手推导一下dp数组的演变过程,如果推导明白了,代码写出来就算有问题,只要把dp数组打印出来,对比一下和自己推导的有什么差异,很快就可以发现问题了。

void test_2_wei_bag_problem1() {
    vector<int> weight = {1, 3, 4};
    vector<int> value = {15, 20, 30};
    int bagweight = 4;

    // 二维数组
    vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));

    // 初始化
    for (int j = weight[0]; j <= bagweight; j++) {
        dp[0][j] = value[0];
    }

    // weight数组的大小 就是物品个数
    for(int i = 1; i < weight.size(); i++) { // 遍历物品
        for(int j = 0; j <= bagweight; j++) { // 遍历背包容量
            if (j < weight[i]) dp[i][j] = dp[i - 1][j];
            else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

        }
    }

    cout << dp[weight.size() - 1][bagweight] << endl;
}

int main() {
    test_2_wei_bag_problem1();
}

现在思路差不多清晰了,主要那个初始化有点问题呜呜呜! 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1599050.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

每帧纵享丝滑——ToDesk云电脑、网易云游戏、无影云评测分析及ComfyUI部署

目录 一、前言二、云电脑性能测评分析2.1、基本配置分析2.1.1、处理器方面2.1.2、显卡方面2.1.3、内存与存储方面2.1.4、软件功能方面 2.2、综合跑分评测 三、软件应用实测分析3.1、云电竞测评3.2、AIGC科研测评——ComfyUI部署3.2.1、下载与激活工作台3.2.2、加载模型与体验3.…

Java(120):使用Java对TiDB数据库批量写入数据

使用Java对TiDB数据库批量写入数据 1、前言&#xff1a; 本次对TiDB数据库测试需要1w条数据&#xff0c;如果MySQL可用存储过程造数&#xff0c;结果发现TiDB用不了。只能想其他办法&#xff0c;一种是Java直接批量插入&#xff0c;一种是Jmeter插入。这里用的Java插入。 如果…

最新常见的图数据库对比,选型,架构,性能对比

图数据库排名 地址&#xff1a;https://db-engines.com/en/ranking/graphdbms 知识图谱查询语言 SPARQL、Cypher、Gremlin、PGQL 和 G-CORE 语法 / 语义 / 特性SPARQLCypherGremlinPGQLG-CORE图模式匹配查询语法CGPCGPCGP(无可选)1CGPCGP语义子图同态、包 2无重复边、包 2子…

appium图像识别之images-plugin插件

在进行App自动化测试的过程中&#xff0c;由于页面的复杂性&#xff0c;需要根据页面的技术实现&#xff0c;通过上下文来切换不同的定位类型&#xff0c;给定位元素的稳定性带来了不小的挑战&#xff1b;图像识别技术则不依赖于页面本身是用什么技术实现的&#xff0c;只要能识…

Dubbo面试回答简单版

一、dubbo特性 超时重试机制地址缓存多版本负载均衡&#xff1a;随机、权重轮询、最少活跃调用、一致性哈希集群容错&#xff1a;失败重试、快速失败、失败安全、失败自动恢复、并行调用、广播服务降级&#xff1a;异常时返回mock 集群容错 FailOver 失败重试&#xff0c;读…

k8s基础入门

前言 开始学习K8S了&#xff0c;下面就是笔记整理 简介 k8s是谷歌开源得容器管理系统&#xff0c;主要功能包括 基于容器得应用部署&#xff0c;维护和滚动升级负载均衡和服务发现跨机器和跨地区得集群调度自动伸缩无状态服务和有状态服务广泛得Volume支持插件保持扩展性 …

【MySQL | 第六篇】数据库三大范式

文章目录 6.数据库设计三大范式6.1第一范式6.2第二范式6.3第三范式6.4反范式设计 6.数据库设计三大范式 6.1第一范式 第一范式&#xff08;1NF&#xff09;&#xff1a;确保每列的原子性(强调的是列的原子性&#xff0c;即列不能够再分成其他几列)。实际上&#xff0c;第一范式…

探索C++:深入了解这门古老而强大的编程语言

&#x1f482; 个人网站:【 摸鱼游戏】【神级代码资源网站】【工具大全】&#x1f91f; 一站式轻松构建小程序、Web网站、移动应用&#xff1a;&#x1f449;注册地址&#x1f91f; 基于Web端打造的&#xff1a;&#x1f449;轻量化工具创作平台&#x1f485; 想寻找共同学习交…

隐私计算实训营第九讲-隐语多方安全计算在安全核对的行业实践

隐私计算实训营第九讲-隐语多方安全计算在安全核对的行业实践 文章目录 隐私计算实训营第九讲-隐语多方安全计算在安全核对的行业实践1.业务背景&#xff1a;安全核对产生的土壤1.1相关政策出台1.2 数据差异的来源 2.产品方案&#xff1a;从试点到规模化的路3.技术共建&#xf…

RAKsmart:硅谷裸机云多IP服务器性能评测

在云计算领域&#xff0c;裸机云作为一种结合了传统物理服务器与云计算优势的服务模式&#xff0c;近年来备受关注。硅谷裸机云作为业界佼佼者&#xff0c;以其出色的性能和稳定性赢得了众多用户的青睐。今天&#xff0c;我们就来评测一下硅谷裸机云的多IP服务器性能。 首先&am…

操作系统再理解

目录 1、概念 2、操作系统的结构 3、对操作系统的理解&#xff08;管理角度&#xff09; 4、OS对硬件是怎么管理的&#xff1f; 1、概念 操作系统是一款进行软硬件资源管理的软件 广义的认识&#xff1a;操作系统的内核操作系统的外壳周边程序&#xff08;用户提供使用操作…

mysql的下载、安装

首先进入官网&#xff1a;MySQL 点击“downloads”进入下载界面 2.往下滑动滚轮&#xff0c;点击“mysql community...&#xff08;公开版&#xff09;” 3.往下滑&#xff0c;找到并单击“install for Windows” 4.选择版本&#xff1a;初学者可以使用较低版本&#xff0c;较…

Java:定时任务无法正常执行(scheduling + ShedLock)

目录 一、场景二、代码片段三、排查四、原因五、解决 一、场景 1、使用定时任务(scheduling) 分布式锁(ShedLock)定期执行一段代码 2、configureTasks()对于任务执行周期的更新是正常的 3、但任务方法无法被执行 二、代码片段 三、排查 1、确认Trigger没有问题 2、查看red…

Mac用户必备神器:Default Folder X,让文件操作更快捷、更智能!

Default Folder X for Mac是一款功能强大的文件管理辅助工具&#xff0c;它为Mac用户带来了前所未有的文件操作体验。&#x1f31f; 无论是日常办公、学习还是娱乐&#xff0c;Default Folder X都能帮助你更高效地管理文件&#xff0c;让你的工作更加得心应手。&#x1f4bc; …

java-spring 图灵 02 手写spring

01.idea中创建一个maven管理的空项目 02.模拟创建出spring容器类&#xff0c;这里叫wzpApplicationContext&#xff0c;创建的时候会自动加载配置类的数据&#xff1a; 这里wzpApplicationContext对标的是AnnotationConfigApplicationContext public class wzpApplicationCo…

【算法刷题 | 回溯思想 04】4.15(分割回文串)

文章目录 7.分割回文串7.1题目7.2解法&#xff1a;回溯7.2.1回溯思路&#xff08;1&#xff09;函数返回值以及参数&#xff08;2&#xff09;终止条件&#xff08;3&#xff09;遍历过程 7.2.2代码 7.分割回文串 7.1题目 给你一个字符串 s&#xff0c;请你将 s 分割成一些子…

鸿蒙原生应用再新丁!企查查 碧蓝航线 入局鸿蒙

鸿蒙原生应用再新丁&#xff01;企查查 碧蓝航线 入局鸿蒙 来自 HarmonyOS 微博13日消息&#xff0c;碧蓝航线 将启动鸿蒙原生应用开发&#xff0c;双方将基于HarmonyOS NEXT鸿蒙星河版的原生流畅等特性&#xff0c;进一步提升游戏流畅度和画面精美度&#xff0c;为用户提供更…

汽车零部件制造迎来智能化升级,3D视觉定位系统助力无人化生产线建设

随着新能源汽车市场的蓬勃发展&#xff0c;汽车零部件制造行业正面临着前所未有的机遇与挑战。为了提高产能和产品加工精度&#xff0c;某专业铝合金汽车零部件制造商决定引进智能生产线&#xff0c;其中&#xff0c;对成垛摆放的变速箱壳体进行机床上料成为关键一环。 传统的上…

iframe嵌入海康威视摄像头监控视频画面

前言&#xff1a;海康威视有非常好的开放平台支持(海康开放平台)&#xff0c;如遇到技术问题&#xff0c;可以先花点时间在开放平台视频教程板块学习一下。直接问客服可能会比较懵&#xff0c;而且sdk客服和api客服互相分离&#xff0c;一开始可能都不知道问谁。 在开放平台上…

《二》Qt Creator工具介绍与使用

一、关于界面 点击文件--->新建文件或项目会出现如下图&#xff1a; 我们选择第一个 点击下一步下一步&#xff1a; 继续下一步直到结束&#xff1a; 二&#xff0c;具体文件介绍 我们点击pro查看以下 QT core gui第1行 表示使用qt的core和gui库&#xff0c;如果以后…